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Although it is currently best practice to directly model latent factors whenever feasible, there
remain many situations in which this approach is not tractable. Recent advances in covariate-
informed factor score estimation can be used to provide manifest scores that are used in
second-stage analysis, but these are currently understudied. Here we extend our prior work on
factor score recovery to examine the use of factor score estimates as predictors both in the
presence and absence of the same covariates that were used in score estimation. Results show
that whereas the relation between the factor score estimates and the criterion are typically well
recovered, substantial bias and increased variability is evident in the covariate effects them-
selves. Importantly, using covariate-informed factor score estimates substantially, and often
wholly, mitigates these biases. We conclude with implications for future research and recom-
mendations for the use of factor score estimates in practice.
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Scientific progress depends on the development, refinement,
and validation of measures that sensitively and reliably quan-
tify the phenomena of theoretical interest. For instance,
astronomers have made remarkable progress in recent years
in exoplanetary research by precisely measuring the light
produced by stars that reaches the Earth. Periodic dips in
the light observed from a star signal the presence of an
exoplanet, and can be used to determine its size and length
of orbit. Differences in the dimming of different wavelengths
can even be used to infer the presence and composition of an
atmosphere, recently resulting in the identification of an
Earth-like planet with a water-rich atmosphere (Southworth
et al., 2017). Measurement plays an equally important role in
the behavioral and social sciences. Similar to astronomical
research, we typically must rely on measurements of obser-
vable characteristics of peripheral interest to infer the unob-
servable characteristic of more central theoretical concern.
Just as astronomers use measurements of light wavelengths
to infer the composition of an atmosphere that cannot be
directly sampled, psychologists use self-reports of sadness,

hopelessness, fatigue, and loneliness to infer the underlying
level of depression of an individual.

Latent Variable Models

Latent variable measurement models constitute the primary
analytic approach used in the behavioral and social sciences
for measuring constructs that are not directly observable
(e.g., depression) on the basis of observed indicator vari-
ables thought to reflect these constructs (e.g., self-reports of
sadness and hopelessness). This broad class of latent vari-
able models includes linear and nonlinear factor analysis,
item response theory (IRT) models, latent class/profile mod-
els, structural equation models (SEMs), and many others.
Despite more than a century of research on latent variable
models dating back to Spearman (1904), debate still exists
about how best to use these models to generate numerical
measures of the underlying latent constructs of interest.

Lying at the root of the controversy is the issue of indeter-
minacy. Because latent variables are by definition unobserved,
we cannot recover their values exactly from the observed
indicator variables. Thus, the true values of the latent variables
are indeterminate (e.g., Bollen, 2002; Steiger & Schönemann,
1978). As a consequence, a variety of approaches have been
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developed for scoring latent variables that optimize different
criteria. For the linear factor analysis model, approaches for
generating factor score estimates include the regression
method (which minimizes the variance of the scores;
Thomson, 1936; Thurstone, 1935), Bartlett’s method (which
results in conditionally unbiased scores; Bartlett, 1937), and
the Anderson and Rubin’s method (Anderson & Rubin, 1956;
as extended by McDonald, 1981), which results in scores that
replicate the covariances among the latent variables.

In modern treatments, the issue has been reframed in terms
of how best to characterize the posterior distribution of the
latent variable for a person given his or her set of responses to
the observed indicator variables (Bartholomew & Knott,
1999), with the most common choices being the mode
(modal a posteriori scores or MAPs) and expected value
(expected a posteriori scores or EAPs). Notably, EAPs and
MAPs are equivalent to one another and to regression method
scores for normal-theory linear factor analysis, but generalize
to other latent variable models, such as nonlinear factor
analysis or IRT models, where they are typically highly
correlated but not identical in value. Given this plethora of
ways to score latent variables, researchers (including us) are
left with the daunting task of choosing which method is ideal
for a given application, knowing that different methods may
lead to different conclusions.

Contemporary Need for Scale Scores

Although the question of how best to score latent variables was
once of critical concern, the development of SEM allowed
many psychometricians and applied researchers to neatly side-
step the issue. Without ever having to generate scores, SEMs
can produce direct estimates of the relationships between latent
variables or between latent variables and directly observed
predictors or criteria (e.g., Bentler & Weeks, 1980; Bollen,
1989; Jöreskog, 1973). Given this capability, many methodol-
ogists have advised against using scores, which vary depend-
ing on the method used to compute them and never perfectly
measure the latent construct, in favor of using SEMs (e.g.,
Bollen, 2002). Indeed, this aversion to scores became so strong
that one prominent (and wonderfully irreverent) psychometri-
cian used his 2009 Psychometric Society Emeritus Lecture to
bemoan the irony that latent variable measurement models
were so infrequently being used to produce any actual mea-
surements (McDonald, 2011).

Recent years, however, have seen a resurgence of interest in
scoring methods, in part due to a variety of practical research
needs. For example, some questions can only be addressed by
scores, such as when interest centers on individual assessment
or selection (e.g., Millsap & Kwok, 2004) or in propensity
score modeling (e.g., Raykov, 2012). Further, large public
datasets are analyzed in multiple ways by many users and,
without the provision of scores, each user would face the
responsibility of constructing measurement models anew
(e.g., Vartanian, 2010). This task places a burden on users

and presents the risk that different users will construct different
measurement models, resulting in inconsistent results.
However, simultaneous estimation of measurement and struc-
tural models within an SEM is often simply not tractable. For
instance, in our own work, we have used score estimates in the
context of combining longitudinal data sets for the purpose of
conducting integrative data analysis (or IDA; Curran, 2009;
Curran & Hussong, 2009; Hussong, Flora, Curran, Chassin, &
Zucker, 2008; Hussong, Huang, Curran, Chassin, & Zucker,
2010; Hussong, Huang, Serrano, Curran, & Chassin, 2012;
Hussong et al., 2007). Given the complexity of multiple stu-
dies each with different number of items and many repeated
assessments, it was simply infeasible to fit a longitudinal
measurement model and a growth model concomitantly. We
thus computed scores and carried those scores into subsequent
analyses, a strategy that has proven expedient for other appli-
cations IDA as well (e.g., Greenbaum et al., 2015; Rose,
Dierker, Hedeker, & Mermelstein, 2013).

Thus in many situations commonly encountered in a
broad range of research applications, the ultimate objective
in generating scores is to substitute the scores for the latent
variables in some form of second-stage analysis. That this
purpose should therefore drive the determination of how to
score latent variables optimally was first appreciated by
Tucker (1971). Following this logic and focusing on the
linear factor analysis model, Tucker demonstrated that the
regression method is optimal when scores are to be used as
predictors of other variables, whereas Bartlett scoring is
optimal when scores are instead to be used as outcomes.

