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A challenge facing nearly all studies in the psychological sciences is how to best combine
multiple items into a valid and reliable score to be used in subsequent modeling. The most
ubiquitous method is to compute a mean of items, but more contemporary approaches use
various forms of latent score estimation. Regardless of approach, outside of large-scale testing
applications, scoring models rarely include background characteristics to improve score
quality. This article used a Monte Carlo simulation design to study score quality for different
psychometric models that did and did not include covariates across levels of sample size,
number of items, and degree of measurement invariance. The inclusion of covariates improved
score quality for nearly all design factors, and in no case did the covariates degrade score
quality relative to not considering the influences at all. Results suggest that the inclusion of
observed covariates can improve factor score estimation.
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Measurement is arguably the single most important
component of any empirical research endeavor and is a
critical component in establishing construct validity (e.g.,
Shadish, Cook, & Campbell, 2002). Thorndike (1918)
famously wrote “Whatever exists at all, exists in some
amount. To know it thoroughly involves knowing its quantity
as well as its quality” (p. 16). Later, Stevens (1946) proposed
what might remain the most concise definition of measure-
ment to date: “the assignment of numerals to objects or events
according to rules” (p. 677). What is most vexing about
measurement in psychology and many allied fields, however,
is that many of the constructs of critical interest are not
directly observable. The difficulty is that we must infer the
existence of what we did not directly observe as a principled
function of what we did (Spearman, 1904). The field of
psychometrics has embraced this challenge for more than a
century, and we continue to make advances likely not even
imagined by Thorndike and Stevens so long ago.

Contemporary psychometrics is dominated by two broad
modeling approaches, item response theory (IRT; e.g.,

Thissen & Wainer, 2001) and factor analysis (FA, which
may be further subdivided into exploratory and confirma-
tory; e.g., Cudeck & MacCallum, 2007). As is widely
known, there are many points of similarity between these
two approaches (see, e.g., Reise, Widaman, & Pugh, 1993;
Takane & de Leeuw, 1987; Wirth & Edwards, 2007), mak-
ing it increasingly difficult to differentiate what “is” or “is
not” an IRT or an FA model. Both are rooted in the notion
that the existence of one or more unobserved latent factors
can be inferred through the associations that exist among a
set of observed items. For instance, item responses to
questions about sadness, hopelessness, guilt, and social
withdrawal are interrelated to the extent that they all reflect
latent depression.

There are three closely related uses of IRT and FA models
in applied social and behavioral science research. First, IRT
and FA models are used to better understand the psycho-
metric structure underlying a set of items. For example, we
might want to identify the optimal number of latent factors
needed to best reproduce the characteristics of an observed
sample of respondents to a given set of items. Second, IRT or
FA procedures are used to construct tests that meet some
targeted criterion in terms of reliability, validity, or test length
(e.g., Thissen & Wainer, 2001). In a typical application, IRT
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or FA models are fitted to a large pool of test items, and a
subset of items are eliminated or retained following some a
priori criteria (e.g., based on simple structure, item discrimi-
nation, item communality, etc.). The third and often most
ubiquitous goal relies directly on the first two and involves
using the final IRT or FA model structure to obtain maximally
valid and reliable scale scores to be used in subsequent
statistical or graphical analysis. Such scores are sometimes
referred to as factor score estimates, or more simply factor
scores (e.g., Estabrook & Neale, 2013; Grice, 2001b; Thissen
& Wainer, 2001). Here we focus specifically on the third goal
of scoring. In particular, because estimated scores are by
definition imperfect, we wish to obtain the most accurate
scores for a sample of individuals who differ on important
between-person background characteristics such as gender,
diagnosis, or age.

Given the imperfection of factor scores, some methodolo-
gists have argued that they should be avoided entirely, for
instance by utilizing a structural equation model to directly
model the relations between latent factors (Bollen, 1989,
pp. 305–306). Although we are highly sympathetic to this
perspective (and even teach it in our classes), there remain a
number of important applications in which factor score estima-
tion is either beneficial or even necessary. For example, given a
large number of repeated measures (e.g., annual assessments
spanning three decades) it might be intractable to specify latent
factors at each time point in a single large model, making factor
scores an attractive alternative (e.g., Curran et al., 2014).
Further, the simultaneous estimation of a structural and mea-
surement model allows for the possibility of measurement being
affected by misspecification of the structural model (Kumar &
Dillon, 1987) and it might be useful for researchers to
“quarantine”misspecification by estimating a factor score inde-
pendent of structural relationships (Hoshino & Bentler, 2013).
Factor scores might also be used not as independent or depen-
dent variables in a standard structural model, but as ancillary
variables to control for bias in subsequent analyses such as in
propensity score analysis (Raykov, 2012; Rodríguez de Gil
et al., 2015). Finally, factor scores are also extremely useful
for integrative data analysis (IDA; Curran & Hussong, 2009) in
which data are pooled across multiple independent studies that
each measure the same underlying constructs in different ways
(e.g., Curran et al., 2014; Rose, Dierker, Hedeker &
Mermelstein, 2013; Witkiewitz, Hallgren, O’Sickey, Roos, &
Maisto, 2016). Taken together, there remain many widely used
applications in which factor score estimation is highly relevant
and in need of ongoing study and refinement.

An area of research in particular need of expansion is the
importance of incorporating information about exogenous
background variables, such as gender or age, when generat-
ing factor score estimates. The rather large literature on
score estimation has primarily focused on the relative
strengths and weaknesses of scoring approaches motivated
by different traditions or goals. For example, the classical
test theory model gives rise to sum, mean, or proportion

score composites (e.g., Lord & Novick, 1968; Novick,
1966; see DeVellis, 2006, for a review). The factor analytic
tradition gives rise to a variety of estimation methods that
vary primarily as a function of the target minimization or
maximization criterion (e.g., Alwin, 1973; Bartlett, 1937;
Harman, 1976; McDonald, 1981; Thurstone, 1935, 1947;
Tucker, 1971; see Grice, 2001b, for a review). Finally,
different scoring procedures have been developed within
the IRT approach, including expected a posteriori (EAP)
and modal a posteriori (MAP) scores (Bock & Aitken,
1981; Bock & Mislevy, 1982; see Thissen & Wainer,
2001, for a review). Despite the different theoretical
perspectives and practical goals underlying these different
scoring methods, the scores they produce tend to be quite
highly correlated (e.g., Cappelleri, Lundy, & Hays, 2014;
Fava & Velicer, 1992; Flora, Curran, Hussong, & Edwards,
2008; Grice, 2001a; Velicer, 1977). The vast majority of
existing work on factor score estimation, however, has not
considered the potential importance of including informa-
tion on background characteristics.1 Instead, it is assumed
that the same scoring algorithm applies for all individuals,
boys and girls, alcoholic and nonalcoholic, young and old,
or any other individual difference characteristic.

