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A novel modeling framework for ordinal
data defined by collapsed counts
James S. McGinley,a*† Patrick J. Curranb and Donald Hedekerc

Adolescent alcohol use is a serious public health concern. Despite advances in the theoretical conceptualization
of pathways to alcohol use, researchers are limited by the statistical techniques currently available. Researchers
often fit linear models and restrictive categorical models (e.g., proportional odds models) to ordinal data with
many response categories defined by collapsed count data (0 drinking days, 1–2 days, 3–6 days, etc.). Conse-
quently, existing models ignore the underlying count process, resulting in disjoint between the construct of interest
and the models being fitted. Our proposed ordinal modeling approach overcomes this limitation by explicitly
linking ordinal responses to a suitable underlying count distribution. In doing so, researchers can use maximum
likelihood estimation to fit count models to ordinal data as if they had directly observed the underlying discrete
counts. The usefulness of our ordinal negative binomial and ordinal zero-inflated negative binomial models is ver-
ified by simulation studies. We also demonstrate our approach using real empirical data from the 2010 National
Survey of Drug Use and Health. Results show the benefit of the proposed ordinal modeling framework compared
with existing methods. Copyright © 2015 John Wiley & Sons, Ltd.
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1. Introduction

Substance use is one of the most commonly occurring health-risk behaviors during adolescence.
According to Monitoring the Future, in 2012, 30% of eight graders, 54% of 10th graders, and 69% of
12th graders reported drinking alcohol, and 19% of eight graders, 37% of 10th graders, and 49% of 12th
graders reported illicit drug use at least once in their life [1]. Adolescent drinking not only has a high
monetary cost to society but also causes morbidity, driving accidents, risky sexual behavior, and even
death [2, 3]. Research suggests that adolescent substance use has many significant long-term effects.
For example, adolescent substance use has been linked to mental health problems such as increased
internalizing symptomatology during adulthood [4]. Fortunately, tremendous advances have recently
been made in the theoretical conceptualization and empirical evaluation of pathways to substance use
during adolescence. Despite these recent gains, researchers are often limited by the statistical techniques
that are currently available to test specific research hypotheses.

Adolescent substance use research is largely focused on outcomes that are, by definition, discrete
counts. For example, researchers often focus on the quantity (number of drinks consumed) and fre-
quency (number of drinking occasions) of substance use as well as the level of impairment (number of
symptoms). There are several well-developed statistical methods for analyzing count data including the
Poisson, negative binomial (NB), hurdle, and zero-inflated models. However, for reasons such as the
need to reduce participant burden and limit error in cognitive recall, these outcomes are frequently mea-
sured using ordinal scales [5]. The ordinal scales applied in practice typically consist of 5–12 response
categories that represent collapsed discrete counts. For example, two large studies assessing adolescent
substance use, Monitoring the Future and Health and Behavior of School-Aged Children, inquire about
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the past 30-day alcohol use on ordinal scale (e.g., 1 = 0 occasion, 2 = 1–2 occasions, 3 = 3–5 occasions,
and 4 = 6–9 occasions) [6, 7]. Similar collapsing procedures are recommended by the National Institute
on Alcohol Abuse and Alcoholism and are thus widely used across many research applications [8].

Although assessing counts as binned ordinal responses appears advantageous from a measurement
perspective (e.g., ease of burden and improved recall), it introduces significant complexities in statistical
modeling. Researchers commonly fit linear models or proportional odds (PO) models to these ordinal
data, but these models often explicitly violate statistical assumptions such as normally distributed errors
and PO. Existing techniques also fail to account for the underlying count process, making substantive
interpretation of the model parameters unclear. For example, the PO model examines the effect of covari-
ates over the cumulative odds across response categories even though the counts (not the categories) are
of actual substantive interest. Similarly, standard linear models are fitted to ordinal category scores and
substantively interpreted as if they were the actual count construct of interest. However, these ordinal
scores have little substantive meaning because they are arbitrarily assigned numbers used to represent
ranges of collapsed counts. As a result, there is disjoint between the statistical models being used and the
theoretical constructs of interest, which impacts researchers’ ability to test theory in a reliable and valid
manner [9].