More recently, Skrondal and Laake (2001) updated
Tucker’s original findings, proving that regression coefficient
estimates are consistent when using regression method scores
as predictors or Bartlett method scores as outcomes. Skrondal
and Laake also extended Tucker’s results in several ways, for
instance, showing that when factors are correlated, they should
be scored simultaneously based on a multidimensional factor
model rather than separately based on unidimensional models.
Subsequently, Hoshino and Bentler (2013) developed a new
scoring method that produces consistent estimates regardless
of whether factor scores are used as predictors or outcomes,
avoiding the awkwardness of computing differing scores for
different purposes. Extending beyond the linear factor analysis
model, Lu and Thomas (2008) showed that Skrondal and
Laake’s core results also hold for nonlinear item-level factor
analysis/IRT, where EAPs represent the generalization of
regression method scores and produce consistent estimates of
regression coefficients when used as predictors of observed
criterion variables.

Inclusion of Covariates in Scoring

In addition to the work described above, another point of
emphasis in the modern literature on scoring has been the
value of incorporating information on background variables
(i.e., covariates) when generating scores. Such variables
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may enter a latent variable measurement model in two ways.
First, the covariates can have a direct impact on the distri-
bution of the latent variable. For instance, Bauer (2017)
conditioned both the mean and variance of a violent delin-
quency factor on age and sex, finding that boys displayed
higher and more homogeneous levels of delinquency that
decreased less rapidly over ages 12–18 than girls. Second,
covariates can have direct effects on the observed indicators/
items above and beyond their impact on the latent variable
itself. Such effects produce differential item functioning
(DIF), such that the same item responses are differentially
informative about the latent variable depending on the back-
ground variable profile. In the same application, Bauer
(2017) found that several items demonstrated DIF by age
and/or sex. As one example, the item “hurt someone badly
enough to require bandages or care from a doctor” was more
commonly endorsed by boys, particularly at older ages, than
would be expected based on sex and age differences in the
delinquency factor alone. Such trends may reflect the grow-
ing capacity for the same behaviors to result in greater
consequences as boys mature.

Recently, our group conducted an extensive simulation
on the value of incorporating these two types of covariate
effects, impact and DIF, into the measurement model used
to generate factor scores (Curran, Cole, Bauer, Hussong, &
Gottfredson, 2016). Focusing on EAPs, we showed that the
correlation of the score estimates with the true underlying
factor scores clearly increased when covariate effects were
included in the measurement model, particularly when the
covariates had greater impact on the factor mean. For exam-
ple, across varying experimental conditions, the true score
correlation when entirely omitting the covariates ranged
from .75 to .92, when estimating only impact ranged from
.77 to .93, and when estimating both impact and DIF ranged
from .81 to .93. We expected these findings as the inclusion
of informative covariates provided additional information
from which to produce score estimates (i.e., increased factor
determinacy that resulted in posterior score distributions
with lower variance). However, we did not anticipate the
finding that accounting for impact and DIF in the measure-
ment model had only a small effect on the magnitude of the
correlation between the EAPs and the true factor scores.
There were distinct improvements in true score recovery
with the inclusion of the covariates in the scoring model
(see, e.g., Curran et al., 2016; Table 3), but the magnitude of
these gains were at best modest and at times verging on
negligible.

Given the rather small gains in true score recovery asso-
ciated with the inclusion of the exogenous covariates, a
logical question arises as to whether the added complexity
of covariate-informed scoring procedures is worthwhile.
However, to fully address this issue we must carefully
consider the conditions under which the estimated scores
are most commonly used; namely, as predictors or criteria in
second-stage modeling procedures. In our prior work, we

strictly focused on true score recovery. That is, we exam-
ined the extent to which the estimated factor scores corre-
sponded to their underlying true counterparts. While this is a
necessary step in establishing how the score estimates per-
form under conditions reflecting their use in practice, it is
not sufficient in that we have yet to examine the relations
between the scores and outcomes. As such, our current work
follows Tucker’s (1971) admonition that estimated scores
should be evaluated in relation to their intended purpose.

Factor Score Estimates as Predictors

Little is currently known about how to best use factor score
estimates as predictors in second-stage models. Although
understudied in the behavioral and health sciences, a small
body of relevant research currently exists on this point
within the educational measurement literature on plausible
value methodology. In a key paper, Mislevy, Johnson, and
Muraki (1992) argued that the values of a latent variable can
be viewed as missing, and thus that scoring procedures can
be conceptualized as imputation methods for producing
plausible realizations of the missing values. Within the
missing data literature, best practice is to include in the
imputation model (here, the latent variable measurement
model) all variables that will feature in second-stage ana-
lyses, including other auxiliary variables (here, the exogen-
ous covariates) that may be related to the missing values.
Drawing on this parallel, Mislevy et al. (1992) argued that
scores for latent variables should be based on a model that
conditions the latent variable on relevant observed back-
ground variables.

The approach of Mislevy, however, allowed for only
impact effects and not DIF, assuming that any items with
DIF would have previously been identified and eliminated.
Although this assumption was reasonable within the context
of their research on large-scale educational testing, it is less
realistic in many other research contexts where the pool of
potential items for a given construct is often limited and
removing items with DIF may result in failure to fully cover
the content domain of the construct (Edelen, Stucky, &
Chandra, 2015). The focus then turns to mitigating the
biases associated with DIF. A key goal of our article is to
investigate the performance of scores generated from mea-
surement models that either include or omit impact and DIF
when these scores are to be used in second-stage analyses.

The Current Paper

To investigate the need to include covariate effects in scor-
ing models more thoroughly, we move beyond our prior
simulation work presented by Curran et al. (2016) to con-
sider the performance of covariate-informed scores in sub-
sequent analyses. Specifically, under a variety of realistic
conditions, we compute EAPs from three latent variable
measurement models: one that excludes the covariates
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entirely, one that includes covariate impact but not DIF, and
one that includes both impact and DIF. We then use the
EAPs obtained from these three scoring models as predic-
tors in a series of linear regression analyses. Based on the
literature reviewed above, we made three primary hypoth-
eses for how the different scores would perform in these
analyses.