Momentarily setting scoring aside, an equally large litera-
ture exists on evaluating whether background characteristics
affect the measurement model itself (e.g., Kim&Yoon, 2011;
Raju, Laffitte, & Byrne, 2002; Reise et al., 1993). We can
distinguish between two kinds of effects. First, background
characteristics could influence the distribution of a latent
factor, for instance, impacting its mean, variance, or both.
Second, background characteristics could alter the process by
which differences on the latent factor produce differences in
item responses, as represented by the item parameters (e.g.,
intercepts or factor loadings in an FA, or difficulty and dis-
crimination parameters in an IRT model). Within the IRT
tradition, these two kinds of effects are commonly referred
to, respectively, as impact and differential item functioning
(DIF; e.g., Holland & Wainer, 1993; Mellenbergh, 1989;
Thissen, Steinberg, & Wainer, 1988, 1993), whereas within
the FA tradition, the equivalence of item parameters is
referred to as measurement invariance (MI; e.g., Cheung &
Rensvold, 1999; Meredith, 1964, 1993; Millsap & Everson,
1993; Millsap &Meredith, 2007; Millsap &Yun-Tein, 2004).
Much research has been conducted to identify the best mod-
els, tests, and procedures for evaluating DIF and MI (e.g.,
Chalmers, Counsell, & Flora, 2015; Holland &Wainer, 1993;

1An important exception to this is clearly evident in the field of
plausible values (e.g., Mislevy, 1991; Mislevy, Beaton, Kaplan, &
Sheehan, 1992). Although exogenous covariates are commonly used in
large-scale testing applications such as National Assessment of
Educational Progress (e.g., Mislevy, Johnson, & Muraki, 1992), these
applications are characterized by extremely large sample sizes and planned
missing designs, neither of which characterizes the vast majority of typical
scoring applications within the social sciences.
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Thissen et al., 1988), yet comparatively little work has
directly addressed the question of how best to incorporate
impact and DIF when generating factor scores in typical
research applications within the social and behavioral
sciences.

We are thus in a curious situation in which a great deal of
careful research has been conducted on the topics of scoring
and MI, but with little consideration of their intersection. To
better under these issues, our goal here is to present a
systematic empirical examination of the psychometric prop-
erties of factor score estimates obtained with and without
the inclusion of information on background characteristics.
We make use of the moderated nonlinear factor analysis
(MNLFA) model, which generalizes other commonly used
psychometric models to allow for impact and DIF as a
function of multiple nominal and continuous background
characteristics (Bauer, in press; Bauer & Hussong, 2009;
Curran et al., 2014). Using the MNLFA model, we conduct
a comprehensive computer simulation study in which we
specify varying levels of impact and DIF that we believe to
be reflective of applied psychological research. We system-
atically vary sample size, number of items, magnitude of
measurement invariance, and whether and how background
characteristics are included in the scoring model, and we
then compare the estimated factor scores to the underlying
true scores.

Our design is based on the following hypotheses. First,
drawing on both quantitative theory and prior empirical
findings, we expect that score recovery will improve with
greater available information, particularly in terms of larger
item sets and larger sample sizes. Second, we expect that
score recovery will improve when impact and DIF that
exists in the population is also included in the scoring
model. Third, we expect that score recovery will improve
when background characteristics have stronger effects on
the conditional mean of the latent factor (i.e., impact) thus
leading to greater factor determinacy. Finally, we expect
interactive effects such that optimal score recovery will be
obtained with large item sets, large sample size, and small
impact and DIF, and the weakest score recovery will occur
when impact and DIF exist but are omitted from the scoring
model. The motivating goal of our study is to systematically
test these hypotheses to better understand the psychometric
properties of factor scores in a variety of conditions com-
monly encountered in behavioral science research.

METHODS

Model Definition

We generated data to be consistent with a one-factor, multi-
ple indicatorMNLFA (Bauer, in press; Bauer & Hussong,
2009; Curran et al., 2014). The MNLFA is a general frame-
work for estimating a broad class of linear and nonlinear

factor models that allows for the moderation of multiple
model parameters as a function of multiple exogenous
background variables. This approach is similar to the loca-
tion-scale model for mixed-effects modeling (e.g., Hedeker,
Mermelstein, & Demirtas, 2012), but the MNLFA is gen-
eralized to the full structural equation model. Importantly,
the moderating effects allow for complex patterns of impact
and DIF in ways that are not possible using traditional two-
group models or multiple-indicator multiple-cause (MIMIC)
models (Bauer, in press). The MNLFA can also be extended
to multiple factors (Bauer et al., 2013) as well as to a
mixture of linear or nonlinear link functions (Bauer &
Hussong, 2009). Here we studied a specific form of the
MNLFA defined as a single latent factor underlying a set
of binary items and three exogenous background variables
with varying levels of impact and DIF. We focus our model
definition on the specific conditions under study and refer
the reader to Bauer (in press), Bauer and Hussong (2009),
and Curran et al. (2014) for additional details about the
general form of the MNLFA and its relations to other
commonly used psychometric models.

Measurement model

We defined a single latent factor ηj for j ¼ 1; 2; :::; J
individuals assessed on i ¼ 1; 2; :::; I binary items denoted
yij. Each binary item yij follows a Bernoulli distribution with
probability μij defined by the underlying factor model as

ln
μij

1� μij

 !
¼ νij þ λijηj (1)

where νij and λij represent the intercept and factor loading

for item i and person j and ηj,N αj;ψj

� �
.

Background characteristics

The MNLFA framework allows for a subset of model
parameters to vary as a function of individual character-
istics. To empirically evaluate the improvement in score
accuracy when incorporating background characteristics,
we drew on recent IDA applications to inform data gen-
eration for three exogenous variables, as IDA is one of the
few research contexts within which multiple background
variables have been considered simultaneously (although
all of our results generalize to non-IDA applications as
well). The first covariate was a binary variable denoted
study meant to represent an identifier for data that were
obtained from one of two independent studies; this was
effect coded as −1 and +1 with equal proportions of
subjects within each group. Gender was drawn from a
Bernoulli distribution with a mean of .35 for Study 1
and .65 for Study 2. Age was drawn from a binomial
distribution with seven trials and a probability of .70 for
Study 1 and from a binomial distribution with six trials
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and a probability of .50 in Study 2, with constants added
to result in integer values for years of age from 10 to
17 in Study 1 and from 9 to 15 in Study 2. To facilitate
model specification and interpretation, we then effect
coded gender as −1 and +1 and rescaled age to range
between −4 and +4 with a midpoint of zero. The exogen-
ous predictors thus had nonzero covariances with one
another in the pooled aggregate sample: The correlation
between gender and study was .30, between age and study
was −.51, and between gender and age was −.15.

Parameter moderation

To produce impact, we defined specific moderating rela-
tions between the three covariates and the mean and var-
iance of the latent factor. Drawing on the notation of Bauer
(in press), this is given as:

αj ¼ α0 þ γ1agej þ γ2studyj þ γ3agej � studyj (2)

and

ψj ¼ ψ0 exp β1agej þ β2genderj þ β3studyj
� �

; (3)

respectively. We selected these terms as reflective of poten-
tial real-world applications and to introduce deterministic
shifts in the factor mean and variance as a function of the
observed covariates. The intercept terms (i.e., α0 and ψ0)
reflect the factor mean and variance when all predictors
equal zero, and the coefficients reflect the degree to which
the mean and variance are shifted by changes in the values
of the covariates. In the presence of covariates, the model-
implied latent mean and variance thus vary as a function of
the values of the covariates unique to each individual j (e.g.,
αj and ψj). In the absence of covariates (as would occur in
single-group CFA or IRT models) αj ¼ α0 and ψj ¼ ψ0,
reflecting that the latent mean and variance are constant
across all individuals.

