
Psychological Methods Copyright 1996 by the American Psychological Association, Inc. 
1996. VoL 1, No. l, 16-29 1082-989X/96/$3.00 

The Robustness of Test Statistics to Nonnormality 
and Specification Error in Confirmatory Factor Analysis 

Patrick J. Curran 
University of California, Los Angeles 

Stephen G. West 
Arizona State University 

John F. Finch 
Texas A&M University 

Monte Carlo computer simulations were used to investigate the performance 
of three X 2 test statistics in confirmatory factor analysis (CFA). Normal theory 
maximum likelihood )~2 (ML), Browne's asymptotic distribution free X 2 
(ADF), and the Satorra-Bentler rescaled X 2 (SB) were examined under vary- 
ing conditions of sample size, model specification, and multivariate distribu- 
tion. For properly specified models, ML and SB showed no evidence of bias 
under normal distributions across all sample sizes, whereas ADF was biased 
at all but the largest sample sizes. ML was increasingly overestimated with 
increasing nonnormality, but both SB (at all sample sizes) and ADF (only 
at large sample sizes) showed no evidence of bias. For misspecified models, 
ML was again inflated with increasing nonnormality, but both SB and ADF 
were underestimated with increasing nonnormality. It appears that the power 
of the SB and ADF test statistics to detect a model misspecification is attenu- 
ated given nonnormally distributed data. 

Confirmatory factor analysis (CFA) has become 
an increasingly popular  method of investigating 
the structure of data sets in psychology. In contrast 
to traditional exploratory factor analysis that does 
not place strong a priori restrictions on the struc- 
ture of the model being tested, CFA requires the 
investigator to specify both the number  of factors 
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and the specific pat tern of loadings of each of the 
measured variables on the underlying set of fac- 
tors. In typical simple CFA models, each measured 
variable is hypothesized to load on only one factor, 
and positive, negative, or zero (orthogonal) corre- 
lations are specified between the factors. Such 
models can provide strong evidence about the con- 
vergent and discriminant validity of a set of mea- 
sured variables and allow tests among a set of 
theories of measurement  structure. More compli- 
cated CFA models may specify more complex pat- 
terns of factor loadings, correlations among errors 
or specific factors, or both. In all cases, CFA mod- 
els set restrictions on the factor loadings, the corre- 
lations between factors, and the correlations be- 
tween errors of measurement  that permit  tests of 
the fit of the hypothesized model to the data. 

There are two general classes of assumptions 
that underlie the statistical methods used to esti- 
mate  CFA models: distributional and structural 
(Satorra, 1990). Normal  theory maximum likeli- 
hood (ML) estimation has been used to analyze 
the majority of CFA models. ML makes the distri- 
butional assumption that the measured variables 
have a multivariate normal distribution in the pop- 
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ulation. However, the majority of data collected 
in behavioral research do not follow univariate 
normal distributions, let alone a multivariate nor- 
mal distribution (Micceri, 1989). Indeed, in some 
important areas of research such as drug use, child 
abuse, and psychopathology, it would not be rea- 
sonable to even expect that the observed data 
would follow a normal distribution in the popula- 
tion. In addition to the distributional assumption, 
ML (and all methods of estimation) makes the 
structural assumption that the structure tested in 
the sample accurately reflects the structure that 
exists in the population. If the sample structure 
does not adequately conform to the corresponding 
population structure, severe distortions in all as- 
pects of the final solution can result. 

Although the chi-square test statistic can be 
used to measure the extent of the violation of the 
structural assumption (Lawley & Maxwell, 1971), 
the accuracy of this test statistic can be compro- 
mised given violation of the distributional assump- 
tion (Satorra, 1990). Violations of both the distri- 
butional and structural assumptions are common 
(and often unavoidable) in practice and can poten- 
tially lead to seriously misleading results. It is thus 
important to fully understand the effects of the 
multivariate nonnormality and specification error 
on maximum likelihood estimation and other al- 
ternative estimators used in CFA. 

Methods of Est imation 

By far the most common method used to esti- 
mate confirmatory factor models is normal theory 
ML. Nearly all of the major software packages use 
ML as the standard default estimator (e.g., EQS, 
Bentler, 1989; LISREL, Jtireskog & S6rbom, 
1993; PROC CALLS, SAS Institute, Inc., 1990; 
RAMONA, Browne, Mels, & Coward, 1994). 
Under the assumptions of multivariate normality, 
proper specification of the model, and a suffi- 
ciently large sample size (N), ML provides asymp- 
totically (large sample) unbiased, consistent, and 
efficient parameter estimates and standard errors 
(Bollen, 1989). An important advantage of ML is 
that it allows for a formal statistical test of model 
fit. (N - 1) multiplied by the minimum of the ML 
fit function is distributed as a large sample chi- 
square with 1/2(p)(p + 1) - t  degrees of freedom, 
where p is the number of observed variables and 
t is the number of freely estimated parameters 
(Bollen, 1989). 

One potential limitation of ML estimation is 
the strong assumption of multivariate normality. 
Given the presence of non-zero third- and (partic- 
ularly) fourth-order moments (skewness and kur- 
tosis, respectively), 1 the resulting ML parameter 
estimates are consistent but not efficient, and the 
minimum of the ML fit function is no longer dis- 
tributed as a large sample central chi-square. In- 
stead, (N - 1) multiplied by the minimum of the 
ML fit function generally produces an inflated 
(positively biased) estimate of the referenced chi- 
square distribution (Browne, 1982; Satorra, 1991). 
Hence, using the normal theory chi-square statistic 
as a measure of model fit under conditions of non- 
normality will lead to an inflated Type I error rate 
for model rejection. Consequently, in practice a 
researcher may mistakenly reject or opportunisti- 
cally modify a model because the distribution of 
the observed variables is not multivariate normal 
rather than because the model itself is not correct 
(see MacCallum, 1986; MacCallum, Roznowski, & 
Necowitz, 1990). 

Several different approaches have been pro- 
posed to address the problems with ML estimation 
under conditions of multivariate nonnormality. 
One example is the development of alternative 
methods of estimation that do not assume multi- 
variate normality. One such estimator that is cur- 
rently available in structural modeling programs 
such as EQS (Bentler, 1989), LISCOMP (Muthrn, 
1987), LISREL (Jrreskog & SOrbom, 1993), and 
RAMONA (Browne et al., 1994) is Browne's 
(1982, 1984) asymptotic distribution free (ADF) 
method of estimation. The derivation of the ADF 
estimator was not based on the assumption of mul- 
tivariate normality so that variables possessing 
non-zero kurtoses theoretically pose no special 
problems for estimation. ADF provides asymptot- 
ically consistent and efficient parameter estimates 
and standard errors, and (N - 1) times the mini- 
mum of the fit function is distributed as a large 
sample chi-square (Browne, 1984). One practical 
disadvantage of ADF is that it is computationally 

1 The multivariate normal distribution is actually char- 
acterized by skewness equal to 0 and kurtosis equal to 3. 
However, it is common practice to subtract the constant 
value of 3 from the kurtosis estimate so that the normal 
distribution is characterized by zero skewness and zero 
kurtosis. We will similarly refer to the normal distribu- 
tion as defined by zero skewness and zero kurtosis. 
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very demanding. Browne (1984) anticipated that 
models with greater than 20 variables could not 
be feasibly estimated with ADF. A second possible 
disadvantage is that initial findings suggest that 
this estimator performs poorly at the small to mod- 
erate sample sizes that typify much of psychologi- 
cal research. 