First, when score-based regression analyses include no
other predictors but the scores, given a sufficient sample size,
all three scoringmethods will generate largely unbiased regres-
sion coefficient estimates; however, we did expect differences
in variability (assessed via root mean squared error [RMSE])
across the three scoring models. Second, when score-based
regression analyses include covariates in addition to the scores,
it will be necessary to include the same covariates in the
scoring model in order to obtain unbiased regression coeffi-
cient estimates; in contrast, excluding the covariates from the
scoring model will result in meaningful bias. Third, when
score-based regression analyses include covariates, using a
scoring model that accounts for any DIF due to the covariates
will be necessary to obtain unbiased regression coefficient
estimates. Although Curran et al. (2016) found no notable
difference in the correlations between the score estimates and
true scores when models included versus excluded DIF, we
speculated that excluding DIF from the scoring model might
have more meaningful consequences for score-based analyses.
Our reasoning was that failure to model DIF (when present)
would lead to bias in covariate impact estimates thus distorting
the correlations between the scores and the covariates; this in
turn is expected to bias the partial regression coefficient esti-
mates obtained from score-based analyses that include both the
scores and the covariates.

METHODS

Our motivating goal was to examine the recovery of pre-
dictor–criterion relations in models in which one of the
predictors was estimated using various specifications of a
latent variable scoring model. Although we selected design
elements to mimic what might be encountered in an IDA
setting (specifically, data pooled across two independent
samples), our conditions and subsequent results directly
generalize to single-study designs as well. Because com-
plete details relating to the data generation procedure for the
factor scores and items are presented in Curran et al. (2016),
we only briefly review these steps. Because the generation
process for the outcome variables have not been presented
elsewhere, we discuss these in greater detail.

Data Generation

We followed a four-step process to generate data consistent
with a single factor latent variable model defined by a set of
binary indicators that are differentially impacted by a set of

exogenous covariates that in turn jointly influence three
separate outcomes. The top panel of Figure 1 presents a
conceptual path diagram of the population-generating
model. The diagram is simplified and intentionally impre-
cise to enhance clarity, and we provide specific equations
for all models and outcomes below.

Step 1: Exogenous covariates

Exogenous covariates were generated for each simulated
observation j to reflect variables that are common in an IDA
design. The first three covariates were defined to exert both
impact and DIF effects in the measurement model, and the
fourth to covary with the latent factor but not be function-
ally related to impact or DIF. This fourth covariate was

FIGURE 1 Conceptual path diagram of population model (top panel) and
predictive regression model (bottom panel). Note. These are conceptual
representations, the specifics of which are defined via equations in the
text. In the top panel, the arrows connecting the covariates to the measure-
ment model represents impact (pointing to the latent factor) and DIF
(pointing to the factor loading and item). The diagram shows two covariates
for simplicity, but three and four covariates were used in the simulations.
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designed to reflect the commonly used approach in which a
variable is not included in the measurement model but is
included in subsequent fitted models.

More specifically, the first covariate was designed to
mimic study membership (studyj) and was generated as a
binary indicator with half of a given simulated sample
drawn from Study 1 and half from Study 2. The second
covariate was designed to mimic biological sex (sexj) and
was generated from a Bernoulli distribution with probability
of being a male equal to .35 in Study 1 and .65 in Study 2.
The third covariate was designed to mimic chronological age
(agej) and was generated from a binomial distribution with
success probability of .5 over seven trials with ages ranging
from 10 to 17 in Study 1 and over six trials with ages ranging
from 9 to 15 in Study 2; the age range was shifted across
study to reflect age heterogeneity that is common in real-
world IDA applications. The fourth covariate was designed to
mimic perceived stress (stressj) and was generated as a con-
tinuous covariate that correlated with the latent factor
(r = .35) but was orthogonal to the first three predictors.

Step 2: Latent true scores

The latent factor was designed to mimic depression (ηj)
and was generated from a continuous normal distribution
with moments defined as a function of the three covariates.
More specifically, the value of ηjwas randomly drawn from
a normal distribution with mean ηj and variance ηj where the
subscripting with j reflects that the mean and variance are
expressed as deterministic functions of the covariates unique
to observation j. Specifically, the mean of the latent distri-
bution was defined as:

αj ¼ α0 þ γ1agej þ γ2studyj þ γ3agej � studyj (1)

and the variance as:

ψj ¼ ψ0 exp δ1agej þ δ2sexj þ δ3studyj
� �

(2)

where the coefficients for the latent mean (γ’s) and the latent
variance (δ’s) jointly represent impact. The two equations
include different covariate effects both to reflect what might
be encountered in practice and to highlight that each parameter
can be defined by a unique combination of the covariates.

Step 3: Observed items

The observed binary items were designed to mimic the
presence or absence of symptoms of depression (yij for item
i and subject j) and were generated as a function of the three
covariates and the true latent score. Specifically, binary
responses were generated from a Bernoulli distribution
with success probability μij given by:

logit μij
� �

¼ νij þ λijηj (3)

where values of the item intercept (νij) and factor loading
(λij) were functions of the covariates. The effect of the
covariates on the item intercept was defined as:

νij ¼ ν0ij þ κ1iagej þ κ2isexj þ κ3jstudyj (4)

and for the item slope (or loading) as

λij ¼ λ0ij þ ω1iagej þ ω2isexj þ ω3istudyj (5)

The coefficients for the intercept (κ’s) and the slope (ω’s)
jointly define DIF.

Step 4: Outcomes

Three outcomes, designed to represent hypothetically
relevant measures such as school success, antisocial beha-
vior, or self-esteem (zmj for outcome m and subject j), were
generated according to one of the three models. The bottom
panel of Figure 1 presents a conceptual diagram of the
regression models; this shows only one outcome, although
three were considered. The first model (denoted Outcome 1)
consisted of just the univariate effect of the true score ηj:

z1j ¼ β0 þ β1ηj þ ε1j (6)

The second model (denoted Outcome 2) added main effects
of all of the DIF- and impact-generating covariates1:

z2j ¼ β0 þ β1ηj þ β2agej þ β3sexj þ β4studyj þ ε2j (7)

The third and final model (denoted Outcome 3) added to the
second model the additional covariate designed to mimic
stress:

z3j ¼ β0 þ β1ηj þ β2agej þ β3sexj þ β4studyj
þ β5stressj þ ε3j (8)

Design Factors

Five factors were manipulated as part of the experimental
design: sample size, number of items, magnitude of impact,
magnitude of DIF, and proportion of items with DIF. All
factors were fully crossed yielding a total of 108 unique
conditions for each of which 500 replications were generated.

Sample size

We investigated three sample sizes: 500, 1000, and 2000.
These sample sizes were evenly divided between the two

1We later expanded this model to include a null interaction between the
factor score estimate and the first covariate to evaluate Type I error rates;
more will be said about this later.
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simulated studies (e.g., for the n = 500 condition, 250 cases
were drawn from Study 1 and 250 from Study 2).

Number of items

We investigated three numbers of observed items: 6, 12,
and 24. These correspond to small, medium, and large item
sets commonly seen in practice.