Covariates can also moderate item-level parameters to
produce DIF. For this study, the item intercept and item
loading were defined as

νij ¼ ν0ij þ κ1iagej þ κ2igenderj þ κ3jstudyj (4)

and

λij ¼ λ0ij þ ω1iagej þ ω2igenderj þ ω3istudyj; (5)

respectively. As with the factor mean and variance, we
selected these terms as reflective of potential real-world
IDA applications (that again directly generalize to non-
IDA applications). As before, these equations introduce
systematic shifts in the values of the item-specific intercepts

and factor loadings (or slopes) as a function of the unique
combination of the three covariates for a given individual.

Experimental Design Factors

Our simulation was structured around five design factors
that were systematically manipulated during data generation
and model fitting. These were sample size (three levels),
number of items (three levels), magnitude of impact (three
levels), magnitude of DIF (two levels), and proportion of
items with DIF (two levels). The full factorial design
included 108 unique cells, within each of which we gener-
ated 500 independent replications.

Sample size

We studied three total sample sizes of 500, 1,000, and
2,000, each of which was split evenly between the two “stu-
dies.” We chose these values to be consistent with a typical
IDA application (e.g., Hussong, Flora, Curran, Chassin, &
Zucker, 2008; Rose et al., 2013; Witkiewitz et al., 2016).

Number of items

We studied three item set sizes: 6, 12, and 24. These
values were selected to reflect a range of potential applica-
tions spanning small to large.

Magnitude of impact

We studied three levels of impact. Because impact
reflects the joint contribution of the set of covariates on
both the latent mean and variance, we defined impact in
terms of the ratio of mean to variance moderation: small
mean/large variance impact (SMLV), medium mean/med-
ium variance impact (MMMV), and large mean/small var-
iance impact (LMSV). The covariate effects on the mean of
eta were selected to result in multiple r2 values for eta equal
to .05, .15, and .35, respectively. Due to the nonlinearity of
the relation between the covariates and the conditional var-
iance of eta (e.g., Equation 3), selection of covariate effects
on the variance of eta was more complex. We chose values
of covariate coefficients based on the interquartile range
(IQR) of the conditional latent standard deviations such
that the resulting IQR values were .20, .50, and .80, respec-
tively. The final set of covariate coefficients are reflective of
those that might realistically be encountered in practice and
are presented in Table 1.

2 Item communalities were computed as follows: If, for each binary
item, there is a continuous latent response that produces a binary observed
value of zero or one if it falls below or above a fixed threshold, then the
communality value represents the proportion of variance in the continuous
latent response due to the common latent factor. These communality values
are thus directly comparable to those commonly reported for linear factor
analyses.
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Magnitude of DIF

We studied two levels of DIF: small and large. Like
impact, we defined DIF as the joint covariate moderation
of both item loading and item intercept. For the subset of
items that were not characterized by DIF (i.e., the invariant
items), we selected population values for the item para-
meters (intercepts and loadings) that reflected those we
obtained in our prior IDA applications (e.g., Curran,
Edwards, Wirth, Hussong, & Chassin, 2007; Curran et al.,
2014; Hussong et al., 2008). These values resulted in endor-
sement rates ranging between approximately .20 to .40 and
item communalities ranging between approximately .25 and
.65.2 For the remaining subset of items characterized by DIF
(i.e., the noninvariant items), we selected values based on a
generalization of the weighted area between curves index
(wABC; Edelen, Stucky, & Chandra, 2015; Hansen et al.,
2014). We selected specific values of the covariate coeffi-
cients to result in wABC values approximately equal to .15

for our small DIF condition and .30 for our large DIF
condition (holding other covariates constant). We introduced
both positive and negative covariate effects on the item
parameters to produce DIF effects that were either consis-
tent or inconsistent in their direction and to control endorse-
ment rates. Specifically, age and gender exerted both
positive and negative effects on item parameters, whereas
study only affected item parameters positively. All popula-
tion item and DIF parameters are presented in Table 2.

Proportion DIF

We studied two proportions of items with DIF: Either one
third or two thirds of each item set (6, 12, or 24 items) were
characterized by DIF. This was again informed by our prior
empirical findings using IDA in which it is common to identify
a majority of items having some form of DIF (Curran et al.,
2007; Curran et al., 2014; Hussong et al., 2008).

Data Generation

Data were generated using the SAS data system (SAS
Institute, 2013) following four sequential steps. First, the
covariates age and gender were randomly sampled within
one of two equally sized groups (representing study) as
described earlier. Second, for each individual observation a
true factor score was randomly sampled from a univariate
normal distribution with conditional mean and variance
defined by the unique set of covariates that were drawn
for that observation (i.e., Equations 3 and 4 above). Third,
a logit was computed as a function of the true factor score
and the item-specific factor loading and intercept (i.e.,
Equation 1). Finally, binary responses were obtained via
random draws from a Bernoulli distribution with the implied
probability of endorsement (i.e., Equation 2). A conceptual

TABLE 1
Population Values of Covariate Moderation Three Impact Conditions

Small Mean/
Large Variance

Medium Mean/
Medium Variance

Large Mean/
Small Variance

Mean model
Intercept −0.01 −0.01 −0.02
Age 0.13 0.22 0.34
Gender 0 0 0
Study 0.21 0.37 0.56
Age × Study −0.05 −0.09 −0.14

Variance model
Intercept 0.58 0.71 0.65
Age 0.5 0.35 0.25
Gender −1 −0.6 −0.05
Study 0.5 0.3 0.05

TABLE 2
Population Values of Item Parameters Under Small and Large DIF Conditions

Small DIF Large DIF

Baseline Age Gender Study Age Gender Study

Loading
Items 1, 7, 13, 19 1
Items 2, 8, 14, 20 1.3 0.05 −0.2 0.2 0.075 −0.3 0.3
Items 3, 9, 15, 21 1.6 −0.05 0.2 0.2 −0.075 0.3 0.3
Items 4, 10, 16, 22 1.9 0.05 0.075
Items 5, 11, 17, 23 2.2 −0.2 0.2 −0.3 0.3
Items 6, 12, 18, 24 2.5

Intercept
Items 1, 7, 13, 19 −0.5
Items 2, 8, 14, 20 −0.9 0.125 −0.5 0.5 0.25 −1 1
Items 3, 9, 15, 21 −1.3 −0.125 0.5 0.5 −0.25 1 1
Items 4, 10, 16, 22 −1.7 0.125 0.25
Items 5, 11, 17, 23 −2.1 −0.5 0.5 −1 1
Items 6, 12, 18, 24 −2.5

Note. DIF = differential item functioning.
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path diagram for the population-generating model for 12
items is presented in Figure 1. This sequence resulted in
500 separate data files for each of 108 unique cells of the
design, and it was to these data files that we fitted four
distinct scoring models.

Scoring Models

Factor scores were estimated using four different model struc-
tures fitted to each individual replication across all cells of the
design; that is, each of four models was fitted to the same sample
data. The first scoring model was a simple mean of the set of
items (i.e., proportion scores, indicating the proportion of items
that were endorsed), and the remaining three models involved
alternative specifications of the MNLFA that varied in how they
incorporated information on the background covariates.