A second approach that has been developed 
for computing a more accurate test statistic under 
conditions of nonnormality is to adjust the normal 
theory ML chi-square estimate for the presence 
of non-zero kurtosis. Because the normal theory 
chi-square does not follow the expected chi-square 
distribution under conditions of nonnormality, the 
normal theory chi-square must be corrected, or 
rescaled, to provide a statistic that more closely 
approximates the referenced chi-square distribu- 
tion (Browne, 1982, 1984). One variant of the re- 
scaled test statistic that is currently only available 
in EQS (Bentler, 1989) is the Satorra-Bentler chi- 
square (SB X2; Satorra, 1990, 1991; Satorra & 
Bentler, 1988). The SB X 2 corrects the normal the- 
ory chi-square by a constant k, a scalar value that 
is a function of the model implied residual weight 
matrix, the observed multivariate kurtosis, and the 
model degrees of freedom. The greater the degree 
of observed multivariate kurtosis, the greater 
downward adjustment that is made to the inflated 
normal theory chi-square. 

Review of Monte  Carlo Studies 

Muth6n and Kaplan (1985) studied a properly 
specified four indicator single-factor model under 
five distributions ranging from normal to severely 
nonnormal for one sample size (1,000). For univar- 
iate skewness greater than 2.0, the ML X 2 was 
clearly inflated whereas the ADF X 2 remained con- 
sistent. Muthrn and Kaplan (1992) extended these 
findings by adding more complex model specifica- 
tions, an additional sample size (500), and increas- 
ing the number of replications to 1,000 per condi- 
tion. The normal theory chi-square was extremely 
sensitive to both nonnormality and model com- 
plexity (defined as the number of parameters esti- 
mated in the model). The ADF X 2 appeared to be 
very sensitive to model complexity, with extreme 
inflation of the model chi-square as the tested 
model became increasingly complex. The ADF X 2 
was also particularly inflated at the smaller sam- 
ple size. 

Satorra and Bentler (1988) performed a Monte 
Carlo simulation using a properly specified four in- 
dicator single-factor model to evaluate the behav- 
ior of the SB X 2 test statistic. The unique variances 
of the four indicators were calculated with univari- 
ate skewness of 0 and a homogenous univariate kur- 
tosis of 3.7. The models were estimated using ML, 
unweighted least squares (ULS), and ADF, based 
on 1,000 replications of a single sample size of 300. 
The normal theory ML X 2 and the SB X 2 performed 
similarly to one another. On average, the ML X 2 
slightly underestimated the expected value of the 
model chi-square while the SB g 2 slightly overesti- 
mated the expected value. However, the ML X z had 
a larger variance than did the SB X 2. The ADF X 2 
resulted in the highest average value, although it 
also attained the lowest variance. 

Chou, Bentler, and Satorra (1991) similarly used 
a Monte Carlo simulation to examine the ML, 
ADF, and SB X 2 test statistics for a properly speci- 
fied model under varying conditions of normality. 
A two-factor six indicator CFA model was repli- 
cated 100 times per condition based on two sample 
sizes (200 and 400) and six multivariate distribu- 
tions. Two versions of the model were estimated, 
one in which all of the necessary parameters were 
freely estimated, and one in which the factor load- 
ings were fixed to the population values. Consis- 
tent with previous research, the ML X 2 was inflated 
under nonnormal conditions. The SB X 2 outper- 
formed both the ML and ADF X 2 test statistics in 
nearly all conditions. 

Finally, Hu, Bentler, and Kano (1992) performed 
a major simulation study based on a three-factor 
confirmatory factor model with five indicators per 
factor. Six sample sizes were used (ranging from 150 
to 5,000) with 200 replications per condition. Seven 
different symmetric distributions were considered, 
ranging from normal to severely nonnormal (high 
kurtosis). The normal theory estimators (maximum 
likelihood and generalized least squares) provided 
inflated chi-square values as nonnormality in- 
creased. The ADF test statistic was relatively unaf- 
fected by distribution but was only reliable at the 
largest sample size (5,000). Finally, the SB X 2 per- 
formed the best of all test statistics, although mod- 
els were rejected at a higher frequency than was ex- 
pected at small sample sizes. 

In summary, Monte Carlo simulation studies 
have consistently supported the theoretical predic- 
tion that the normal theory ML X 2 test statistic is 
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significantly inflated as a function of multivariate 
nonnormality. The ADF X 2 is theoretically asymp- 
totically robust to multivariate nonnormality, but 
its behavior at smaller (and more realistic) sample 
sizes is poor. The SB X 2 has not been fully exam- 
ined, but initial findings indicate that it outper- 
forms both the ML and A D F  test statistics under 
nonnormal distributions, although it does tend to 
overreject models at smaller sample sizes. 

Although the ramifications of violating the distri- 
butional assumptions in CFA is becoming better  
understood, much less is known about violations of 
the structural assumption. Recent work has ad- 
dressed the effects of model misspecification on the 
computation of parameter  estimates and standard 
errors (Kaplan, 1988, 1989) as well as post hoc 
model modification (MacCallum, 1986) and the 
need for alternative indices of fit (MacCallum, 
1990). However,  little is known about the behavior 
of chi-square test statistics under simultaneous vio- 
lations of both the distributional and the structural 
assumptions. Indeed, we are not aware of a single 
empirical study that has examined the ADF and SB 
A "2 test statistics under these two conditions. Given 
the low probability that the structure tested in a 
sample precisely conforms to the structure that ex- 
ists in the population, it is critical that a bet ter  un- 
derstanding be gained of the behavior of the test 
statistics under these more realistic conditions. 

T h e  P re sen t  S tudy  

A series of Monte Carlo computer  simulations 
were used to study the effects of sample size, multi- 
variate nonnormality, and model specification on 
the computation of three chi-square test statistics 
that are currently widely available to the practicing 
researcher: ML, SB, and ADF. 2 Four specifications 
of an oblique three-factor model with three indica- 
tors per factor were considered. The first two mod- 
els were correctly specified such that the structure 
estimated in the sample precisely corresponded to 
the structure that existed in the population. The 
second two models were misspecified such that the 
structure tested in the sample did not correspond 
to the structure that existed in the population. 

M e t h o d  

M o d e l  Specification 

Four specifications of an oblique three-factor 
model with three indicators per factor were exam- 

ined. The basic confirmatory factor model is pre- 
sented in Figure 1. The population parameters 
consisted of factor loadings (each A = .70), unique- 
nesses (each O~ = .51), interfactor correlations 
(each ~b = .30), and factor variances (all set to 1.0). 

Model 1. Model 1 was properly specified such 
that the model that was estimated in the sample 
directly corresponded to the model that existed in 
the population. Thus, both the sample and the 
population models corresponded to the solid lines 
presented in Figure 1. 