Latent variable impact

We investigated three types of latent variable impact:
small mean/large variance (SMLV), medium mean/medium
variance (MMMV), and large mean/small variance (LMSV).
Combinations of mean and variance impact parameters were
chosen to produce the desired shift in latent variable mean
and variance, while holding the marginal variance of the
latent variable equal across conditions. All population coef-
ficients corresponding to Equations (1) and (2) are presented
in Table 1.

DIF magnitude

We investigated two levels of DIF magnitude: small and
large. DIF magnitude was chosen on the basis of explora-
tory analyses, which included calculating the weighted area
between curves (wABC; Edelen et al., 2015; Hansen et al.,
2014) in order to quantify the difference between model-
implied trace lines. All population coefficients correspond-
ing to Equations (3) and (4) are presented in Table 2.

Proportion of items with DIF

We investigated two levels of proportion of items with
DIF: 33% and 66% of items. In both the 33% and 66% DIF
conditions, we generated a balance of negative and positive
DIF effects between and within items to keep endorsement
rates from becoming unreasonably low, and to mimic the
compensatory pattern of DIF often seen in practice.

Outcome coefficients

Whereas the values of coefficients for impact and DIF
varied in magnitude across the experimental design (e.g.,
small, medium, large), the coefficients that defined the
regression models for the three outcomes were held constant
across varying conditions of impact and DIF. The popula-
tion values were chosen to optimize three criteria: to main-
tain approximately equivalent R2 values across the three
impact conditions; to balance positive and negative effects
of covariates to allow examination of differential bias as a
function of the sign of the coefficient; and to reflect a range
of magnitudes of effect that are typical of research applica-
tions in the behavioral and health sciences. Population
values for all regression models are presented in Table 3
including the raw coefficients, squared semi-partial correla-
tions, and the model R2.

Factor Scoring Models

We used three parameterizations of the latent variable model
to obtain factor score estimates: an unconditional model, an
impact-only model, and an impact-DIF model. Conceptual

TABLE 1
Population Values of Covariate Moderation Three Impact Conditions

Small mean/large
variance

Medium mean/
medium variance

Large mean/small
variance

Mean model
Intercept −0.01 −0.01 −0.02
Age 0.13 0.22 0.34
Gender 0 0 0
Study 0.21 0.37 0.56
Age ×
Study

−0.05 −0.09 −0.14

Variance model
Intercept 0.58 0.71 0.65
Age 0.5 0.35 0.25
Gender −1 −0.6 −0.05
Study 0.5 0.3 0.05

TABLE 2
Population Values of Item Parameters Under Small and Large DIF

Conditions

Small DIF Large DIF

Loading Baseline Age Gender Study Age Gender Study

Items 1, 7,
13, 19

1

Items 2, 8,
14, 20

1.3 0.05 −0.2 0.2 0.075 −0.3 0.3

Items 3, 9,
15, 21

1.6 −0.05 0.2 0.2 −0.075 0.3 0.3

Items 4, 10,
16, 22

1.9 0.05 0.075

Items 5, 11,
17, 23

2.2 −0.2 0.2 −0.3 0.3

Items 6, 12,
18, 24

2.5

Small DIF Large DIF

Intercept Baseline Age Gender Study Age Gender Study

Items 1, 7,
13, 19

−0.5

Items 2, 8,
14, 20

−0.9 0.125 −0.5 0.5 0.25 −1 1

Items 3, 9,
15, 21

−1.3 −0.125 0.5 0.5 −0.25 1 1

Items 4, 10,
16, 22

−1.7 0.125 0.25

Items 5, 11,
17, 23

−2.1 −0.5 0.5 −1 1

Items 6, 12,
18, 24

−2.5
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path diagrams of these three models are presented in
Figure 2 (unconditional in the left panel, impact-only in
the center panel, and impact-DIF in the right panel); as
with the prior figure, this is over-simplified to enhance
clarity. Factor score estimates were obtained from each
scoring model using the EAP methods in which the score
is calculated as the expected value of the posterior distribu-
tion of ηj (e.g., Bock & Aitkin, 1981).

Unconditional

In the unconditional scoring model, all three covariates
were omitted from the analysis. Given that all of the item
indicators were binary, this model is equivalent to an uncon-
ditional confirmatory factor analysis model with binary
indicators or a two-parameter logistic IRT model (e.g.,
Takane & De Leeuw, 1987). This model is misspecified in
that the covariates were present in the population measure-
ment model but were omitted from the sample scoring
model.

Impact-only

In the impact-only scoring model, the three covariates
were included in the measurement model, but the effects
were limited to just the mean and variance of the latent
variable (thus corresponding to Equations 1 and 2). This
model is misspecified in that effects existed between the
covariates and the item parameters in the population
model but were omitted from the scoring model.

Impact-DIF

In the impact-DIF scoring model, the model estimated in
the sample precisely corresponded to that in the population-
generating model (thus corresponding to Equations 1–4).
This is a properly specified model in that all covariate
effects that existed in the population model were estimated
in the sample scoring model.

TABLE 3
Population Values for the Three Regression Models

Regression coefficient Squared semi-partial correlation

Outcome 1 (z1j) SMLV MMMV LMSV
Intercept 10.16
η 1.07 0.166 0.166 0.166
σ2 5.72
R2

multiple .17
Outcome 2 (z1j) SMLV MMMV LMSV
Intercept 10.16
η 1.07 0.122 0.113 0.091
Age 0.36 0.023 0.022 0.019
Sex 0.44 0.020 0.020 0.020
Study −1.24 0.115 0.108 0.090
σ2 5.72
R2

multiple .35
Outcome 3 (z1j) SMLV MMMV LMSV
Intercept 10.16
η 1.07 0.094 0.085 0.065
Age 0.36 0.020 0.019 0.016
Sex 0.44 0.017 0.017 0.018
Study −1.24 0.100 0.093 0.075
Stress 0.8 0.055 0.055 0.054
σ2 5.72
R2

multiple .43

Note. Impact denoted SMLV = small mean/large variance; MMMV = medium mean/medium variance; LMSV = large mean/small variance; see text for
details. R2

multiple = multiple R2; one value is listed for each outcome for conciseness, although these values vary slightly (by ±.01) as a function of impact.