Model 1: Proportion score

The first scoring model is not a psychometric model in the
strict sense of the term, but is the simple unweighted mean of
the set of items for each replication. Given the items were
coded 0 and 1, this score represents the proportion of items
endorsed as 1. This score was used to reflect how multiple-
item scales are often scored in applied research settings.

Model 2: Unconditional MNLFA

The second scoring model was an unconditional one-factor
nonlinear confirmatory factor analysis; this parameterization is
analytically equivalent to a standard two-parameter logistic
(2PL) IRT model (e.g., Takane & de Leeuw, 1987). More
specifically, the set of binary items (6, 12, or 24) was used to
define a single latent factor and no background characteristics
were considered. Because both impact and DIF effects existed
in the population-generating model but are omitted in the
scoring model, this unconditional model is misspecified in
terms of both impact and DIF.

Model 3: Impact-only MNLFA

The third scoring model expands Model 2 with the
inclusion of the properly specified influence of the three
background characteristics on the latent mean and variance,
but continues to omit DIF effects on the item-level para-
meters. This model is thus properly specified in terms of
impact but is misspecified in terms of DIF.

Model 4: Impact + DIF MNLFA

The fourth and final scoring model expands Model 3 with
the inclusion of the properly specified influence of the three
background characteristics on the latent mean and variance,
and on the item-level parameters. This model is thus properly
specified in terms of both impact and DIF.

Model Estimation

The proportion scores were computed arithmetically and the
three MNLFA models were estimated using maximum likeli-
hood with numerical integration (adaptive Gaussian quadrature
with 15 quadrature points) as programmed in Mplus (Version
7.2; Muthén & Muthén, 1998–2012). The latent factor was
scaled to have a marginal mean of zero and marginal variance
of one,3 and each model used default start values and conver-
gence criteria. Models that either failed to converge or con-
verged and resulted in improper solutions were omitted
(although these accounted for less than 1% of all estimated
models; see results for further detail). For scoring Models 2, 3,
and 4, factor scores were estimated as EAP scores, as originally
described in Bock and Aitkin (1981).

Criterion Variables

Given our focus on score fidelity, we examined two criterion
variables: score correlations and root mean squared error
(RMSE).4

Score correlations

We computed standard bivariate linear correlations
between each of the four sets of score estimates and the
underlying true factor scores for each replication; this can be
thought of as a direct estimate of the reliability index

FIGURE 1 Conceptual path diagram of moderated nonlinear factor ana-
lysis (MNLFA) model with 12 items and impact and differential item
functioning (DIF) effects from three background characteristics.

3 This is the typical method for setting the metric of the latent factor via
standardization, but here we scaled the mean and variance conditioned on
the covariates; see Bauer (in press) for further details.

4 To maintain scope and focus, we do not present the vast corpus of
results related to parameter recovery within the MNLFA scoring models
themselves (e.g., factor loadings, covariate effects, etc.). Importantly, the
sampling distributions of parameter estimates from the scoring models are
precisely what would be expected from theory (e.g., higher precision with
larger sample size, greater bias with model misspecification).
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(Estabrook & Neale, 2013). We also computed Fisher’s z
transformations of these correlations to be used as criterion
measures in subsequent metamodels. Larger correlations
reflect greater accuracy in estimated score recovery relative
to the underlying true scores.

Root mean squared error

In addition to the correlations, for the three MNLFA-
based score estimates, we computed the associated RMSE.
This was not computed for the proportion score as this is
defined by a different scale than the underlying true score
and the two cannot be directly compared. The RMSE was
computed in the usual way as the root of the mean of the
squared deviations between the estimated and true scores.
Larger values of RMSE reflect greater variability in score
estimates relative to the underlying true score.

Metamodels

We estimated four separate general linear models (GLMs)
using PROC GLM in SAS Version 9.4 (2013) to examine
mean differences in the (z-transformed) correlations and the
RMSE as a function of varying levels of our five design
factors, one GLM for each obtained score. We estimated
each model with all main effects (sample size, number of
items, magnitude of impact, magnitude of DIF, and propor-
tion of DIF) and all two-, three-, four-, and five-way inter-
actions. Given the excessive power associated with the high
number of replications (exceeding 50,000 replications for
each outcome), we identified any design effect as potentially
meaningful if the semipartial eta-squared (denoted η2sp) term
conservatively exceeded 1%. Finally, we used graphical
representations to explicate meaningful effects identified in
the GLMs, and we provide fully tabled results in the online
appendix.

RESULTS

Model Convergence

We fit a total of 162,000 MNLFA models across all replications
and all conditions (three scoring models fit to 500 replications
within each of 108 cells). We retained properly converged
solutions for subsequent analyses, although the omitted models
represented only a small fraction of the total estimated. More
specifically, a total of 107 of the 162,000 models failed to
converge; the rate of successful model convergence thus
exceeded 99.99%. The models that failed to converge were
most evident at the extreme conditions (e.g., small sample
size, small numbers of items, large DIF, large proportion of
items with DIF). The cell-specific nonconvergence rates ranged
from less than 1% to 3.8%, with the highest rate representing
19 of 500 models failing to converge. Given these very low
rates, we omitted nonconverged solutions without replacement.

Metamodels Fitted to z-Transformed Correlations

As expected, the four GLMs resulted in highly significant
omnibus test statistics with associated eta-squared values
ranging from .95 to .97 (see online Appendix A1 for
complete results). We next identified potentially meaning-
ful specific effects as those that accounted for at least 1%
of the variance in the criterion as measured by η2sp as
described earlier. To begin, none of the main effects of
sample size (500 vs. 1,000 vs. 2,000) nor any interaction
term involving sample size even approached the 1% effect
size criterion across all models and all outcomes, indicat-
ing that the mean correlations did not vary as a function of
sample size. We thus focus the remainder of our discussion
on results from the smallest sample size of 500. This
greatly reduces the number of cells to consider and there
is no loss of generality given that the findings are identical
across the three sample sizes.5

Correlation between the proportion score and the
true score

We began by examining the correlations between the true
scores and the scores obtained by computing a simple
proportion of the set of endorsed binary items. Average
correlations between the proportion scores and the under-
lying true score ranged from a minimum of .75 to a max-
imum of .90 with a median of .84 across all 36 cells (recall
we are focusing only on N = 500, although these values are
virtually identical for N = 1,000 and N = 2,000; see online
Appendix A2 for complete results). Two design factors
exceeded the 1% effect size criterion in the GLM: the
number of items (η2sp=.83) and the magnitude of impact
(η2sp=.10). Table 3 presents the cell-specific mean correla-

tions across each condition, and this reflects that the magni-
tude of the correlations increased with increasing number of
items and increased with increasing impact (where “increas-
ing impact” reflects higher mean-to-variance covariate mod-
erating effects). We present these effects in boxplots in
Figure 2.