Furthermore, a defining feature of adolescent substance use data is excess zero values beyond what
would be expected by standard count distributions. These data may be conceptualized in the mixture
framework. For instance, the large proportion of zeros may be theorized as arising from two populations,
one group of non-drinkers who never drank alcohol and a second group of drinkers who did not drink
over the assessed time frame [10]. Again, models for zero inflation are well developed for count data,
but few methods have been proposed for ordinal data consisting of binned counts. The existing statisti-
cal methods for zero-inflated ordinal data such as the zero-inflated proportional odds (ZIPO) model do
not assume known cut-points but instead link the ordinal response to an underlying logistic distribution
through the threshold concept and ignore any possible underlying count distribution [11, 12]. Conse-
quently, these models assume the incorrect underlying distribution and lack parsimony because they
require the estimation of several intercepts.

For more than four decades, statisticians and economists alike have proposed methods for handling
grouped Poisson count data [13–16]. However, these techniques have not been analytically expressed
or empirically evaluated from an underlying latent response variable framework [17, 18]. As a result,
these models have not been integrated into a broader analytical framework, and this, in turn, has limited
dissemination and use in practice. Our goal here is to propose a general ordinal modeling framework
that explicitly links the ordinal responses to a suitable count distribution through the known cut-points;
these cut-points are known because they are the values that define the range of counts within each ordinal
response. This overcomes the limitations associated with existing techniques (e.g., violation of model
assumptions such as PO and normally distributed errors), and importantly, the proposed framework is
consistent with the true underlying count construct of substantive interest. We illustrate the framework
by describing and demonstrating ordinal negative binomial (ONB) and ordinal zero-inflated negative
binomial (OZINB) models for ordinal data with underlying counts. Furthermore, this framework logically
extends to other count distributions such as Poisson and alternative models that accommodate truncation,
heterogeneous dispersion, and zero inflation. Thus, the ordinal-count framework offers quantitative and
substantive advantages over existing methods so that researchers can test research hypotheses in ways
previously not possible.

We begin by introducing the ordinal-count framework with an emphasis on linking ordinal responses to
underlying NB and zero-inflated negative binomial (ZINB) distributions. We focus on these distributions
because they are consistent with adolescent substance use data compared with the more restricted count
distributions (e.g., Poisson and zero-inflated Poisson). Next, we describe a simulation study that assesses
the performance of our proposed ordinal-count models compared with NB and ZINB count models fit-
ted to the complete underlying count data. We then present an empirical example of our ordinal-count
modeling framework using the data from the 2010 National Survey on Drug Use and Health [19]. Finally,
we discuss the results and the unique contributions of the proposed ordinal-count modeling framework
for substantive research.

Copyright © 2015 John Wiley & Sons, Ltd. Statist. Med. 2015, 34 2312–2324
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2. Ordinal-count models

2.1. Ordinal negative binomial model

In substance use research, the goal is often to predict some underlying count outcome (e.g., quantity and
frequency of use or level of symptomatology) as a function of a set of covariates. However, researchers
often measure these count outcomes with ordinal measures that collapse discrete counts into a series of
response categories with known cut-points, which are defined by the ordinal response scale [20]. Under
these circumstances, we can assume that underlying the ordinal response is a discrete count distribution,
in this case, the NB distribution. The NB distribution is justified for adolescent substance use data because
the variance of the underlying count outcome is usually much larger than the mean. Next, we describe
the process of linking the ordinal responses to the underlying count distribution.

In order to model the ordinal response as a function of an underlying NB distribution, assume that
underlying the ordinal outcome, Yi for person i(i = 1,… , n), is an unobserved count latent variable, Y∗

i .
This unobserved count latent variable may follow any count distribution, but in this paper, we focus on the
NB distribution. The probability mass function (PMF) for the NB distribution in terms of Y∗

i conditional
on our covariates, xi, is

f
(
y∗i
)
= P

(
Y∗

i = y∗i |xi

)
=

Γ(y∗i + 𝛼−1)
Γ(𝛼−1)Γ(y∗i + 1)

(
𝛼𝜇I

)y∗i
(
1 + 𝛼𝜇i

)−(y∗i +𝛼−1)
, y∗i = 0, 1, 2, ... (1)

where E
(
Y∗

i

)
= 𝜇i, Var

(
Y∗

i

)
= 𝜇i + 𝛼𝜇2

i , and 𝛼 is the dispersion parameter. We can use the log function
to link our linear predictor to the mean of Y∗

i :

log
(
𝜇i

)
= x′i𝜷, (2)

where xi is a p × 1 vector of covariates (typically including ‘1’ as the first element for the intercept) and
𝜷 is a p × 1 vector of regression coefficients.