FIGURE 2 Conceptual path diagram of unconditional scoring model (left
panel), impact-only scoring model (middle panel), and impact-DIF scoring
model (right panel). Note. The scoring models were used to obtain factor
score estimates of η̂j to be used in subsequent regression models. These are
conceptual representations, the specifics of which are defined via equations
in the text. In the left panel, no covariates were included in scoring; in the
middle panel, the covariates were only related to the mean and variance of
the latent factor; in the right panel, the covariates were related to the mean
and variance of the latent factor and the item loading and intercept. The
diagram shows two covariates for simplicity, but three were used in the
simulations.
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Regression Models

Factor score estimates (η̂j) were obtained from each of the
three scoring models and were used as predictors in each of
the three regression models described earlier (thus replacing
ηj with η̂j in Equations 6–8). For each cell in the design
(108 cells with 500 replications per cell), individual regres-
sion models were estimated using SAS PROC REG
(Version 9.4, SAS Institute).

Criterion Measures: Relative Bias and RMSE

As with any comprehensive simulation study, a plethora
of potential outcome measures were available. To opti-
mally evaluate our research hypotheses we focused on
bias (relative) and RMSE. We chose to focus on relative
bias because no covariates are defined to have population
values equal to zero and thus relative bias offers an
interpretable and meaningful metric; we took values
exceeding 10% to be potentially meaningful.2 We also
considered the RMSE because it balances bias and varia-
bility and offers a clear reflection of how far effect
estimates tend to stray from their corresponding popula-
tion values in any given replication. We graphically pre-
sent a subset of findings in Figure 3 through 6.

RESULTS

Regression Model: Outcome 1

The regression model for Outcome 1 consisted of a single,
continuous outcome (z1j) regressed just on the factor score
estimate; no covariates were included in this regression
model.

Unconditional scoring model

For the unconditional scoring model (where all covari-
ates were omitted from factor score estimation), there were
no design effects across any condition associated with
observed relative bias in the estimated regression parameter
exceeding 10%. Indeed, the vast majority of conditions were
associated with relative bias falling below 5%. The uncon-
ditional model thus provided factor score estimates that well
recovered the regression of the outcome on the score.

Impact-only scoring model

In contrast to the unconditional model, the impact-only
scoring model resulted in extensive bias in the predictor–
criterion relation across multiple design conditions. The
regression coefficient was routinely underestimated by
20–30%. The largest bias was found under conditions
with the least amount of information and largest amount
of omitted DIF (smaller sample size, smaller number of
items, larger magnitude of DIF, and higher proportion of
items with DIF).

Impact-DIF scoring models

As was found for the unconditional scoring model,
virtually no bias was found in the predictor–criterion
relation for scores obtained under the impact-DIF scoring
model. Indeed, there were no design effects across any
condition associated with observed relative bias in the
estimated regression parameter exceeding 10% and nearly
all conditions reflected relative bias falling below 5%.
This was expected given that the impact-DIF model was
properly specified.

FIGURE 3 Relative bias for the second outcome (Z2) at a sample size of
500, one-third of items with large DIF, and small variance/large mean
impact. Note. Values of relative bias greater than ±10% were taken as
potentially meaningful.

2We also fit a series of generalized linear models (GLMs) to both raw
bias and RMSE (e.g., Skrondal, 2000). We do not present these results here
because the GLMs do not shed any additional light on the findings beyond
our discussion of relative bias and RMSE. Complete GLM results can be
obtained from first author.
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RMSE

The RMSE values behaved as expected: in general,
RMSE decreased with increasing number of items and
increasing sample size, tended to be larger for coefficients
associated with greater bias, and tended to increase slightly
with the complexity of the scoring model. For example, for
the unconditional scoring model with 6 items, medium
impact, and large DIF influencing two-thirds of the items,
RMSE was .15 at a sample size of 500, .10 at a sample size
of 1000, and .07 for a sample size of 2000. In contrast, for
the fully parameterized impact-DIF scoring model these
same RMSE values were .18, .12, and .08, thus reflecting
mostly comparable variability relative to the unconditional
model. However, for the impact-only model, the RMSE
values for these same conditions were .32, .28, and .26.
This increase in the RMSE is directly attributable to the
much higher bias observed for the impact-only scoring
model relative to the other two scoring models.

Summary

For the univariate regression model, the unconditional
and impact-DIF scoring models resulted in little to no bias
in the relation between the factor score and the outcome
across all conditions and comparable RMSEs. In contrast,
there was substantial bias in this same relation for the factor
scores obtained from the impact-only model, particularly
under conditions where there was smaller sample size,
fewer items, and larger omitted DIF. This bias led to a
sharp increase in the RMSE for impact-only model esti-
mates relative to the other scoring models.

Regression Model: Outcome 2

The regression model for Outcome 2 consisted of a single a
continuous outcome (z2j) regressed on the factor score esti-
mate and the main effects of three covariates (agej, sexj, and
studyj). Because findings were consistent across nearly all
design factors, Figure 3 presents relative bias and Figure 4
presents RMSE for a specific subset of exemplar conditions:
6, 12, and 24 items assessed at a sample size of 500, small
variance/large mean impact, and large DIF for one-third of
the item set.3

Unconditional scoring model

Modest bias was found in the regression of the outcome
on the factor score estimate ranging from approximately –
10% to –15%, but this was only found in the 6-item condi-
tion. Bias was mitigated by decreasing magnitude of impact
and increasing number of items such that minimal bias was
found in all other 12- and 24-item conditions.

In contrast, extensive bias was found in the relations
between all three covariates and the outcome, the magnitude
and direction of which varied across covariates and design
conditions. For example, the covariate age was associated
with extensive positive bias ranging from approximately
20% to 50% across all conditions under large mean impact,
and this bias was reduced at lower levels of impact. The
covariate sex also showed positive bias, but to a lesser
extent (ranging from approximately 10% to 30%); unlike
the first covariate, bias increased as a function of decreasing
mean impact. Finally, the covariate study showed bias ran-
ging as high as nearly 25%, but this reflected underestima-
tion of the regression effects whereas the first two covariates
reflected overestimation of the regression effects. Bias for
the third covariate was most severe with larger mean impact,
and decreased in magnitude with decreasing magnitude of
impact.

Impact-only scoring model

Little bias was found in the recovery of the relation
between the factor estimate and the outcome. Only 4 of
108 conditions reflected relative bias exceeding 10%, and
the largest of these was 15% for the smallest sample size,

FIGURE 4 Root mean square error (RMSE) for the second outcome (Z2)
at a sample size of 500, one-third of items with large DIF, and small
variance/large mean impact.

3 Complete results can be obtained from first author.
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fewest items, largest and most pervasive DIF, and smallest
mean impact. All other estimates of bias were negligible.

However, as was found with the unconditional model,
extensive bias was found across all conditions in the recov-
ery of the relation between each of the three covariates and
the outcome. Bias was negative for age but positive for sex
and study. Bias ranged from approximately –20% up to
nearly +50% and was generally more pronounced with
less information (smaller sample size and fewer items) and
more pervasive DIF effects (greater in magnitude and higher
in proportion of affected items).