Pooling over all other design factors, the mean correla-
tion between the proportion score and true score was .78
(SD = .023) for 6 items, .84 (SD = .020) for 12 items, and
.88 (SD = .018) for 24 items. To better explicate the effect of
impact, we pooled over the proportion of items with DIF
and the magnitude of DIF within just the 12-item condition:
The mean correlation for small mean/large variance condi-
tion was .82 (SD = .018), for medium mean/medium var-
iance condition was .85 (SD = .013), and for large mean/
small variance condition was .85 (SD = .011). Nearly iden-
tical patterns of findings held for 6 and 24 items (as is

5We observed the expected reduction in variability in which larger
sample size was associated with lower within-cell variance, but there
were no differences in the cell-specific means as a function of sample size.
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further reflected in the lack of any higher order interactions
in the GLMs). Consistent with the small effect size,
although the magnitude of the correlations increased with
increasing mean-to-variance impact effects, these differ-
ences were small in magnitude.

In sum, the mean correlation between the proportion
scores and the true scores ranged from .75 to .90, and the
magnitude of the correlations substantially increased with
increasing number of items and modestly increased with
larger mean-to-variance impact.

TABLE 3
Correlations Between True and Estimated Scores Across All Scoring Models and Design Factors at N = 500

Proportion Score Unconditional Score Impact-Only Score Impact-and-DIF Score

M SD M SD M SD M SD

6 items
Small mean/large variance
33% small DIF 0.758 0.020 0.759 0.019 0.821 0.018 0.820 0.018
66% small DIF 0.756 0.019 0.756 0.019 0.808 0.021 0.810 0.023
33% large DIF 0.759 0.019 0.760 0.019 0.820 0.019 0.825 0.018
66% large DIF 0.751 0.019 0.746 0.020 0.770 0.027 0.814 0.022

Medium mean/medium variance
33% small DIF 0.785 0.017 0.791 0.016 0.824 0.016 0.823 0.017
66% small DIF 0.786 0.016 0.792 0.016 0.811 0.017 0.814 0.019
33% large DIF 0.784 0.016 0.790 0.016 0.819 0.017 0.824 0.016
66% large DIF 0.782 0.016 0.783 0.017 0.769 0.024 0.814 0.020

Large mean/small variance
33% small DIF 0.789 0.015 0.799 0.015 0.841 0.013 0.841 0.014
66% small DIF 0.793 0.015 0.802 0.015 0.831 0.015 0.835 0.016
33% large DIF 0.790 0.016 0.800 0.016 0.835 0.015 0.841 0.014
66% large DIF 0.791 0.015 0.797 0.016 0.790 0.022 0.831 0.016
12 items

Small mean/large variance
33% small DIF 0.826 0.016 0.835 0.015 0.879 0.012 0.880 0.013
66% small DIF 0.820 0.017 0.829 0.015 0.868 0.014 0.875 0.014
33% large DIF 0.824 0.017 0.830 0.016 0.871 0.014 0.881 0.013
66% large DIF 0.812 0.017 0.815 0.017 0.837 0.018 0.877 0.015

Medium mean/medium variance
33% small DIF 0.852 0.013 0.864 0.012 0.882 0.011 0.883 0.012
66% small DIF 0.847 0.012 0.859 0.011 0.871 0.011 0.878 0.011
33% large DIF 0.852 0.012 0.863 0.011 0.874 0.012 0.883 0.011
66% large DIF 0.840 0.012 0.849 0.012 0.839 0.016 0.878 0.011

Large mean/small variance
33% small DIF 0.855 0.011 0.872 0.010 0.890 0.010 0.891 0.010
66% small DIF 0.854 0.010 0.871 0.010 0.882 0.010 0.889 0.010
33% large DIF 0.858 0.010 0.874 0.010 0.883 0.010 0.892 0.010
66% large DIF 0.850 0.010 0.863 0.010 0.853 0.013 0.888 0.010

24 items
Small mean/large variance
33% small DIF 0.866 0.014 0.891 0.012 0.920 0.009 0.922 0.009
66% small DIF 0.861 0.015 0.885 0.012 0.912 0.009 0.920 0.009
33% large DIF 0.866 0.014 0.887 0.012 0.914 0.009 0.924 0.008
66% large DIF 0.849 0.013 0.866 0.012 0.882 0.013 0.922 0.009

Medium mean/medium variance
33% small DIF 0.889 0.010 0.913 0.008 0.923 0.007 0.925 0.007
66% small DIF 0.886 0.009 0.909 0.008 0.915 0.007 0.924 0.007
33% large DIF 0.890 0.010 0.912 0.008 0.917 0.008 0.927 0.007
66% large DIF 0.875 0.010 0.892 0.009 0.886 0.011 0.924 0.008

Large mean/small variance
33% small DIF 0.894 0.008 0.922 0.007 0.929 0.006 0.931 0.006
66% small DIF 0.890 0.008 0.917 0.007 0.920 0.007 0.928 0.007
33% large DIF 0.896 0.008 0.921 0.007 0.922 0.007 0.931 0.006
66% large DIF 0.883 0.008 0.904 0.008 0.893 0.009 0.927 0.007

Note. DIF = differential item functioning.
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Correlation between the unconditional MNLFA
score and the true score

We next examined the correlations between the true
scores and the factor score estimates obtained from an
unconditional MNLFA model that improperly excluded all
effects associated with the three background characteristics
(i.e., a standard 2PL IRT model). At a sample size of 500,
the average correlations ranged from .75 to .92 with a
median of .86. The pattern of GLM results was quite similar
to those found for the proportion scores. Namely, two
design factors exceeded the 1% effect size criterion: the
number of items (η2sp=.84) and the magnitude of impact
(η2sp=.10). Examination of cell-specific means (see Table 3)

reflects that the magnitude of the correlations increased with
increasing number of items and increased with increasing
magnitude of mean-to-variance impact; the boxplots are
presented in Figure 3.

Pooling over all of the design factors within N = 500, the
average correlation between the unconditional factor score
and the true scores was .78 (SD = .026) for 6 items, .85
(SD = .023) for 12 items, and .90 (SD = .019) for 24 items.
As before, the magnitude of the correlations increased as a
function of increasing magnitude of mean-to-variance
impact. For example, pooling over magnitude of DIF and
proportion of items with DIF within the 12-item condition,
the average correlation was .83 (SD = .018) for low impact,
.86 (SD = .013) for medium impact, and .87 (SD = .011) for
high impact. These effects closely reflect those found with
the proportion score, but the modest effect of impact is

somewhat more pronounced for the unconditional factor
score estimates.

In sum, the correlations between the (impact and DIF
misspecified) unconditional factor scores and the true scores
ranged from .75 and .92, and the magnitude of the correla-
tions substantially increased with increasing number of
items and modestly increased with increasing magnitude
of mean-to-variance impact.