The cumulative distribution function (CDF) for the NB distribution is simply the sum of the PMFs
such that

F
(
y∗i
)
=

y∗i∑
v=0

f (v), (3)

where the cumulative probability is evaluated at y∗i .
The next step is linking the ordinal outcome, Yi, to the unobserved latent variable, Y∗

i . This is
accomplished by using the fixed and known cut-points defined by the ordinal measure such that

Yi = c if 𝜅c−1 < Y∗
i ⩽ 𝜅c, (4)

where 𝜅c is the count number that defines the upper bound of ordinal response category c(c = 1, 2,… ,M).
We can express the probability of observing a response in category c as the function of the cumulative
probabilities from the underlying Y∗

i distribution.

P(Yi = c|xi) = P
((
𝜅c−1 < Y∗

i ⩽ 𝜅c

) |xi

)
= F(𝜅c) − F(𝜅c−1). (5)

Here, F(𝜅c) and F(𝜅c−1) designate the CDFs evaluated at the known upper count numbers for categories
c and c-1 for a distribution with a mean of 𝜇i and dispersion of 𝛼. Finally, letting (yi1,… , yic) represent
the binary reference codes indicative of the response for subject i (e.g., yic = 1 if Yi = c and 0 otherwise),
we can express the likelihood function for the ordinal data following an underlying count distribution as

LONB =
n∏

i=1

[
M∏

c=1

[
F
(
𝜅c

)
− F

(
𝜅c−1

)]yic

]
. (6)

With slight modification, we can also adjust for truncation or use another count distribution such as the
Poisson distribution. These are direct extensions, so we do not detail them further here (see Hilbe [21],
for examples of potential counts models).
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Our proposed approach differs substantially from the current best practice of the PO model because
we explicitly link the ordinal responses to the underlying NB CDF as opposed to the logistic CDF. Addi-
tionally, our proposed ONB model examines the effect of covariates as if we were directly modeling the
latent count responses, whereas the PO model examines the effect of covariates over the cumulative odds
across response categories.

2.2. Ordinal zero-inflated negative binomial model

In many research settings where count data are collected, such as adolescent substance use, we observe
excess zeros relative to the NB distribution. Researchers frequently address zero inflation using the ZINB
model. The ZINB model assumes a mixture distribution that generates one binary outcome (modeled
through logistic regression) and one count outcome (modeled through count regression). Consequently,
the observed zeros arise from two unique sources. First, zeros arise because individuals are not at risk
for a given outcome. Second, zeros arise because individuals who are at risk do not experience the out-
come over the assessment period. For example, adolescents may report no drinking over the past 30 days
because (1) they are non-drinkers or (2) they are drinkers, but they did not drink in the past 30 days. These
zero-inflated models may be of both quantitative and substantive interests to researchers with ordinal
data with underlying counts. Assuming the ordinal data have a zero response category, we can readily
incorporate zero-inflated models into our ordinal modeling framework.

Lambert [22] formally proposed the zero-inflated Poisson model for count data, which logically
extends to the ZINB [23]. Like the ONB, we can map these well-developed count models onto the ordinal
data through Y∗

i . For example, consistent with Lambert’s [22] count modeling framework,

Y∗
i ∼ 0 with probability 𝜋i,

Y∗
i ∼ f

(
y∗i
)

with probability
(
1 − 𝜋i

)
,

(7)

where f
(
y∗i
)
, again, denotes the PMF for the NB distribution. The PMF can be expressed as

P
(
Y∗

i = 0
)
= 𝜋i +

(
1 − 𝜋i

)
f (0)