Model 2. Model 2 contained two factor load- 
ings that were estimated in the sample but did 
not exist in the population. Thus, in Figure 1, the 
double dashed lines represent the two factor load- 
ings that linked Item 5 to Factor 3 and Item 8 to 
Factor 2, and the expected value of these parame- 
ters was 0. This is a misspecification of inclusion. 
Note that from the standpoint of statistical theory, 
estimation of parameters with an expected value 
of 0 in the population does not bias the sample 
results. Model 2 is thus considered to be a properly 
specified model. 

Model 3. Model 3 excluded two loadings from 
the sample that did exist in the population. Thus, 
in Figure 1, the single dashed lines represent the 
two excluded factor loadings (both population 
As = .35) that linked Item 6 to Factor 3 and Item 
7 to Factor 2. The value of A = .35 was chosen to 
reflect a small to moderate factor loading that 
might be commonly encountered in practice. This 
is a misspecification of exclusion. 

Model 4. Finally, Model 4 was the combina- 
tion of Models 2 and 3. Like Model 2, two factor 
loadings were estimated in the sample that did 
not exist in the population (the double dashed 
lines linking Item 5 to Factor 3 and Item 8 to 
Factor 2). Additionally, like Model 3, two factor 
loadings were excluded from the sample that did 
exist in the population (the single dashed lines 
that linked Item 6 to Factor 3 and Item 7 to 
Factor 2). This is a misspecification of both 
inclusion and exclusion. 

2 Note that GLS is also available in standard packages 
and is relatively widely used. However, GLS is a normal 
theory estimator that is asymptotically equivalent to 
ML, and previous studies (e.g., Muth6n & Kaplan, 1985, 
1992) have shown the behavior of ML and GLS to be 
very similar. 
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Figure 1. Nine-indicator three-factor oblique confirmatory factor analysis model with 
population parameter values. Solid lines represent parameters that were shared be- 
tween the sample and the population; single dashed lines represent parameters that 
existed in the population ()t = .35) but were omitted from the sample; double dashed 
lines represent parameters that did not exist in the population ()t = 0) but were 
estimated in the sample. 

Conditions 

Multivariate distributions. Three population 
distributions were considered for all four model 
specifications (see Figure 2). Distribution 1 was 
multivariate normal with univariate skewness and 
kurtoses equal to 0. Distribution 2 was moderately 
nonnormal with univariate skewness of 2.0 and 
kurtoses of 7.0. Finally, Distribution 3 was severely 
nonnormal with univariate skewness of 3.0 and 
kurtoses of 21.0. These levels of nonnormality 
were chosen to represent moderate and severe 
nonnormality based on our examination of the 
levels of skewness and kurtoses in data sets from 
several community-based mental health and sub- 
stance abuse studies. 

Sample size. Four sample sizes were consid- 
ered for all model specifications: 100, 200, 500, 
and 1,000. 

Replications. All models were replicated 200 
times per condition. 

Data generation. The raw data were generated 
using both the PC and mainframe version of EQS 
(Version 3; Bentler, 1989). Details of the data gen- 
eration procedure are presented in the Appendix. 

Measures 

Three chi-square test statistics were studied: 
normal theory ML, ADF, and the SB scaled X 2. 

All three test statistics were computed by EQS 
(Version 3.0). Note that the ML and A D F  statistics 
provided by EQS should be identical to that 
available through current versions of LISCOMP, 
LISREL,  and RAMONA.  

Resul t s  

Expected Value of  Test Statistics 

The expected values of the chi-square test statis- 
tics for Models 1 and 2 were simply the model 
degrees of freedom for all three estimators across 
all distributions and sample sizes (24.0 for Model 
1 and 22.0 for Model 2). Because Models 3 and 4 
were misspecified, the expected values of these 
test statistics could not be computed directly. In- 
stead, the expected values were computed as large 
sample empirical estimates that differed as a func- 
tion of method of estimation, multivariate distri- 
bution, and sample size. Further details regarding 
the computations of these estimates are presented 
in the Appendix. 

Monte Carlo Results 

Tables 1, 2, 3, and 4 present the mean observed 
value, the expected value, the percentage of bias, 
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Figure 2. Plots of normal (solid line), moderately non- 
normal (dotted line), and severely nonnormal (dashed 
line) empirical distributions based on a random sample 
of N = 10,000. 

and the percentage of models rejected at p < .05 
for the ML, SB, and ADF X 2 test statistics for 
all four model specifications? For the correctly 
specified models (Models 1 and 2), the expected 
rejection rate was 5%; and given 200 replications 
and a = .05, the 95% confidence interval for the 
percentage of rejected models defined an approxi- 
mate upper and lower bound of 2% and 8%, respec- 
tively. Rejection rates for the obtained chi-square 
values falling within these bounds are consistent 
with the null hypothesis that the estimator is unbi- 
ased. Model rejection rates were not as meaningful 
for misspecified models (Models 3 and 4), so rela- 
tive bias was computed (the observed value minus 
the expected value divided by the expected value). 
Bias in excess of 10% was considered significant 
(Kaplan, 1989). 

Model Specification 1. Table 1 presents the re- 
sults for Model 1. Recall that Model 1 was properly 
specified such that the model estimated in the sam- 
ple directly corresponded to the model that existed 
in the population. The expected value for all three 
test statistics was E(X 2) = 24.0. 

Under  multivariate normality, the ML X 2 re- 
jected the expected number of models across all 
sample sizes (approximately 5%). Consistent with 
both theory and previous simulation research, the 

ML X 2 became increasingly positively biased as 
the distribution became increasingly nonnormal. 
This inflation was exacerbated with increasing 
sample size. For example, nearly half of the cor- 
rectly specified models were rejected for N = 1,000 
under the severely nonnormal condition. Under  
multivariate normality, the A D F  X 2 was inflated 
at small sample sizes, for example, rejecting 43% 
of the correctly specified models at N = 100. The 
performance of the A D F  improved with increasing 
sample size, but even under multivariate normality 
at N = 1,000, 10% of the correct models were 
rejected. The A D F  X 2 was also positively biased 
with increasing nonnormality, but this bias was 
attenuated with increasing sample size. Finally, the 
SB X 2 was very well behaved at nearly all sample 
sizes across all distributions. For  example, at a 
sample size of N = 200 under severe nonnormality, 
the SB X 2 rejected 7% of the properly specified 
models (compared to 25% for A D F  and 36% for 
ML). Under  these conditions, the performance of 
the SB X 2 represented a distinct improvement over 
the ML X 2 under conditions of nonnormality. In- 
terestingly, the SB and A D F  performed similarly 
at samples of N = 500 and N = 1,000. 

Model Specification 2. The results from Model 
2 are presented in Table 2. Recall that Model 2 
estimated two factor loadings in the sample that 
did not exist in the population. Because the error  
is the addition of two truly nonexistent parame- 
ters, this can be considered a properly specified 
model, and the expected value of the model chi- 
square was equal to the model degrees of free- 
dom for all estimators across all sample sizes, 
E(X 2) = 22.0. 