Correlation between the impact-only factor score
and the true score

We next examined the correlations between the true
scores and the estimated scores from an MNLFA model
that included the three background characteristics but lim-
ited these effects to the mean and variance of the latent
factor. These scoring models are thus partially misspecified
in that within the scoring model, impact effects are properly
specified but DIF effects are not (indeed, DIF effects are
wholly omitted). The average correlations ranged from .77
to .93 with a median of .87. As expected, more complex
results were identified in the GLMs relative to the prior two
scoring models; cell means are presented in Table 3 and
corresponding boxplots in Figure 4. Similar to the prior
models, there was an effect of the number of items (η2sp=
.80) and magnitude of impact (η2sp= .02), but unlike the prior

models there were additional effects associated with the
magnitude of DIF (η2sp= .05), the proportion of items with

DIF (η2sp= .07), and their interaction (η2sp= .02).
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As before, the magnitude of the correlations between the
estimated and true scores increased with increasing numbers
of items: Pooling over all other design factors, the average
correlation was .81 (SD = .030) for 6 items, .87 (SD = .021)
for 12 items, and .91 (SD = .018) for 24 items. However,
these correlations were differentially affected by other
design factors. Also as before, increasing mean-to-variance
impact was associated with increasing correlation magni-
tude. However, as was not found previously, increasing
levels of DIF (small vs. large) were associated with decreas-
ing mean correlations, and this effect was particularly salient
for larger proportions of items with DIF (one third vs. two
thirds). For example, for six items at the smallest level of
mean-to-variance impact, the average correlation was .82
(SD = .018) for small DIF/low proportion of items, .81
(SD = .021) for small DIF/high proportion of items, .82
(SD = .019) for large DIF/low proportion of items, and .77
(SD = .027) for large DIF/high proportion of items. Similar
patterns were found across all other design factors. As we
describe in detail later, this conditional pattern of effects is
due to the improper omission of DIF when DIF truly exists;
thus the omission is logically more pronounced at higher
levels of magnitude of DIF and when a larger number of
items are characterized by DIF.

In sum, the mean correlation between the (DIF misspe-
cified) impact-only MNLFA model scores and the under-
lying true scores ranged from .77 to .93. The magnitude of
the correlations increased with increasing numbers of items,

increased with increasing magnitude of mean-to-variance
impact, and decreased with increasing magnitude of DIF,
the latter effect being particularly salient when a higher
proportion of items was characterized by DIF.

Correlation between the impact + DIF MNLFA
score and the true score

Finally, we examined the correlations between the true
scores and the estimated factor scores from an MNLFA that
included both impact and DIF effects. These scores were
thus obtained from a properly specified model in that all
impact and DIF effects that existed in the population were
estimated within the scoring model. The average correla-
tions ranged from .81 to .93 with a median of .88. Two
design factors exceeded the 1% effect size criterion in the
GLM: the number of items (η2sp= .94) and the magnitude of
impact (η2sp= .01); cell means are presented in Table 3 and

the corresponding boxplots in Figure 5.
Similar to the proportion score and unconditional MNLFA

scoring model, the magnitude of the correlations markedly
increased with increasing number of items and modestly
increased with increasing mean-to-variance influence. For
example, pooling across all other design factors, the average
correlation was .82 (SD .021) for 6 items, .88 (SD = .013) for
12 items, and .93 (SD = .008) for 24 items. As before, within
item set, larger values of impact were associated with larger
correlations, but this effect was small in magnitude. For
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example, for the 12-item condition the correlations between
estimated and true scores varied by approximately .01 across
all three levels of mean-to-variance impact.

In sum, the correlation between the (fully properly specified)
impact + DIF MNLFA model and the true scores ranged from
.81 and .93, and the magnitude of the correlations substantially
increased with increasing number of items and only slightly
increased with increasing magnitude of impact.

Comparing Estimated Scores Across Scoring Model

Our discussion up to this point has focused entirely on
the effects of the design factors on score recovery within
individual scoring models. However, we can also compare
score recovery across scoring models. Such a comparison
provides a direct examination of relative score recovery
when holding all other design factors constant. We again
focus our discussion on the smallest sample size condition
of N = 500 given the nearly identical pattern of results
obtained at the two larger sample sizes.

When considering just the smallest sample size of 500,
our experimental design consists of 36 unique cells (three
levels of number of items, three levels of impact, two levels
of DIF, and two levels of proportion of items with DIF).
Given that we fit four separate scoring models to the simu-
lated data within each cell, we have a total of 144 mean
bivariate correlations computed on the 500 cell-specific
replications. Of these 144 correlations, the lowest mean
correlation between the true and estimated scores was .75
for the proportion score in the condition defined by the

smallest mean-to-variance impact, six items, and 66% of
items defined by large DIF. The highest correlation between
the true and estimated scores was .93 for the impact + DIF
MNLFA score in the condition defined by the largest mean-
to-variance impact, 24 items, and 33% of items defined by
small DIF. These values imply overlapping variability
between true and estimated scores ranging from 56% to
86% across the scoring models and experimental conditions.
There are thus substantial differences in the ability of the
four scoring models to recover the underlying true score as a
function of variations in design characteristics. To better
understand these differences, we conclude by focusing on
all four scoring models within just 24 design cells: We
consider four scoring methods, three levels of impact, and
two levels of DIF holding sample size and number of items
constant (500 and 12, respectively).

Comparing correlations obtained across various design
features, several clear patterns can be seen (see Figure 6).
First, although the proportion scores often correlate with the
true scores in the mid-.70 to high-.80 range, these correla-
tions are almost universally lower than any comparable
score obtained using any form of the MNLFA model, even
if the MNLFA model is substantially misspecified. Second,
although the unconditional MNLFA almost always outper-
forms the proportion score model in terms of score recovery,
this same model is itself almost always outperformed by the
two MNLFA models that include exogenous covariate
effects. However, this advantage of including covariates is
partially mitigated under the condition in which the covari-
ates are introduced into the MNLFA but their effects are

Small Impact Large Impact

Small DIF Large DIF Small DIF Large DIF

FIGURE 6 Distributions of correlations between true scores and scores generated by all four models under small and large mean impact in the 12-item
condition. DIF = differential item functioning.
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restricted to just impact on the latent factor, particularly
when the omitted DIF effects are large. In other words, if
the covariates moderate DIF effects, and these moderating
effects are improperly omitted, score quality is degraded.
Finally, the fully specified impact + DIF MNLFA produced
correlations in the mid-.80 and up to low-.90 range across
nearly all experimental conditions, well in excess of other
scoring model estimates based on the very same data.

In sum, although there are minor cell-to-cell variations in
mean correlations, the overall pattern of findings suggests
that optimal score recovery is obtained using the impact +
DIF MNLFA model followed by the impact-only MNLFA,
the unconditional MNLFA, and finally the unweighted
proportion score.

Root Mean Squared Error

All of our discussion thus far has focused on score recovery
as manifested in estimated-by-true score correlations. To
examine absolute recovery of the true scores, we calculated
the RMSE for the three variations of the MNLFA model.
We did not compute this for the proportion score estimates
because they do not retain the same scale as the underlying
true scores. We fit metamodels to the RMSE for score
estimates obtained from the unconditional model, the
impact-only model, and the impact + DIF model just as
we did for the (Fisher z-transformed) score correlations.
These GLMs revealed precisely the same design effect
influences for the RMSE values as were found for the
score correlations. Further, examination of the RMSEs as a
function of the design factors revealed the same trends as
were identified with the correlations (although these were in
the expected opposite direction; e.g., lower RMSE values
reflect better score recovery). That is, whereas a higher
number of items was associated with higher correlations, a
higher number of items was associated with lower RMSEs,
and so on. Given the complete overlap of effects for the
RMSE as were found for the correlations, we do not present
these results in detail; please see online Appendix A3 for a
complete reporting of RMSE effects.