P
(
Y∗

i = y∗i
)
=
(
1 − 𝜋i

)
f
(
y∗i
)
, y∗i = 1, 2, ...,

(8)

where f (0) is simply the probability that Y∗
i = 0 based on the NB distribution. We can model the binary

zero process through a logistic model,

logit
(
𝜋i

)
= w′

i𝜸, (9)

where wi is a q×1 vector of covariates (typically including ‘1’ as the first element for the intercept) and 𝜸

is a q×1 vector of regression coefficients. The count process is modeled as in Equation (2). The covariates
for the count and zero processes do not need to be the same, as shown through the unique vectors xi and
wi. The procedure for linking the ordinal outcome, Yi, to the unobserved latent variable, Y∗

i , is precisely
the same as in Equations (4) and (5). Letting (yi1,… , yic), again, represent the binary reference codes
indicative of the response for subject i (yic = 1 if Yi = c and 0 otherwise), we can express the likelihood
function for zero-inflated ordinal models as

LOZINB =
n∏

i=1

[
M∏

c=1

[(
1 − 𝜋i

)(
F
(
𝜅c) − F(𝜅c−1

))
+ I(Yi = 1)𝜋i

]yic

]
, (10)

where I(Yi = 1) is an indicator function that equals one when Yi = 1 (e.g., when the first response category
representing zero is selected) and zero otherwise. The OZINB is similar to fitting the zero-inflated model
as if we had the true underlying counts. Alternative approaches to modeling zero-inflated ordinal data
such as the ZIPO model do not account for this underlying count process.

We have defined a novel modeling framework for ordinal data consisting of underlying counts with
specific emphasis on NB and ZINB models. Now, we turn to estimation.

2.3. Estimation

The proposed ordinal-count models can be fitted using standard maximum likelihood estimation through
optimizing the respective log-likelihood functions corresponding to Equations (6) and (10). We provide
code in our online appendix to fit these models using PROC NLMIXED both in SAS and in R [24, 25].

Copyright © 2015 John Wiley & Sons, Ltd. Statist. Med. 2015, 34 2312–2324
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3. Simulation study

We conducted a simulation study using SAS 9.3 to evaluate the proposed ONB and OZINB models under
known population conditions. We generated count data from an NB distribution and a ZINB distribution.
We created ordinal data by collapsing the counts into ordinal responses corresponding to 5 pt (0 = ‘0’, 1
= ‘1–4’, 2 = ‘5–10’, 3 = ‘11–20’, 4 = ‘21+’); 7 pt (0 = ‘0’, 1 = ‘1–2’, 2 = ‘3–5’, 3 = ‘6–9’, 4 = ‘10–19’,
5 = ‘20–39’, 6 = ‘40+’); and 10 pt (0 = ‘0’, 1 = ‘1’, 2 = ‘2–3’, 3 = ‘4–5’, 4 = ‘6–9’, 5 = ‘10–15’, 6 =
‘16–22’, 7 = ‘23–29’, 8 = ‘30–39’, 9 = ‘40+’) scales consistent with those observed in practice [5–8].
We fitted NB and ZINB models to the open-ended count data, while the proposed ONB and OZINB
models were fitted to ordinal data defined by collapsed counts. We examined sample sizes of 250, 500,
and 1000. For both the NB and ZINB distributions, we completed 1000 replications at each sample size.
We included two standard normal continuous covariates x1i and x2i with a correlation of 0.3. We used
raw bias, standardized bias, root mean square error, and 95% CI coverage probabilities to evaluate model
performance over the replications.‡ We also compared the proposed ordinal-count models with existing
models including the PO, linear, and ZIPO models by examining empirical power and relative efficiency.

We defined empirical power as the proportion of statistically significant effects using an alpha level of
0.05. Relative efficiency was computed as the ratio of the efficiencies for predictions from the existing
models compared with the proposed ordinal-count models (e.g., EFFPO

EFFONB
, EFFLin

EFFONB
). Hence, if the relative effi-

ciency was greater than 1, the proposed models were more efficient than the existing models. Efficiency
was computed as

∑
i

(
Ŷi − 𝜇i

)2
for each of the converged replications. Here, 𝜇i denotes the E

[
Yi|xi

]
based

on the true population-generating model. In the linear model, Ŷi was the predicted value of the ordinal-
count outcome scored as category numbers (0, 1, 2, etc.). For the ordinal models, Ŷi was

∑
c Yicp̂ic, where

p̂ic was the predicted probability of person i being in category c. To retain focus, we present a subset of
the simulation results. The complete results are available in our online supplemental appendix at http://
www.unc.edu/~curran/manuscripts.htm

Model convergence rates for the NB, ONB, and linear models were high (e.g., 99.6% or higher across
all models and conditions). The convergence rates for the PO model were high with five response cate-
gories across all sample sizes (99.6% or higher). The PO model convergence rates were also respectable
with 7 and 10 response categories when sample size was greater than or equal to 500 (95.5% or higher).
However, convergence rates were lower for the PO model when N = 250, and there were 7 or 10 response
categories (7 pt: 83.8%; 10 pt: 72.8%).