Impact-DIF scoring model

No meaningful bias was observed in either the relation
between the factor score estimate and the outcome nor
between any covariate and the outcome.

RMSE

As was found with the first model, the RMSE largely
behaved as expected: decreasing with increasing sample size
and number of items and becoming larger for those coeffi-
cients displaying greater bias. Of greatest interest was the
finding that the RMSE was generally comparable for the
coefficient associated with factor score estimate across the
three scoring models when compared within the same design
conditions. For example, Figure 4 reflects nearly equal RMSE
values for the factor score coefficient for the unconditional,
impact-only, and impact-DIF scoring models within each item
set (these values are shown in the darkest shaded bar in the
histogram). This is as expected given the associated coeffi-
cients reflected minimal bias. However, for the remaining
coefficients that did display greater bias, the RMSE was
generally smaller for the more complex scoring models (i.e.,
impact-only and impact-DIF models). Almost without excep-
tion, the impact-DIF scoring model showed the lowest RMSE.

Summary

With a few minor exceptions, the relation between the
factor score estimate and the outcome was unbiased for all
three scoring models across all experimental design condi-
tions (the exception being 6 items for the unconditional
scoring model). However, extensive bias was found between
the covariates and the outcome for the unconditional and
impact-only scoring models, whereas no covariate bias was
found with the impact-DIF scoring model. Thus, although
the factor score estimate itself was associated with generally
unbiased regression effects, the covariates were strongly
biased for the unconditional and the impact-only scoring
models. Finally, the RMSE decreased with increasing sam-
ple size and number items and decreasing bias; RMSE was
lowest for the impact-DIF scoring model across nearly all
conditions.

Regression Model: Outcome 3

The regression model for Outcome 3 differed from that for
Outcome 2 given the inclusion of a covariate (stressj) that
was correlated with the latent factor in the population but
was not included in any of the three scoring models. This
model was designed to mimic the common strategy used in
practice in which covariates are included in a secondary
analysis that were not used as part of the initial scoring
stage of the analysis (e.g., Hussong et al., 2008, 2010,
2012). Because findings were generally consistent across
all design factors, Figure 5 presents relative bias and
Figure 6 presents RMSE for the same subset of conditions
as the prior model: 6, 12, and 24 items at a sample size of
500, small variance/large mean impact, and large DIF for
one-third of the items.

Unconditional scoring model

Unlike the first two regression models, the effects of the
unconditional factor scores reflected substantial bias, in
some instances approaching –25%. These levels of bias
were primarily found across all three sample sizes for 6
and 12 items, but not for 24 items, and bias diminished

FIGURE 5 Relative bias for the third outcome (Z3) at a sample size of
500, one-third of items with large DIF, and small variance/large mean
impact. Note. Values of relative bias greater than ±10% were taken as
potentially meaningful.
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with decreasing magnitude of mean impact. The effects of
the three covariates that were also involved in the measure-
ment model were biased in much the same way as was
found in Regression Model 2; bias was positive for age
and sex, and negative for study, the magnitude of which
again varied in complex ways across design conditions.

However, extensive bias was found across nearly all
experimental conditions in the regression of the outcome on
the fourth covariate stressj. Recall that this fourth covariate
played only a small role in the measurement model (via the
correlation of the covariate with the disturbance of the latent
factor) and the predictive effects were properly specified
within the regression model. The pattern of bias is clearly
related to one dominating influence: number of items. Bias
was most evident with 6 items but decreased at 12 items and
further still at 24 items. Values of relative bias approach 25%
for 6 items at a sample size of 500, yet remained elevated at
levels of 10–12% for 24 items at a sample size of 2000.

Impact-only scoring model

Similar to the unconditional factor score, the impact-only
score estimate showed evidence of negative bias in the
prediction of the outcome, but this was primarily limited
to the 6-item condition, and this diminished with increasing

sample size. This is in contrast to Regression Model 2 in
which no bias was observed in the regression of the out-
come on the factor score estimate. Also similar to the
unconditional factor score model, moderate to substantial
bias was observed in the effects of all three covariates on the
outcome, the magnitude of which varies over covariate and
design condition.

The effect of the fourth covariate on the outcome was
again substantially positively biased, but the bias was
clearly mitigated by increasing number of items and mod-
estly mitigated by decreasing levels of mean impact.
Positive relative bias ranged as high as nearly 25%, and
this was most pronounced under the 6-item condition.
However, even at a sample size of 2000 with 24 items,
relative bias still exceeded 10%.

Impact-DIF scoring model

Modest bias was observed in the regression of the outcome
on the impact-DIF factor score estimate of the same form as was
found in the impact-only scoring model. Some under-estimation
was observed for 6 items, but this diminished with increasing
number of items and increasing sample size. Further, unlike
Regression Model 2, there was evidence of positive bias asso-
ciated with the covariate age, but only for the 6-item condition.
Relative bias ranged up to 15%, but this rapidly diminished with
increasing items, larger sample sizes, and decreasing levels of
mean impact. The remaining two covariates showed no evi-
dence of meaningful bias across any condition.

The regression of the outcome on the fourth covariate was
substantially positively biased in much the same way as was
found under the other two scoring models. Relative bias
approached 25% at the smallest sample size and lowest num-
ber of items; this biased diminished with increasing number of
items, increasing sample size, and decreasing mean impact.
However, bias still remained above 10% even with 24 items
and a sample size of 2000 for the large impact condition.

RMSE

As with prior models, RMSE decreased with increasing
sample size and number of items and tended to be larger for
coefficients displaying greater bias. Further, for a given
parameter within a given condition, the RMSE was gener-
ally smallest for the impact-DIF scoring model relative to
the unconditional and impact-only scoring models, each of
which tended to be comparable to the other. Consistent with
the findings from Outcome 2, for Outcome 3 the RMSE for
the coefficient associated with the factor score estimate was
comparable across all three scoring models.

Summary

Unlike the regression models for Outcomes 1 and 2,
the factor score estimates for Outcome 3 showed mod-
erate to substantial bias for all three scoring models in

FIGURE 6 Root mean square error (RMSE) for the third outcome (Z3) at
a sample size of 500, one-third of items with large DIF, and small variance/
large mean impact.
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the presence of a covariate that was not included in the
scoring model but was included in the regression model.
This bias was most pronounced under conditions of less
available information, namely smaller sample size and
fewer items. This held even for the properly specified
impact-DIF factor score estimates that in prior models
showed no bias in any design condition. Further, the
factor score estimate coefficient in Outcome 3 displayed
much higher RMSEs than were observed for the same
effect for Outcome 2, and this was primarily due to the
greater bias associated with the effect estimate. Jointly,
these are striking findings given the common practice of
excluding a predictor from the scoring model but includ-
ing that same predictor in subsequent analyses, the exact
condition the fourth covariate was designed to mimic.