Overall, the results from Model 2 closely fol- 
lowed those of Model 1. Under  multivariate nor- 
mality, the rejection rates for both the ML and 
SB were slightly higher than expected at N = 100 
but were unbiased at N = 200 and greater. Under  
multivariate normality, the A D F  again rejected a 
very high number of models at the two smaller 
sample sizes but was unbiased at the two larger 
sample sizes. As with Model 1, the ML X 2 was 

3 All improper solutions (nonconverged solutions and 
solutions that converged but resulted in out-of-bound 
parameters, e.g., Heywood cases) were dropped from 
subsequent analyses. Collapsing across all conditions, 
90% of the replications were proper for ML and 83% 
were proper for ADF. 
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Tab le  1 
Observed Chi-Square, Expected Chi-Square, Percentage Bias, and Percentage of Rejected Models 
for Model Specification 1 

Normal Moderately nonnormal Severely nonnormal 

Observed Expected % % Observed Expected % % Observed Expected % % 
Size X 2 X 2 X 2 Bias Reject X 2 X 2 Bias Reject X 2 X 2 Bias Reject 

100 ML 25.01 24.0 4.0 5.5 29.35 24.0 22.0 20.0 33.54 24.0 40.0 30.0 
SB 25.87 24.0 8.0 7.5 26.06 24.0 9.0 8.5 27.26 24.0 14.0 13.0 

ADF 36.44 24.0 52.0 43.0 38.04 24.0 59.0 49.0 44.82 24.0 87.0 68.0 
200 ML 24.78 24.0 3.0 6.5 30.15 24.0 26.0 25.0 34.40 24.0 43.0 36.0 

SB 25.22 24.0 5.0 8.5 25.44 24.0 6.0 8.0 25.80 24.0 8.0 6.5 
ADF 29.19 24.0 22.0 19.0 29.27 24.0 22.0 19.0 31.29 24.0 30.0 25.0 

500 ML 23.94 24.0 0.0 3.5 31.26 24.0 30.0 24.0 35.55 24.0 48.0 40.0 
SB 24.10 24.0 0.0 5.0 25.44 24.0 6.0 6.9 24.85 24.0 4.0 8.5 

ADF 25.92 24.0 8.0 11.0 26.42 24.0 10.0 6.7 26.83 24.0 12.0 8.5 
1000 ML 25.05 24.0 4.0 7.0 30.78 24.0 28.0 24.0 37.40 24.0 56.0 48.0 

SB 25.16 24.0 5.0 8.0 24.77 24.0 3.0 7.5 25.01 24.0 4.0 7.0 
ADF 25.79 24.0 7.0 9.5 25.36 24.0 6.0 7.5 25.47 24.0 6.0 7.2 

Note. Univariate skewness and kurtoses were (0,0), (2,7), and (3,21) for normal, moderately nonnormal, and severely nonnormal 
distributions, respectively. ML = maximum likelihood; SB = Satorra-Bentler rescaled; ADF = asymptotic distribution 
free. 

i n c r e a s i n g l y  p o s i t i v e l y  b i a s e d  w i t h  i n c r e a s i n g  n o n -  

n o r m a l i t y ,  a n d  t h i s  i n f l a t i o n  w a s  e x a c e r b a t e d  w i t h  

i n c r e a s i n g  s a m p l e  s ize.  I n  c o m p a r i s o n ,  t h e  SB X 2 

s h o w e d  m i n i m a l  b i a s  w i t h  i n c r e a s i n g  n o n n o r m a l -  

i ty,  a l t h o u g h  t h e  o b s e r v e d  r e j e c t i o n  r a t e s  a t  t h e  

s m a l l e s t  s a m p l e  s ize  w e r e  s l igh t ly  l a r g e r  t h a n  ex-  

p e c t e d .  E v e n  u n d e r  s e v e r e  n o n n o r m a l i t y ,  t h e  S B  

X 2 a g a i n  s h o w e d  l i t t l e  e v i d e n c e  o f  b ia s ,  e s p e c i a l l y  

a t  s a m p l e  s izes  o f  N -- 200  o r  g r e a t e r .  F i n a l l y ,  

t h e  A D F  X 2 w a s  p o s i t i v e l y  b i a s e d  w i t h  i n c r e a s i n g  

n o n n o r m a l i t y  a t  t h e  s m a l l e r  s a m p l e  s izes  b u t  was  

u n b i a s e d  a t  s a m p l e  s izes  o f  N = 500  a n d  N = 

1,000, e v e n  u n d e r  s e v e r e  n o n n o r m a l i t y .  

Model Specification 3. M o d e l  S p e c i f i c a t i o n  3 

e x c l u d e d  t w o  f a c t o r  l o a d i n g s  in  t h e  s a m p l e  ()t = 

.35) t h a t  t r u l y  e x i s t e d  in  t h e  p o p u l a t i o n .  T h e s e  

r e s u l t s  a r e  p r e s e n t e d  in  T a b l e  3. R e c a l l  t h a t  d u e  

t o  t h e  e x c l u s i o n  o f  e x i s t i n g  p a r a m e t e r s ,  t h e r e  w a s  

a d i f f e r e n t  e x p e c t e d  v a l u e  f o r  e a c h  t e s t  s ta t i s t i c .  

A l s o ,  b e c a u s e  t h e  m o d e l  w a s  m i s s p e c i f i e d  in  t h e  

Table  2 
Observed Chi-Square, Expected Chi-Square, Percentage Bias, and Percentage of Rejected Models 
for Model Specification 2 

Normal Moderately nonnormal Severely nonnormal 

Observed Expected % % Observed Expected % % Observed Expected % % 
Size X 2 g 2 X 2 Bias Reject X 2 2 "2 Bias Reject X 2 X 2 Bias Reject 

100 ML 23.42 22.0 6.0 9.6 26.89 22.0 22.0 22.2 29.82 22.0 36.0 34.4 
SB 24.19 22.0 9.0 12.1 23.80 22.0 8.0 8.5 25.07 22.0 14.0 11.1 

ADF 31.0 22.0 41.0 30.5 34.95 22.0 59.0 40.8 46.45 22.0 111.0 63.2 
200 ML 22.48 22.0 2.0 6.0 27.70 22.0 26.0 26.5 31.77 22.0 44.0 36.7 

SB 22.86 22.0 3.0 7.0 23.75 22.0 8.0 8.5 24.10 22.0 10.0 8.5 
ADF 26.43 22.0 20.0 17.5 26.06 22.0 18.0 14.5 28.52 22.0 30.0 22.0 

500 ML 21.89 22.0 0.0 6.0 26.68 22.0 21.0 19.0 31.86 22.0 45.0 32.5 
SB 22.02 22.0 0.0 7.0 21.90 22.0 0.0 5.5 23.33 22.0 6.0 6.5 

ADF 23.13 22.0 5.0 7.0 23.04 22.0 5.0 8.0 24.02 22.0 9.0 5.5 
1000 ML 22.25 22.0 0.0 5.0 26.05 22.0 18.0 14.5 33.37 22.0 52.0 41.5 

SB 22.31 22.0 0.0 3.5 21.14 22.0 4~0 4.0 22.74 22.0 3.0 7.0 
ADF 22.09 22.0 0.0 6.0 23.32 22.0 6.0 9.5 23.41 22.0 6.0 7.5 

Note. Univariate skewness and kurtoses were (0,0), (2,7), and (3,21) for normal, moderately nonnormal, and severely nonnormal 
distributions, respectively. ML = maximum likelihood; SB = Satorra°Bentler rescaled; ADF = asymptotic distribution 
free. 
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Table 3 
Observed Chi-Square, Expected Chi-Square, Percentage Bias, and Percentage of Rejected Models 
for Model Specification 3 