Table I displays the parameter recovery results for the NB simulation with the open-ended counts and
7-pt response scale. The simulation results showed that the ONB and NB models both recovered the
assigned parameter values adequately across all three sample sizes as indicated by the small biases and
root mean square errors and close 95% coverage rates. Importantly, aside from slightly larger standard
errors for the ONB model, the performance of the proposed ONB was virtually the same as the correct
population count NB model. These findings also generalized to the 5-pt and 10-pt response scales such
that the greater the number of response categories, the smaller the standard errors. This suggested that
our proposed ONB model fitted to the collapsed counts was functionally identical to the standard NB
model fitted directly to the counts themselves.

Table II displays the empirical power results from the NB simulation. The proposed ONB model
had very similar levels of empirical power compared with the NB model fitted to the open-ended
counts. Empirical power for ONB model also increased with more response categories. The ONB had
systematically higher empirical power rates than both the standard linear model and the PO model.
Results also showed that the ONB was more efficient than the PO and linear models across all condi-
tions. For example, in the 10-pt response scale, relative efficiencies for the PO model versus the ONB
model ranged from 1.12 to 1.18, and the relative efficiencies for the linear model versus the ONB model
ranged from 1.11 to 1.15 across the sample size conditions. Taken together, the ONB model displayed
clear benefits over existing models for ordinal-count data.

The model convergence rates were acceptable for the ZINB and OZINB models and improved with
increased response categories and subjects (ZINB: 93.2–99.1% and OZINB 5 pt: 90.7–98.9%, 7 pt: 92.3–
99.1%, and 10 pt: 92.6–99.4%). In contrast, the ZIPO model often did not converge to a proper solution
(5 pt: 48.8–57.5%, 7 pt: 21.6–49.8%, and 10 pt: 10.8–51.5%). Because of this instability in estimation,

‡For reference, standard bias of +∕−40% can negatively impact efficiency, coverage, and error rates [26].
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Table II. Empirical power from the simulation with the negative binomial model fitted
to open-ended counts and the ordinal negative binomial, proportional odds, and linear
models fitted to ordinal data.

NB ONB PO Linear

Count 5 pt 7 pt 10 pt 5 pt 7 pt 10 pt 5 pt 7 pt 10 pt

N = 250

𝛽0 (intercept) 1.00 1.00 1.00 1.00 — — — 1.00 1.00 1.00
𝛽1(x1i) 0.30 0.28 0.28 0.29 0.19 0.21 0.21 0.25 0.26 0.26
𝛽2(x2i) 0.19 0.17 0.18 0.19 0.13 0.13 0.13 0.17 0.16 0.17

N = 500

𝛽0 (intercept) 1.00 1.00 1.00 1.00 — — — 1.00 1.00 1.00
𝛽1(x1i) 0.52 0.49 0.51 0.52 0.30 0.30 0.31 0.42 0.41 0.46
𝛽2(x2i) 0.34 0.30 0.33 0.33 0.20 0.20 0.20 0.28 0.27 0.29

N = 1000

𝛽0 (intercept) 1.00 1.00 1.00 1.00 — — — 1.00 1.00 1.00
𝛽1(x1i) 0.82 0.78 0.81 0.81 0.52 0.52 0.53 0.71 0.71 0.73
𝛽2(x2i) 0.58 0.55 0.56 0.57 0.36 0.35 0.36 0.49 0.49 0.50

NB, negative binomial; ONB, ordinal negative binomial; PO, proportional odds.

Values represent the proportion of significant effects using an alpha of 0.05.

we do not present the results from the ZIPO model. These results can be found in the supplemental
online appendix.