DISCUSSION

Our motivating research question was whether the inclusion
of background characteristics can improve the quality of
factor score estimates. Our results indicate that the answer
to this question is yes. We used computer simulation metho-
dology to empirically compare four methods of factor score
estimation and we compared each estimated score with the
underlying true score. The four methods of score estimation
were the traditional unweighted proportion score, and factor
scores generated from an unconditional model excluding
covariates, an MNLFA allowing only for impact, and an
MNLFA allowing for both impact and DIF. We examined

score quality in two ways. First, we calculated the correlation
between each score estimate and the underlying true score;
correlations of 1.0 indicate perfect recovery, and decreasing
values reflected decrements in score quality. Second, we
calculated the RMSE between each score estimate and the
underlying true score; higher values of RMSE reflect lower
accuracy. Because the pattern of results was identical for the
correlations and the RMSE, we focus our discussion on
the former.

Sample Size

We studied three levels of sample size: 500, 1,000, and
2,000. We found no evidence of any influence of sample
size on the means of the correlations across any condition
for any of the scoring models. Of course there was the
expected reduction of variability of the score correlations
at larger sample sizes, but the cell-specific means were
unaffected by variations in sample size. Because of this,
we focused all of our attention on findings from the smallest
sample size of 500.

Number of Items

We studied a single latent factor defined by three item set
sizes: 6, 12, and 24. As expected, the strongest effects of all
design factors were related to increasing number of items. We
found marked improvements in score quality associated with
increasing numbers of items regardless of scoring model. For
example, we can consider the mean correlations obtained for
different numbers of items while holding impact at medium
mean/medium variance, DIF at small, proportion DIF at one
third, and sample size at 500. For the proportion score, the
mean correlations for 6, 12, and 24 items were .79, .85, and
.89, respectively. Similarly, for the fully specified DIF and
impact MNLFA, the mean correlations for 6, 12, and 24 items
were .82, .88, and .93, respectively. Similar patterns held for
the other two scoring models as well.

The reason for improved score recovery with larger num-
bers of items primarily centers around factor indeterminacy
(Guttman, 1955; Schonemann, 1996; Wilson, 1928). Briefly,
factor indeterminacy is an inherent component of nearly all
latent factor models because the number of common and
unique latent variables exceeds the number of observed
indicator variables. As such, factor scores are not uniquely
determined. However, it has been shown that the magnitude
of indeterminacy varies as a function of the amount of avail-
able information, especially the number of observed items
and the strength of the relations between the items and the
factor. This is well known in EFA (e.g., McDonald &Mulaik,
1979; Piaggio, 1933) and Bollen (2002) explored this within
the broader structural equation modeling. The larger the
number of items, the lower the indeterminacy; the lower the
indeterminacy, the higher recovery of the factor scores. This
is precisely what we found here.
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Magnitude of Impact

We studied three levels of impact defined as the joint
contribution of the background characteristics on both the
latent mean and variance: small, medium, and large ratio of
mean-to-variance impact effects. There was consistent evi-
dence that score quality increased with increasing levels of
mean-to-variance impact, but the magnitude of this effect was
more modest than the effect of increasing number of items.
Specifically, the unique variability associated with magnitude
of impact in the prediction of the (Fisher z-transformed) corre-
lations ranged from a low of 1% (for the properly specified
MNLFA) to a high of 11% (for the unconditional MNLFA).
This compares to the unique variability associated with num-
ber of items that ranged from 80% to 94%. The modest effect
size estimates from the GLM were further reflected in only
slight improvements in the correlations between estimated and
true scores. For example, holding constant the number of items
at 12 and DIF, proportion of DIF, and sample size at the same
levels as were used earlier, the mean correlation at small,
medium, and large impact for the unconditional MNLFAwas
.84, .86, and .87, respectively. Similar patterns of only modest
increases in score recovery were evident across other design
factors and other scoring models.

The reason for improved recovery associated with stron-
ger covariate effects on the latent mean is due to greater
determination of the latent factor as a function of the back-
ground characteristics. As we noted previously, factor score
recovery is improved under conditions of higher factor deter-
minacy. Just as larger numbers of items improve determinacy,
so does the lower residual variability of the latent factor in the
presence of the explanatory predictors. This is analogous to
the long-known finding that the inclusion of covariates in the
GLM reduces mean square error and increases statistical
power and precision (e.g., Neter, Kutner, Nachtsheim, &
Wasserman, 1996, Section 25.1). Thus the inclusion of the
background characteristics increases factor determinacy,
which in turn increases score recovery.

Magnitude of DIF and Proportion of Items With DIF

We studied two levels of magnitude of DIF defined as the
joint contribution of the background characteristics on both
the item loading and intercept (small and large) and two
proportions of items with DIF (one third and two thirds). We
discuss these two design factors jointly because these were
found to exert interactive effects on score quality, but only for
one method of scoring. For the proportion score, uncondi-
tional MNLFA, and fully specified MNLFA, neither magni-
tude of DIF, proportion of items with DIF, nor their interaction
was meaningfully related to score quality. That is, the mean
correlations between estimated scores and true scores were
nearly equal for these three scoring models across all combi-
nations of magnitude of DIF and proportion of items with
DIF, but this did not hold for the impact-only MNLFA.

More specifically, for the impact-only model, there was a
multiplicative interaction between magnitude of DIF and
proportion of items with DIF in the prediction of the
estimated and true factor correlations such that the larger
magnitude of DIF was associated with lower score quality,
and this was particularly pronounced with a larger propor-
tion of total items that were characterized by DIF. The
interesting aspect of this finding is that it was only evident
in one scoring model: the impact-only MNLFA. The reason
for this is clear. More specifically, the background charac-
teristics were included in this scoring model but the DIF
effects that truly existed in the population were not esti-
mated in the scoring model. Thus the scoring model was
properly specified in terms of impact but was substantially
misspecified in terms of DIF. As is well known, when using
full information estimators (as we did here), the inappropri-
ate omission of parameters can commonly propagate bias
throughout the entire system of equations (e.g., Bollen,
1996; Kumar & Dillon, 1987). Because the estimated effects
of the covariates on the latent factor mean and variance will
be biased due to the omitted effects of the same covariates
on the item loadings and intercepts, these biased coefficients
will in turn degrade score quality. This is precisely what
occurred here.

However, there is a more interesting issue at hand com-
pared to that of the predictable bias resulting from the
omission of structural covariate effects. Although the inter-
active influences of magnitude of DIF and proportion of
items with DIF were not evident in either of the scoring
models that excluded the covariates entirely (i.e., the pro-
portion score model and the unconditional MNLFA), the
degraded scores obtained from the misspecified impact-only
MNLFA still performed as well or better than the scores
obtained from the models that omitted the influences of the
covariates entirely. For example, holding sample size at 500,
number of items at 24, magnitude of impact at small, the
magnitude of DIF at large, and the proportion of items with
DIF at large, the estimated true-score correlation for the
proportion model was .85, for the unconditional MNLFA
was .87, for the (misspecified) impact-only MNLFA was
.88, and for the fully specified MNLFA was .92. These
results reflect that scores are at least as good, and sometimes
observably better, even when an incorrect scoring model is
used that includes the covariates compared to a scoring
model that does not include the covariates at all.