Normal Moderately nonnormal Severely nonnormal 

Observed Expected % % Observed Expected % % Observed Expected % % 
Size X 2 2, 2 X 2 Bias Reject X 2 X 2 Bias Reject A, 2 X 2 Bias Reject 

100 ML 38.45 37.62 2.0 54.3 46.50 37.75 23.0 78.9 52.87 37.77 40.0 81.4 
SB 39.63 37.65 5.0 57.9 37.63 33.99 11.0 49.1 38.10 30.85 24.0 47.1 

ADF 52.04 33.74 54.0 80.3 60.88 29.68 105.0 86.3 81.31 27.29 198.0 95.3 
200 ML 51.07 51.38 0.0 88.1 59.72 51.66 16.0 93.7 68.58 51.68 33.0 95.4 

SB 51.65 51.44 0.0 89.9 47.04 44.09 7.0 82.4 44.66 37.77 18.0 78.9 
ADF 50.17 43.59 15.0 85.6 47.93 35.42 36.0 84.8 47.16 30.61 54.0 75.2 

500 ML 92.27 92.66 0.0 100.0 99.39 93.37 6.0 100.0 109.87 93.42 18.0 100.0 
SB 92.52 92.80 0.0 100.0 75.04 74.40 1.0 100.0 63.46 58.52 8.0 97.2 

ADF 76.89 73.11 5.0 100.0 60.10 52.63 14.0 99.5 53.67 40.58 32.0 96.7 
1000 ML 161.46 161.35 0.0 100.0  171.07 162.88 5.0 100.0 180.90 162.98 11.0 100.0 

SB 161.66 161.74 0.0 100.0  126.23 124.89 2.0 100.0 101.25 93.11 9.0 100.0 
ADF 127.71 122.32 4.0 100.0 90.23 81.31 11.0 1130.0 76.10 57.20 33.0 100.0 

Note. Univariate skewness and kurtoses were (0,0), (2,7), and (3,21) for normal, moderately nonnormal, and severely nonnormal 
distributions, respectively. ML = maximum likelihood; SB = Satorra-Bentler rescaled; ADF = asymptotic distribution free. 

sample ,  the  pe r cen t age  of  r e j ec t ed  mode l s  was no  
longe r  a mean ingfu l  gu ide  with  which  to j udge  the  
b e h a v i o r  of  the  tes t  statist ics.  Thus ,  the  fo l lowing 
resul ts  will now be  p r e s e n t e d  in t e rms  of  the  re la-  
t ive bias  in the  tes t  statistics.  4 

U n d e r  mu l t i va r i a t e  no rmal i ty ,  the  e x p e c t e d  val-  
ues for  the  M L  and  SB X 2 were  nea r ly  ident ica l  
across  all four  s amp le  sizes. This  is fu r the r  suppo r t  
tha t  for  n o r m a l  d i s t r ibu t ions ,  no  scal ing co r rec t ion  
is r e q u i r e d  for  the  M L  X 2, and  the  SB X 2 thus 
simplif ies  to  the  M L  X 2. A d d i t i o n a l l y ,  ne i the r  the  
M L  or  SB test  s ta t is t ic  showed  a p p r e c i a b l e  bias  
u n d e r  no rma l i t y  across  all  four  s amp le  sizes. In  
compar i son ,  the  empi r i ca l  e s t ima te  of  the  ex- 
p e c t e d  va lue  of  the  A D F  X 2 was smal le r  than  that  
of  the  M L  or  SB tes t  statist ics.  Reca l l  tha t  the  
e x p e c t e d  va lue  for  all  t h r ee  test  s tat ist ics were  
equa l  for  the  p r o p e r l y  specif ied models .  T h e  lower  
e x p e c t e d  va lue  of  the  A D F  for  misspeci f ied  mod-  
els even  u n d e r  mu l t i va r i a t e  no rma l i t y  suggests  tha t  
this  tes t  s tat is t ic  m a y  have  less p o w e r  to  re jec t  the  
null  hypo thes i s  c o m p a r e d  with  the  M L  or  SB X 2. 
U n l i k e  the  M L  and  SB, the  A D F  was signif icant ly 
pos i t ive ly  b i a sed  at  the  two smal l e r  s a m p l e  sizes. 
F o r  example ,  at  N = 100 the  ave rage  o b s e r v e d  
A D F  X 2 was 54% la rge r  than  the  e x p e c t e d  value .  
This  bias  d r o p p e d  to 15% at  N = 200 and  was 
negl ig ib le  at  the  two l a rge r  s a m p l e  sizes. 

T h e  f indings b e c o m e  m o r e  c o m p l i c a t e d  given 
n o n n o r m a l  d i s t r ibu t ions .  The  e x p e c t e d  va lue  of  

the  M L  X 2 was the  same  across  all t h r ee  d is t r ibu-  
tions. A s  with the  p rev ious  mode ls ,  the  M L  X 2 
showed  increas ing  levels  of  pos i t ive  bias  with in- 
c reas ing  nonnorma l i t y .  A pa r t i cu la r ly  in te res t ing  
f inding p e r t a i n e d  to the  e x p e c t e d  va lues  of  the  SB 
and  A D F  test  s tat ist ics u n d e r  nonnorma l i t y .  Bo th  
the  expec t ed  and the o b s e r v e d  va lues  of  the  SB 
and  A D F  test  s tat is t ics  d e c r e a s e d  with increas ing  
nonnorma l i t y .  F o r  example ,  at  s amp le  size N = 
200, the  e x p e c t e d  va lue  for  the  SB X 2 was approx i -  
ma te ly  51 u n d e r  normal i ty ,  44 u n d e r  m o d e r a t e  
nonno rma l i t y ,  and  38 u n d e r  severe  nonnorma l i t y .  
T h e  A D F  test  s tat is t ic  showed  a s imi lar  pa t t e rn .  
The  d i rec t  i n t e r p r e t a t i o n  of  this  f inding is tha t  it 
is increas ingly  difficult  to de tec t  a misspeci f ica t ion  
wi thin  the  m o d e l  given the  a d d e d  var iab i l i ty  due  
to  the  n o n n o r m a l  d i s t r ibu t ion  of  the  data .  Thus,  
the  p o w e r  of  SB and A D F  tes t  s tat ist ics d e c r e a s e d  
with increas ing  nonnorma l i t y .  