Table III displays the parameter recovery results for the ZINB simulations for open-ended counts and
the 7-pt response scale. Results showed that the proposed OZINB and population-generating ZINB mod-
els performed similarly across the three sample sizes with the exception of slightly larger standard errors
for the OZINB model compared with the ZINB model. As expected, both models performed better as the
sample size increased. At the smallest sample size of N = 250, the parameters from the logistic portion
of the model (𝛾0, 𝛾1, 𝛾2) showed elevated bias and larger standard errors, and the 95% coverage on the
logistic intercept (𝛾0), the count intercept (𝛽0), and the dispersion parameter (𝛼) was low. At the largest
sample size N = 1000, the standardized bias for the parameters from the logistic portion of the model
was slightly high, and the 95% coverage on the logistic intercept (𝛾0), the count intercept (𝛽0), and the
dispersion parameter (𝛼) was still lower than expected. Although not shown in this table, as the number
of response categories increased (e.g., 5-pt response scale versus 10-pt response scale), OZINB model
performance improved, and results paralleled those from the ZINB fitted to the open-ended counts.

The OZINB model was characterized by empirical power rates that were generally smaller than the
ZINB model fitted to the open-ended counts (Simulation Appendix Table V). However, these differences
were negligible when the ordinal data had a large number of response categories. In sum, the simulation
results suggested that the OZINB model can accurately recover an underlying zero-inflated count process
even when the data are collected as ordered categories.

4. Adolescent substance use example

We next demonstrate the utility of the proposed models using real empirical data. We used data assessing
the frequency of alcohol use over the past 30 days from the 2010 National Survey on Drug Use and
Health [19]. The alcohol frequency data were open-ended counts ranging between 0 and 30 days, but
we created ordinal responses by collapsing the counts into six response categories consistent with those
collected in practice (0 = ‘0 day’, 1 = ‘1–2 days’, 2 = ‘3–5 days’, 3 = ‘6–9 days’, 4 = ‘10–19 days’, and
5 = ‘20–30 days’). This analytic strategy is advantageous over simply demonstrating the ordinal-count
models on existing ordinal data because we could directly compare the parameter estimates produced
from the ONB and OZINB models fitted to the ordinal data with the NB and ZINB models fitted to
the open-ended counts. We are thus able to clearly assess the extent to which our method recovers the
underlying count process. For comparison, we also fitted the linear, PO, and ZIPO models to the ordinal
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Figure 1. Open-ended alcohol frequency counts stratified by age.

data. However, parameter estimates from these models cannot be directly compared with the ordinal-
count models because they function on fundamentally different metrics.

The National Survey on Drug Use and Health is a nationwide survey that aims to monitor trends,
consequences, levels, and patterns of substance use and abuse. The subsamples used for our analyses
consisted of 14,051 adolescents ranging in age from 13 to 17 years with a mean (sd) age of 15.07(1.41) and
were 51% males and 38% minority (minority being defined as non-White). The outcome of interest was
the frequency of alcohol use over the past 30 days. Figure 1 shows the distribution of open-ended count
stratified by age, which suggests that zero inflation is a valid concern. Additional covariates included in
our analyses were a binary lifetime major depressive episode (MDE) indicator (coded 0= no lifetime
MDE, 1= lifetime MDE) and a composite peer substance use variable consisting of the mean of four
items asking about how many fellow students use substances (0= ‘None of them’ to 3= ‘All of them’).
Age was centered at 13 years old for all analyses (e.g., age13= age-13).

Our analytic goal was to test the unique effect of depression on the frequency of alcohol use above
and beyond the influence peer use. First, we used single process models (e.g., NB, ONB, PO, and linear
models) to test whether lifetime MDE predicts increased drinking frequency. Second, we used dual pro-
cess models (e.g., ZINB, OZINB, and ZIPO models) to test the effect of depression on the probability
of being a non-drinker and, for adolescent drinkers, the effect of depression on the frequency of alcohol
use. We used the existing count NB and ZINB models fitted to the open-ended counts as the ‘gold stan-
dard’ and compared the results with those obtained from the proposed ordinal-count models and other
commonly used models.

Table IV shows the results for the NB model fitted to the alcohol frequency counts and the ONB, PO,
and linear models fitted to the six category ordinal data. The ONB, PO, and linear models led to similar
substantive findings compared with the results from the NB model. In all models, the results indicated
that increased age predicted more frequent drinking, that men drank more frequently than women, and
that minorities drank less frequently than whites (p < 0.001 for all effects). As expected, having peers
that use substances predicted significantly greater frequency of alcohol use. Above and beyond the influ-
ence of demographic characteristics and peer use, lifetime MDE predicted increased the frequency of
alcohol use.