Relative Score Performance

It is also insightful to directly compare score recovery
within design characteristics across each of the four scoring
models. Several interesting patterns are clearly evident.
First, with few exceptions, the unweighted proportion of
endorsed items performed the worst of all other scoring
models. With six items and small impact effects, the propor-
tion scores and unconditional MNLFA performed equally
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(i.e., all correlations were within approximately .01).
However, across all other conditions and scoring models,
the proportion score was inferior. This was fully expected
given the nature of the population-generating model that
was defined by complex covariate effects and differential
relations between items and the latent factor. However, this
is further evidence that, when possible, the proportion (or
sum or mean) score should be avoided in practice.

Second, although the unconditional MNLFA scores out-
performed the proportion score across nearly all conditions,
these same scores were inferior compared to both the mis-
specified impact-only MNLFA and the properly specified
impact plus DIF MNLFA. Recall that the unconditional
MNLFA is analytically equivalent to the standard 2PL IRT
model, an approach to scoring that continues to be widely
used in practice. Across nearly every single cell of the
design, the correlations were modestly or markedly lower
in the unconditional MNLFA compared to the two other
MNLFA parameterizations. This is clear evidence that the
inclusion of background characteristics does result in
improved score recovery, at least under the conditions that
we studied here.

Finally, both versions of the MNLFA that included
covariate effects produced superior score estimates relative
to the two models that did not include the covariates at all.
As expected, the partially misspecified impact-only MNLFA
produced inferior scores to those of the properly specified
impact and DIF MNLFA across all cells of the design.
However, the improvements in score quality moving from
the impact-only to the impact plus DIF covariate effects
were surprisingly modest. In conditions in which there was
more limited information (e.g., six items at the smallest
magnitude of impact), the score correlations were virtually
equal between the two conditional MNLFA models.
However, even at the most highly determined conditions
(e.g., 24 items at the largest magnitude of impact), the
difference in score correlations was modest at best.
Differences in correlations were often .01 or less and at no
point exceeded a difference of .04. This is actually some-
what heartening news in that the largest improvement in
score quality results from the inclusion of meaningful cov-
ariates in the scoring model, and the proper specification of
these covariate effects is then of secondary importance.

Are the Improvements in Score Quality Due to the
Inclusion of Covariates Meaningful?

It is clear from our results that the inclusion of background
characteristics unambiguously improves the quality of the
resulting factor score estimates. The improvement in score
quality relative to scoring models that omit covariates is
consistent across all of the design factors in varying degrees
of magnitude. However, the inclusion of covariates led to
increases in some correlations with the true scores by .01 or
.02, many by .03 or .04, and a few by up to .06. A logical

question is whether these improvements are meaningful, the
answer to which is partly informed by thinking more closely
about the true score correlations. We have focused nearly all
of our discussion on the bivariate linear correlations between
each estimated score and the underlying true score. As is
widely known, these correlations primarily reflect the degree
of monotonic rank ordering in a paired set of observations.
Thus comparing a correlation of .82 between an estimated
proportion score and the true score with a correlation of .84
between an estimated MNLFA score and the same true score
primarily reflects similar ordering of observations in the score
estimates. This is a fundamental characteristic of score recov-
ery, but it also represents only one aspect of the scores.

Another important aspect is reflected in the accuracy of the
score value for a given individual, and this is best represented
by the RMSE. We did not present detailed results of the
RMSE because the patterns of findings from the GLMs in
terms of cell mean differences across the study design factors
were identical to those found with the correlations. However,
the cell means themselves reflect further information about
score quality (see online Appendix A3 for complete results).
Just as one example, for N = 500, 12 items, medium impact,
large DIF, and one third items with DIF, the unconditional,
impact only, and impact plus DIF MNLFA score correlations
were .85, .84, and .88, respectively. These differences are
modest at best. However, the associated RMSE values are
.53, .59, and .48, respectively. Because RMSE is a measure of
distance (i.e., the root of the averaged squared distance
between each estimated and true score), larger RMSE values
reflect less accuracy. Here we see that although there is only a
.04 difference in the true score correlations between the
impact-only and the impact-plus-DIF MNLFA models, the
associated RMSE is 23% larger for the former compared to
the latter. As such, scores obtained from the fully parameter-
ized MNLFA model are substantially more accurate with
respect to distance than are those from the impact-only
model. This additional metric of score recovery further high-
lights the clear improvement in score quality attributable to
the inclusion of background characteristics.

Limitations and Future Directions

As with any computer simulation, there are a multitude of
conditions that could have been included but were not. For
example, we could have considered more sample sizes,
more item sets, different parameter values, or different
endorsement rates; used ordinal items, alternative MNLFA
structures, or alternative methods of estimation; or induced
missing data, among countless other factors. However, it is
far less important to list the multitude of ways in which the
simulation could have been different and more important to
identify those specific factors that might serve to threaten
the internal or external validity of the study.

With that in mind, the key limitation of this study is that
we did not address the issue of model building. That is, we
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had often complex patterns of impact and DIF associated
with the set of covariates and, when impact and DIF effects
were included, these were always specified in accordance
with the effects that existed in the population. The use of
properly specified models, of course, did not hold across
scoring models. The proportion score and unconditional
MNLFA did not include covariates at all, and the impact-
only MNLFA omitted all of the truly existing DIF effects.
However, the mean and variance model were properly
defined in the impact-only MNLFA and the impact plus
DIF model was entirely properly specified. We did this
with full intent, of course. We wanted to first evaluate our
ability to recover true factor scores when the scoring model
corresponded to varying degrees to that of the population-
generating model. A very interesting yet separate question is
the extent to which we could begin with a set of covariates
and through some principled model building strategy
approximate the population model. Importantly, this issue
does not threaten the validity of our findings and inferences
that we offer here.

Second, a logical next step is to consider how estimated
scores perform when used in subsequent analyses. Rarely
are factor scores estimated that are not intended to be used
in some other form of model. They might be incorporated as
predictors, criteria, mediators, moderators, for selection pur-
poses, or to fill a myriad of other roles. Statistical theory
suggests that the performance of factor score estimates can
be different depending on how the estimates were obtained
and whether they take the role of predictor or criterion (e.g.,
Skrondal & Laake, 2001; Tucker, 1971). These differences
could be even further exacerbated by the inclusion of cov-
ariates in the scoring model that might or might not be
included in the subsequent predictive model. That is, omit-
ting covariates from the scoring model risks generating bias
when covariates and factors are used as joint predictors of
some outcome (Mislevy, 1991; Skrondal & Laake, 2001). It
will be important to carefully consider how factor score
estimates from models including covariates perform when
used in subsequent statistical models that might include the
same covariates.

CONCLUSION

In conclusion, our motivating question was whether the
inclusion of a set of correlated background characteristics
using the moderated nonlinear factor analysis model could
improve the quality of factor score estimates. Consistent
with expectations, the inclusion of covariates improved
score quality across nearly all factors under experimental
study. In some cases the improvements were modest but in
many others they were substantial. In no case did the inclu-
sion of covariates degrade score quality relative to not
considering the influences at all. We conclude that if back-
ground characteristics are available and are believed to exert

impact or DIF effects on the latent construct, these should
be included in the subsequent scoring model. Further
research is needed to better understand the complex process
of model building and how the resulting score estimates
perform when used in subsequent modeling applications.
We are currently extending the results presented here to
address this very question.
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