U n d e r  m o d e r a t e  nonno rma l i t y ,  the  SB X 2 was 
s l ight ly  b i a sed  at  N = 100 (11%) bu t  was u n b i a s e d  
at  s amp le  sizes of  N = 200 and  above .  In  c o m p a r i -  
son,  also unde r  m o d e r a t e  nonnorma l i t y ,  the  A D F  
X 2 showed  e x t r e m e  bias  at  the  sma l l e r  s amp le  sizes 

4 Models 1 and 2 could have similarly been evaluated 
using the percentage of bias, and the same conclusions 
would have been drawn. The percentage of rejected 
models was chosen instead for Models 1 and 2 given 
the more direct interpretability of the findings. 
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Table 4 
Observed Chi-Square, Expected Chi-Square, Percentage Bias, and Percentage of Rejected Models 
for Model Specification 4 

Normal Moderately nonnormal Severely nonnormal 

Observed Expected % % Observed Expected % % Observed Expected % % 
Size X 2 X 2 X 2 Bias Reject X 2 ~v 2 Bias Reject X 2 X 2 Bias Reject 

100 ML 34.03 32.52 5.0 48.7 40.37 32.52 24.0 63.4 45.15 32.45 39.0 78.6 
SB 34.97 32.56 7.0 51.8 33.94 29.76 14.0 45.5 34.09 27.33 25.0 50.3 

ADF 47.99 30.66 56.0 82.1 48.67 27.19 79.0 85.4 63.25 25.06 152.0 91.8 
200 ML 43.75 43.14 1.0 81.1 49.84 43.14 16.0 91.0 58.14 43.01 35.0 88.1 

SB 44.34 43.23 3.0 81.6 39.55 37.59 5.0 67.9 38.48 32.71 18.0 60.4 
ADF 46.42 39.41 18.0 85.5 41.84 32.43 29.0 73.4 46.05 28.16 64.0 84.5 

500 ML 75.29 75.04 0.0 100.0 81.35 75.04 8.0 100.0 91.71 74.68 23.0 100.0 
SB 75.62 75.23 0.0 100.0 62.09 61.09 2.0 97.0 55.94 48.85 15.0 92.6 

ADF 69.62 65.66 6.0 100.0 53.84 48.15 12.0 94.2 49.13 37.45 31.0 93.2 
1000 ML 128.71 128.20 0.0 100.0 133.86 128.20 4.0 100.0 144.56 127.46 13.0 100.0 

SB 129.16 128.56 0.0 100.0 100.48 100.26 0.0 100.0 83.44 75.76 10.0 100.0 
ADF 111.39 109.41 2.0 100.0 80.91 74.35 9.0 100.0 68.25 52.92 30.0 100.0 

Note. Univariate skewness and kurtoses were (0,0), (2,7), and (3,21) for normal, moderately nonnormal, and severely nonnormal 
distributions, respectively. ML = maximum likelihood; SB = Satorra-Bentler rescaled; ADF = asymptotic distribution free. 

and  r e m a i n e d  b ia sed  even at  N = 1,000 (11%). 
U n d e r  severe  nonnorma l i t y ,  the  SB X 2 showed  
subs tant ia l  bias  at  the  two smal l e r  s ample  sizes 
(e.g., 18% at N = 200) but  was only  m o d e r a t e l y  
b i a sed  at  the  la rger  sample  sizes (e.g., 9% at N = 
1,000). The  A D F  showed  very  high levels o f  re la-  
t ive bias  across  all four  sample  sizes unde r  severe  
n o n n o r m a l i t y  and  was o v e r e s t i m a t e d  by  33% even 
at the  larges t  s ample  size N = 1,000. 

Model Specification 4. M o d e l  Speci f ica t ion  4 
con ta ined  bo th  e r ro r s  of  inc lus ion and  exclusion.  
Two cross - loadings  ex is ted  in the  p o p u l a t i o n  tha t  
were  no t  e s t ima ted  in the  sample  (A = .35), and  
two cross - load ings  were  e s t ima ted  in the  sample  
that  d id  not  exist  in the  p o p u l a t i o n  (A = 0). These  
resul ts  a re  p r e s e n t e d  in Tab le  4. 

T h e  f indings f rom M o d e l  Speci f ica t ion  4 fol- 
lowed  the same  genera l  p a t t e r n  as was o b s e r v e d  
for  M o d e l  Speci f ica t ion 3. The  p r i m a r y  d i f fe rence  
was tha t  the  e x p e c t e d  va lues  and  re jec t ion  ra tes  
in M o d e l  4 were  lower  c o m p a r e d  with  those  of  
M o d e l  3. This  resul t  m a y  ini t ia l ly  a p p e a r  coun te r -  
in tui t ive  given tha t  M o d e l  4 c o m b i n e d  e r rors  of  
bo th  inclusion and  exclusion.  H o w e v e r ,  un l ike  
M o d e l  3, M o d e l  4 con ta ined  the  s imu l t aneous  esti-  
m a t i o n  of  the  two t ruly  nonex i s t en t  pa ths  and the  
exclus ion of  the  two t ruly  exis ten t  paths .  The  m e a n  
e s t ima ted  fac tor  load ings  for  the  two add i t iona l  
pa ths  in M o d e l  2 (where  no o t h e r  pa ths  were  ex- 
c luded)  was A = 0 ( the p o p u l a t i o n  e x p e c t e d  value) .  

H o w e v e r ,  the  m e a n  fac tor  load ings  for  these  same  
two add i t i ona l  pa ths  in M o d e l  4 was h = - . 4 0 .  
Thus,  these  add i t i ona l  f ree  p a r a m e t e r s  se rved  to  
" a b s o r b "  the  misspecif ica t ion,  and  M o d e l  4 re- 
su i ted  in a be t t e r  fit to the  da t a  than  d id  M o d e l  3. 

A s  with M o d e l  3, unde r  mul t iva r i a t e  normal i ty ,  
the  expec t ed  va lues  of  the  M L  and  SB X 2 were  
equa l  to  one  a n o t h e r  whe reas  the  expec t ed  va lue  
of  the  A D F  g 2 was smaller .  N e i t h e r  the  M L  or  SB 
X 2 showed  any signif icant  bias  u n d e r  the  n o r m a l  
d i s t r ibu t ion  across  any of  the  four  s amp le  sizes. 
The  larges t  bias  was for  the  SB X 2 at  N = 100 
(7%), bu t  the  magn i tude  of  bias  d r o p p e d  to nea r  
0 at  s amp le  sizes o f N  = 200 and above .  In  compar i -  
son,  the  A D F  X 2 was again  signif icantly overes t i -  
m a t e d  at  the  two smal le r  s amp le  sizes bu t  was 
unb ia sed  at  s ample  sizes of  N = 500 and  above .  

The  expec t ed  va lue  of  the  M L  X 2 was again  
equa l  across  d i s t r ibu t ions ,  and  the  M L  X 2 was in- 
c reas ingly  pos i t ive ly  b i a sed  with  increas ing  non-  
normal i ty .  L ike  M o d e l  3, the  expec t ed  va lues  for  
the  SB and  A D F  X 2 d e c r e a s e d  with increas ing  
nonnorma l i t y .  The  SB g 2 showed  increas ing  posi-  
t ive bias  with increas ing  nonnorma l i t y .  This  bias  
b e c a m e  negl ig ib le  at  N = 200 u n d e r  m o d e r a t e  
n o n n o r m a l i t y  (5%) bu t  was still s l ightly b i a sed  
even at N = 1,000 u n d e r  severe  n o n n o r m a l i t y  
(10%). Final ly ,  the  A D F  X 2 was again  s t rongly  
b iased ,  wi th  increas ing  n o n n o r m a l i t y  even at  the  
larges t  s amp le  size. 
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Discuss ion  

The first two models were theoretically prop- 
erly specified. Model 1 was estimated in the 
sample precisely as it existed in the population, 
whereas Model 2 included two parameters in the 
sample that did not exist in the population. The 
findings for the ML X 2 from Models 1 and 2 
closely replicate both previous theoretical predic- 
tions and empirical findings. For example, the 
ML X 2 showed no evidence of bias across all 
sample sizes under multivariate normal distribu- 
tions but was significantly inflated with increasing 
nonnormality. Thus, a correct model was signifi- 
cantly more likely to be erroneously rejected 
based on the ML X 2 given departures from a 
multivariate normal distribution (thus resulting 
in an increased Type I error  rate). 