Additional Regression Model: Outcome 2 with the
Inclusion of a Null Interaction

It is increasingly common to test higher-order interaction
effects to examine conditional relations, particularly when
striving to enhance replicability of findings (e.g., Anderson
& Maxwell, 2016). This is particularly salient in many
IDA applications in which interactions are defined among
one or more covariates and study membership in order to
account for differential covariate effects across contribut-
ing study (e.g., Curran et al., 2008, Curran et al., 2014;
Hussong et al., 2008, 2010). To examine Type I error rates
associated with a null interaction effect, we expanded the
regression model for Outcome 2 defined in Equation to
include a null interaction between study membership
(studyj) and the factor score estimate (η̂j). There are no
measures of relative bias, given that the population value is
equal to zero (representing the null effect). We instead
computed empirical rejection rates (taken at α ¼ :05) as
an estimate of Type I error. Given the null interaction, the
empirical rejection rates should ideally approximate the
nominal rate of 5%.

For the unconditional factor scores, the grand mean
rejection rate (pooling over all cells of the design) was .19
with a cell mean range of .06 to .60. For the impact-only
factor scores, the grand mean was .07 with a cell mean
range of .04 to .14; and for the impact-DIF factor scores,
the grand mean was .08 with a cell mean range of .04 to .15.
There was thus slight elevation in the Type I error rates for
the impact-only and impact-DIF scores with the highest
rates occurring under conditions of larger sample size and
larger number of items. However, the unconditional scores
were associated with markedly elevated Type I error rates,
with many design cells exceeding .30 and above. The great-
est levels of inflation occurred under conditions of larger
sample sizes and larger number of items, and this was
modestly attenuated with higher levels of impact.

DISCUSSION

There is no question that when a given experimental design
and associated data allow, latent variables are best modeled
directly within any empirical application (e.g., Bollen, 1989,
2002; Skrondal & Laake, 2001; Tucker, 1971). Despite this
truism, there remain many contemporary applications in the
social, behavioral, and health sciences in which the direct
estimation of a latent factor is intractable and some type of
factor score estimate is required. Somewhat ironically, the
need for scale scores may actually be increasing with time
given the substantial complications introduced in many
advanced modeling methods that even further preclude the
ability to model latent factors directly (e.g., mixture model-
ing, multilevel modeling, latent change score analysis, and
machine learning methodologies). Although much is known
about factor score estimation in terms of true score recovery,
much less is known about how these factor scores perform
as most commonly used in subsequent analysis, particularly
when used as predictors in the presence of covariates that
were used in the scoring model itself. This was the focus of
our work here.

We incorporated a comprehensive simulation design to
empirically examine predictor–criterion recovery using three
types of factor score estimates that were then used in one of
three second-stage regression models. We examined the
univariate and partial effects of the factor score estimate in
the prediction of a continuous outcome as well as the partial
effects of the covariates and that of a correlated predictor.
Consistent with prior research, the parameterization of the
optimal scoring model strongly depends on how the scores
will be used in second-stage regression analysis and what
effects are of primary substantive interest. We can distill our
findings down to five lessons learned.

Lessons Learned

Lesson 1

If the factor score estimate is to be used in a simple
single-predictor regression that includes no other covari-
ates, the covariates may either be entirely omitted from the
scoring model or be fully parameterized in the scoring
model; however, misspecification of the covariate effects
in the scoring model leads to substantial bias in the sec-
ond-stage regression model. Consistent with statistical the-
ory and prior empirical results, factor score estimates
obtained from a properly specified scoring model that
included both impact and DIF resulted in unbiased regres-
sion coefficients with the lowest RMSE in the second-stage
model. Somewhat unexpectedly, a similar lack of bias and
comparable RMSE was found in the unconditional scoring
model in which the covariates are omitted entirely.
However, if the covariates are included in the scoring
model but the effects are misspecified (e.g., inappropriately
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omitting DIF), substantial bias and increased RMSE was
found in the second-stage regression model. A critical
caveat to this conclusion is that rarely if ever would a
bivariate correlation be the sole focus in practice thus
limiting the utility of the unconditional scores. As such,
more realistic models must be considered to fully under-
stand the nature of these effects.

Lesson 2

If the factor score estimate is used as a predictor in a
second-stage regression that includes the same covariates
used in the scoring model, then any of the three scoring
models result in little to no bias in the partial regression
coefficient between the outcome and the score estimate net
the covariates. This finding was expected from theory for
the fully parameterized impact-DIF model, but was unex-
pected for the misspecified impact-only model. More speci-
fically, recall that the impact-only factor score estimates
were strongly biased in the second-stage regressions when
defined as a univariate predictor, yet little to no bias was
found when this same effect was evaluated net the joint
effects of the scoring covariates. There was a similar lack
of bias in the partial effects of the unconditional factor score
estimate. Interestingly, RMSE was mostly comparable
within a set of experimental conditions across the three
scoring methods. Taken together, this is somewhat heart-
ening news in that unbiased regression coefficients were
found regardless of scoring model, yet examination of the
regression coefficients for the covariates themselves raises a
substantial corollary to this conclusion.

Lesson 3

If substantive interest is also placed on the effects of
the covariates on the outcome in the second-stage regres-
sion model, then only the fully specified impact-DIF scor-
ing models provides unbiased regression coefficients for
both the factor score estimate and the covariate effects.
Although Lesson 2 reflected that the partial effects of all
three factor score estimates were largely unbiased net the
effects of the scoring covariates, the reverse was unam-
biguously not true. Covariate effects net the influence of
the factor score estimate were substantially biased across
nearly all experimental conditions for both the uncondi-
tional and impact-only scoring models. Indeed, relative
bias routinely fell in the 20–40% range, in some condi-
tions overestimating and in other conditions underestimat-
ing the corresponding population effect. In contrast, little
to no bias was observed for the fully specified impact-DIF
scoring model. The RMSE for the coefficient estimates
was as expected with greater RMSE associated with para-
meters characterized by greater bias, and lower RMSE
with larger sample size and additional number of items.
Further evidence of bias was reflected in that uncondi-
tional and impact-only score estimates resulted in

markedly elevated Type I error rates in the estimation of
spurious score-by-covariate interactions, an effect com-
monly estimated in practice. This is a truly intriguing
finding: if the covariate effects are either omitted entirely
or included by misspecified, the resulting factor score
estimates carry information about this misspecification
forward that in turn leads to bias in the covariates in the
second-stage models. In the second-stage regression, the
covariates are serving to “absorb” the misspecification that
occurred in the first-stage scoring model (Kaplan &
Wenger, 1993).