The ADF  and SB test statistics have been pro- 
POsed as alternatives to the normal theory ML test 
statistic when the observed data do not meet the 
multivariate normality assumption. Consistent 
with previous research on properly specified mod- 
els, the ADF X 2 was substantially inflated at 
smaller sample sizes, even under multivariate nor- 
mal distributions. Although this small sample size 
inflation was exacerbated with increasing nonnor- 
mality, the ADF was unbiased at sample sizes of 
N = 500 and above, regardless of distribution. 
The SB X 2 performed quite well across nearly all 
sample sizes and all distributions and showed no 
evidence of bias even under severely nonnormal 
distributions at sample sizes of N = 200 or more. 
These are very heartening findings for the practic- 
ing researcher who encounters nonnormal data 
as a way of life (e.g., in the study of adolescent 
substance use or psychopathology). Not only was 
the SB X 2 accurate under even severely nonnormal 
distributions, but the SB X 2 simplified to the ML 
X 2 under conditions of multivariate normality. As- 
suming a properly specified model, the SB X 2 ap- 
pears to be a very useful measure of fit given mod- 
erately sized samples and nonnormal data. 

Whereas many of the results from Models 1 
and 2 were predicted from theory and previous 
research, the findings from Models 3 and 4 were 
not. Recall that Models 3 and 4 were two variations 
of a misspecified model where the model estimated 
in the sample did not conform to the model that 
existed in the population. Studying the behavior 
of the test statistics under these conditions is of 

particular interest given the high likelihood that 
the model estimated in the sample does not pre- 
cisely conform to the model that exists in the popu- 
lation. The results for the ML X 2 were as expected: 
The ML test statistic showed no evidence of bias 
at any sample size under multivariate normality 
but was increasingly inflated given increasing non- 
normality. As in Models 1 and 2, the SB X 2 also 
showed no evidence of bias at any sample size 
given multivariate normality, and thus simplified 
to the ML X:. Interestingly, the expected value 
for the A D F  X 2 under model misspecification was 
much smaller than that of the ML and SB, even 
under multivariate normality. This suggests that, 
compared to the ML and SB, the A D F  test statistic 
may be a less powerful test of the null hypothesis. 
This conclusion is tentative, and more work is 
needed to better  understand this finding. Like 
Models 1 and 2, the A D F  was positively biased 
under multivariate normal distributions at the two 
smaller sample sizes but showed no bias at the two 
larger sample sizes. 

The most surprising findings related to the be- 
havior of the SB and A D F  test statistics under the 
simultaneous conditions of misspecification and 
multivariate nonnormality (Models 3 and 4). The 
expected values of these test statistics markedly 
decreased with increasing nonnormality. That  is, 
all else being equal, the SB and A D F  test statistics 
were less likely to detect a specification error  given 
increasing departures from a multivariate normal 
distribution. The more severe the nonnormality, 
the greater the corresponding loss of power. This 
result was unexpected, and we are not aware of 
any previous discussions of this finding. 

Although the specific reason for this loss of 
power is currently not known, we theorize that it 
is due to the inclusion of the fourth-order moments 
(kurtoses) in the computation of the SB and A DF 
test statistics, information that is ignored by the 
normal theory ML X:. Recall that a normal distri- 
bution is completely described by the first two 
moments, the mean and the variance. As the distri- 
bution becomes increasingly nonsymmetric, is 
characterized by thicker or thinner tails (compared 
with the normal curve), or both, additional param- 
eters are needed to describe this more complex 
distribution. Because ML is a normal theory esti- 
mator, it is assumed that the fourth-order mo- 
ments are equal to 0, multivariate kurtosis is ig- 
nored, and the expected value of the ML X 2 is 
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equal across all distributions. 5 In contrast, the 
ADF and SB do not assume multivariate normal- 
ity, the fourth-order moments are not assumed to 
equal 0, and measures of multivariate kurtosis are 
explicitly incorporated into the computation of the 
test statistics. As a result, the expected values of 
the ADF  and SB directly depend upon the particu- 
lar characteristics of the multivariate distribution 
under consideration. 

The inclusion of multivariate kurtosis into the 
computation of the SB and ADF test statistics 
provides the critical information necessary to fully 
describe the more complex nonnormal distribu- 
tion. However,  this added information resulting 
from the more complex distribution also reduces 
the ability of the SB and ADF to identify a given 
model misspecification. Otherwise stated, we can 
think of a hypothetical signal to noise ratio in 
which the test statistic is attempting to identify the 
presence of the signal (i.e., the misspecification) 
against the background noise (i.e., the sampling 
variability of the data). Compared with the normal 
distribution, the nonnormal distribution is charac- 
terized by additional noise (in the form of non- 
zero kurtosis) that makes it correspondingly more 
difficult to identify the presence of the signal. Thus, 
any particular signal is easier to detect given multi- 
variate normality than is the very same signal given 
the multivariate nonnormal distributions consid- 
ered here. The power of the ADF and SB test 
statistics (and any test statistic that incorporates 
information from fourth-order moments) to detect 
a given misspecification is thus decreased as multi- 
variate nonnormality increases. 6 This interpreta- 
tion is only speculative, and we are currently work- 
ing on discerning precisely why this loss of power 
under nonnormality exists. 

There are two important implications of these 
findings for the practicing researcher. First, the SB 
X 2 will almost always be smaller than the ML X 2 
under conditions of multivariate nonnormality. 
However,  the lower SB X 2 does not necessarily 
imply that the model is a better  fit to the data 
because under nonnormality there is a simultane- 
ous decrease in the ability of the SB X 2 to detect 
a model misspecification. The SB X 2 is smaller than 
the ML X 2 because of two (inseparable) reasons: 
a correction for the inflation to the normal theory 
ML X 2 and a decrease in statistical power to detect 
a misspecification. The ML X 2 and SB X 2 should 
thus be interpreted with this in mind. 

A second implication of these findings is that if 
a researcher is planning a study that will not be 
characterized by a multivariate normal distribu- 
tion, further steps must be taken to compensate 
for the decreased statistical power that results as 
a function of the nonnormal data (i.e., plan to 
include additional subjects in the study). For ex- 
ample, the power estimation methods developed 
by Satorra and Saris (1985) only apply to normal 
theory estimators. Using this method to compute 
the required sample size needed to achieve a given 
level of statistical power will be underestimated if 
the hypothesized model was misspecified and 
tested based on data that do not follow a multivari- 
ate normal distribution. 