Lesson 4

If a second-stage model includes a predictor that is
correlated with the latent factor but was not included in
the scoring model, substantial bias will result in the
estimated effect of the correlated predictor in the presence
of the factor score estimate and the scoring covariates
regardless of scoring model. Almost without exception,
substantial bias and elevated RMSE was found across all
experimental conditions in the partial regression coeffi-
cient between correlated predictor and the second-stage
outcome for all three scoring models. This was expected
from theory (see particularly Skrondal & Laake, 2001),
yet this remains a deeply troubling result from the per-
spective of an applied researcher. It is a common strategy
to first estimate a score for some theoretical construct
(e.g., depression) and then use this as one of a set of
exogenous covariates (e.g., stress, sex, age) in the predic-
tion of an outcome (e.g., substance use). In this example,
if stress is truly correlated with the latent factor of depres-
sion (which would be expected), and factor score esti-
mates are obtained for depression in the absence of stress
(which would commonly be done), then the prediction of
substance use from stress net the effect of depression will
be strongly biased in large and unpredictable ways. Even
using the fully specified impact-DIF scoring model does
not mitigate this bias because, although properly specified
with respect to the three covariates, it is misspecified with
respect to the correlated predictor. Much additional work
is needed to determine how to best address this common
situation.

Lesson 5

All of the above effects tended to be mitigated by greater
information, but greater information alone does not ame-
liorate bias. Consistent with both statistical theory and prior
empirical findings, bias tended to be lower and coefficients
estimated with lower RMSE under conditions of greater
information (more items and larger sample sizes), smaller
magnitude of impact effects, and smaller magnitude of DIF
effects that influence a lower proportion of available items.
Importantly, although key findings described above were
less evident with greater number of items and larger sample
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sizes, substantial bias remained even under conditions with
the most available information (24 items and 2000 cases).
Thus greater information, although beneficial in a variety of
ways, will not wholly eradicate the problems at hand.

Recommendations for Researchers

Our results uniquely contribute to a growing body of work
that can help inform how substantive researchers can best
obtain optimal factor score estimates for use in second-stage
analysis. Our prior work demonstrated that impact-DIF
scores were universally superior to unconditional and
impact-only scores in terms of true score recovery (Curran
et al., 2016). This is what Tucker (1971) considers “inter-
nal” characteristics. Our current work offers particularly
salient insights into the use of covariate-informed scores
that capture impact and DIF effects in second-stage analysis,
a condition under which score are used in practice. This is
what Tucker (1971) considers “external” characteristics.
These external characteristics are of greatest importance to
the applied researcher.

Based on the results presented here, we offer four
primary recommendations for how to optimize the exter-
nal characteristics of factor scores as applied in second-
stage analyses. First, it is important for researchers to
identify relevant covariates that influence the expression
of the latent factor in terms of impact and DIF and, once
identified, these covariates must be included in the scor-
ing model when obtaining factor score estimates. Which
covariates to include and which to exclude are primarily
theoretically motivated and justified, although empirical
results can help guide selection. Second, a principled
approach should be taken when building the impact-DIF
scoring model, although precisely what approach is best
remains unclear. We have previously offered recommen-
dations that describe a sequential process using likelihood
ratio tests (Curran et al., 2014), although this is tedious
and can be influenced by the idiosyncratic characteristics
of the given sample. Exciting ongoing work is moving
toward an automation of this model building process
(e.g., Gottfredson et al., 2018). Third, all covariates
included in the scoring model should also be included
in the second-stage regression model to obtain accurate
estimates of both factor score and covariate effects on the
outcome measure. Fourth, it is currently unclear how to
best mitigate bias introduced by predictors that are corre-
lated with the latent factor but are not included in the
scoring model. Our results suggest that all predictors that
are correlated with the latent factor should be included in
the scoring model, but there are clearly limits to the
number of covariates that can be stably included and
future research is strongly needed to better understand
this important issue.

Limitations and Directions for Future Research

Our results contribute to the existing literature on scoring in
several important ways. Most notably, to our knowledge, this
is the first comprehensive examination of the role of exogen-
ous covariates on the scoring of the latent factor under condi-
tions of both impact and DIF. Both Skrondal and Laake
(2001) and Lu and Thomas (2008) presented important find-
ings about factor scoring for continuous and discrete items,
respectively, but neither considered the additional influences
of impact and DIF. The inclusion of impact and DIF effects is
an important topic to consider given the recent development
of novel methods for estimating these effects in ways not
previously possible (Bauer, 2017; Bauer & Hussong, 2009)
and in the ubiquity of impact and DIF in many research
settings (particularly in applications of IDA; e.g., Hussong
et al., 2008, 2010, 2012). Our study was designed to rigor-
ously study the role of impact and DIF in scoring and was
characterized by a number of significant strengths including
the use of three different scoring models and three second-
stage regression models spanning a large range of experimen-
tal conditions commonly encountered in practice. However,
there are several potential limitations of our design.

First, we jointly placed our focus on measures of relative
bias and RMSE as these are of greatest importance in
applied research settings. Additional insights could be
gained by consideration of standard errors and confidence
interval estimation as well as examination of other model-
specific outcomes (e.g., coefficient of determination, mean
squared error). Second, we did not consider the behavior of
the most widely used method of scoring, the sum score. Our
rationale was that this is a psychometrically inferior mea-
surement model and our prior results empirically showed it
performed worst of all other factor score estimation meth-
ods. Although the field would do well to move toward more
psychometrically rigorous models (such as those studied
here), it would be helpful to better understand how these
complex impact and DIF effects are manifested for the sum
score. Third, we only consider the latent factor as an exo-
genous variable in the second-stage regression models. Both
Skrondal and Laake (2001) and Lu and Thomas (2008)
demonstrate that bias differs as a function of scoring method
and exogenous–endogenous distinction in the fitted models.
Our results could be expanded to address accuracy of recov-
ery when the latent factor is itself endogenous; it would be
particularly interesting to consider conditions in which the
factor is a mediator and thus simultaneous serves as both a
predictor and a criterion.

Finally, arguably the most important direction for future
research is on the study of how to best include exogenous
measures that are correlated with the latent factor but are not
related to impact or DIF. Not only was this correlated
predictor substantially biased across all conditions under
study, but this situation is common across nearly all applied
research settings. This presents a striking potential problem
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in nearly any research application in which there may exist a
large number of covariates that are of interest in the second-
stage model yet are not included in the first-stage scoring
model. Developing a better understand of this issue and
establishing effective analytic strategies for mitigating the
resulting bias is a research priority.
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