R e c o m m e n d a t i o n s  

On the basis of the previous results, we have 
several recommendations for the practicing re- 
searcher. First, we have not identified at what point 
the data appreciably deviate from multivariate 
normality. Similar to previous researchers (e.g., 
Muthrn and Kaplan, 1985, 1992), we found sig- 
nificant problems arising with univariate skewness 
of 2.0 and kurtoses of 7.0. Further research is 
needed to better understand more precisely when 
nonnormality becomes problematic, but it seems 
clear that obtained univariate values approaching 
at least 2.0 and 7.0 for skewness and kurtoses are 
suspect. Second, we agree with previous research- 
ers (e.g., Hu et al., 1992; Muthrn  & Kaplan, 1992) 
that the A D F  X 2 not be used with small sample 
sizes. Although we found adequate behavior at 
samples as small as N = 500, other researchers 
have found problems with the A D F  X 2 at samples 
as large as N = 5,000 when testing more complex 
models (Hu et al., 1992). There are some epidemi- 
ological and catchment area studies that do have 
these large sample sizes available, and in these 
cases the ADF is a promising method of estima- 
tion, particularly for smaller models. Recent re- 
search has also shown the possibility of using boot- 
strapping techniques to compute more stable ADF 

5 Note that although the obtained ML ,¥2 values in- 
creased with increasing nonnormality, the expected ML 
X 2 values were equal across distribution. 

6 We thank both Albert Satorra and Peter Bentler, 
whom each independently suggested this same argu- 
ment as a potential explanation for the obtained results. 
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X 2 estimates (Yung and Bentler, 1994); however,  
more  work is needed to explore the utility of  this 
approach in applied research settings. 

Finally, relative to the ML X 2 and the A D F  X 2, 
the SB X 2 behaved extremely well in nearly every 
condition across sample size, distribution, and 
model  specification. Additionally, the SB X 2 had 
the desirable proper ty  of simplifying to the ML X 2 
under multivariate normality. We thus recom- 
mend  reporting both the ML X 2 and the SB X 2 
when nonnormal  data is suspected with the clear 
realization that the lower SB value may be re- 
flecting decreased power  and not simply that the 
model  is a bet ter  fit to the data based on the SB 
X 2. Model  fit should thus be evaluated with appro- 
priate caution. There  are a few disadvantages to 
using the SB X 2 in practice. One is that the compu- 
tation of the SB X 2 requires raw data, which might 
pose a problem for some researchers. Second, the 
SB X 2 is currently only available in EQS. This 
poses a practical problem for researchers who are 
either not trained in or do not have access to EQS. 
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A p p e n d i x  

T e c h n i c a l  D e t a i l s  

D a t a  G e n e r a t i o n  

EQS generates the raw data with non-zero skewness 
and kurtosis using the formulae developed by Fleishman 
(1978) in accordance with the procedures described by 
Vale and Maurelli (1983). The raw data were generated 
based upon the covariance matrix implied by the model 
parameters for each of the three models. The availability 
of the raw data was necessary for the computation of 
the A D F  and SB X 2 test statistics. 

The samples were created using the model implied 
population covariance matrix ~(0). The measurement 
equations consisted of the population parameter values 
that defined the particular model. EQS generated the 
population covariance matrix based on these measure- 
ment equations. The sample raw data were created using 
a random number generator in conjunction with the 
characteristics of the population covariance matrix. The 
raw data were generated under two constraints: (a) the 
expected value of S should equal the population covari- 
ance matrix ~(0), and (b) the expected value of the 
indices of skewness and kurtosis should equal the values 
specified for each measured variable. 

Ver i f ica t ion  of  D a t a  G e n e r a t i o n  

To verify that EQS properly generated the raw data 
in accordance with the desired levels of skewness and 
kurtoses, three sets of raw data of sample size N = 
60,000 were generated. The three data sets were pro- 
duced using the same procedures that created the multi- 
variate normal, moderately nonnormal, and severely 
nonnormal distributions for the simulations. The large 
sample size provides a more accurate estimate of the 
coefficients of skewness and kurtosis for the gener- 
ated data. 

Univariate skewness and kurtoses were computed for 
the three samples of N = 60,000 using SAS PROC 
UNIVARIATE.  For the normally distributed condition 

(skewness = 0, kurtosis = 0), the mean univariate skew- 
ness for the nine variables was .001 and the mean kurto- 
sis was .004. For the moderately nonnormal distribution 
(skewness = 2.0, kurtosis = 7.0), the mean skewness 
was 1.973 and the mean kurtosis was 6.648. Finally, for 
the severely nonnormal distribution (skewness = 3.0, 
kurtosis = 21.0), the mean skewness was 2.986 and the 
mean kurtosis was 21.44. These large sample values of 
skewness and kurtosis closely reflected the population 
values. Previous published studies have also successfully 
utilized this same method of data generation (Chou et 
al., 1991; Hu et al., 1992). 

E x p e c t e d  Va lue  of  Tes t  Stat is t ics  

For a properly specified model, the expected value 
for all three chi-square test statistics is equal to the 
model degrees of freedom. Thus, the expected chi- 
square for Model 1 was 24.0 and for Model 2 was 22.0. 
A complication arises when computing the expected 
value of the test statistics for the misspecified models. 
Under misspecification, the expected value of the model 
chi-square is a combination of the model degrees of 
freedom plus the noncentrality parameter, A. The value 
of A is dependent on both the particular method of 
estimation and sample size, with the expected value of 
the model chi-square becoming larger with increasing 
sample size. 

Satorra and Saris (1985) provided a method for com- 
puting the noncentrality parameter for normal theory 
ML for misspecified models. First, a covariance matrix 
is created to reflect the structure of the model as it exists 
in the population. Second, this covariance matrix is used 
to estimate the model as it is thought to exist in the 
sample. The chi-square value that results from this 
model is the corresponding noncentrality parameter A. 
This value, when added to the model degrees of free- 
dom, provides the expected value of the ML X 2 test 
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statistic under model misspecification (Kaplan, 1988; 
Saris & Stronkhorst, 1984). 

The Satorra-Saris method does not apply to the ADF 
or SB test statistics, and it is currently not known how 
to compute the theoretical expected values of these 
test statistics for misspecified models, particularly under 
conditions of nonnormality. We thus computed an em- 
pirical estimate of the expected value of the SB and 
ADF test statistics. Three samples of N = 60,000 were 
generated using EQS reflecting the normal, moderately 
nonnormal, and severely nonnormal distributions de- 
scribed previously. Models 3 and 4 were then fit to these 
three large samples, and the minimum of the fit function 
for SB and ADF was obtained. This value was then 
scaled by the sample size (minus 1) of interest (100, 200, 
500, and 1000) and was added to the model degrees of 
freedom to result in a large sample empirical estimate 
of the expected value of the chi-square test statistics 
under misspecification. We thank Douglas Bonett for 
pointing out the dependence of the noncentrality pa- 

rameter on the method of estimation and Peter Bentler 
for suggesting the procedure to compute the empirical 
estimates of the population noncentrality parameters. 
For comparative purposes, the expected values of the 
test statistics for Models 1 and 2 were also computed 
using the large sample empirical method. All expected 
values for all test statistics across all conditions were 
very close to the corresponding model degrees of free- 
dom. Additionally, the Satorra-Saris method was used 
to compute the expected value for ML for Models 3 
and 4, and these values closely approximated the large 
sample empirical estimates. This cross-validation of esti- 
mation methods increases our confidence in the accu- 
racy of the large sample empirical estimates of the ex- 
pected values. 
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