It is important to recognize that the parameter estimates from the proposed ONB were highly similar
to those obtained fitting the NB model to open-ended counts, which is precisely the objective of the ONB
model. In fact, all parameter estimates from the ONB were within the 95% CIs corresponding to the
parameter estimates from the estimates produced by the count NB model. This further suggests that our
proposed ONB is potentially highly useful for understanding the underlying count process when only
binned categories are observed.

As for the PO model, the score test did indicate a possible violation of the PO assumption; 𝜒2(20) =
38.58, p = 0.008. We recognize that the score statistic can be overly influenced by the large sample size,
but it suggested that less parsimonious non-PO (or partial proportional) models may be needed. Either
of these ordinal models would make substantive interpretations much more difficult because the effect of
one or more covariates would vary across the cumulative logits. It was also interesting that the standard
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Table IV. Results for the negative binomial model fitted to the alcohol frequency counts
and the ordinal negative binomial, proportional odds, and linear models fitted to the ordinal
data drawn from the National Survey on Drug Use and Health.

Count
Ordinal

NB Proposed ONB PO Linear
Est(SE) Est(SE) Est(SE) Est(SE)

𝛽0 ∶ (intercept) −3.20(0.09) −3.36(0.09) — −0.16(0.02)
𝛽1 ∶ (age13) 0.37(0.02) 0.39(0.02) 0.33(0.02) 0.07(0.01)
𝛽2 ∶ (male) 0.18(0.06) 0.20(0.06) 0.21(0.05) 0.05(0.01)
𝛽3 ∶ (minority) −0.27(0.06) −0.25(0.06) −0.31(0.05) −0.07(0.01)
𝛽4 ∶ (peer use) 1.29(0.05) 1.36(0.06) 1.20(0.05) 0.27(0.01)
𝛽5 ∶ (MDE) 0.40(0.08) 0.43(0.08) 0.39(0.06) 0.11(0.02)
𝛼 ∶ (dispersion) 8.53(0.25) 8.60(0.21) — —
𝜎2 — — — 0.59(0.01)
𝜏1 ∶ intercept 1 — — −4.04(0.09) —
𝜏2 ∶ intercept 2 — — −4.89(0.09) —
𝜏3 ∶ intercept 3 — — −5.93(0.10) —
𝜏4 ∶ intercept 4 — — −6.60(0.11) —
𝜏5 ∶ intercept 5 — — −8.09(0.16) —

NB, negative binomial; ONB, ordinal negative binomial; PO, proportional odds; age13 is age cen-
tered at 13 years old (e.g., age-13). The parameter estimates from the PO and linear models are not
directly comparable with those from the NB and ONB models because they operate in different
metrics. MDE, major depressive episode.

linear model fitted to the ordinal data produced predictions that fell outside of the range of the observed
data. More specifically, the intercept, which represents the predicted value for non-depressed 13-year-old
White girls that reported no peer substance use, was negative (e.g., −0.16). This prediction was not valid
because the ordinal data response categories were scored as integers from 0 to 5.

Although the significance tests (e.g., p < .05) are similar between the ONB, PO, and linear models, it
is important to highlight the interpretational differences. Consider the point estimates for the depression
effect, which is 0.43 for the ONB model, 0.39 for the PO model, and 0.11 for the linear model. In the
proposed ONB model, the results can be interpreted in several ways. For instance, an interpretation con-
sistent with standard linear models is, controlling for all other covariates, the log of the expected number
of drinking days is 0.43 units larger for individuals with an MDE compared with individuals without an
MDE. Another useful interpretation for the ONB model involves incidence rate ratios. For example, con-
trolling for the other covariates, adolescents having an MDE increase their expected number of drinking
occasions in the past 30 days by over 50% (e.g., e.43 = 1.54).

Conversely, the interpretation of the PO model is in terms of cumulative logits, or log odds. Thus,
the interpretation is that, controlling for the other covariates, the expected log odds of falling into a
higher response category for individuals with an MDE are 0.39 units greater than those for individu-
als without an MDE. The standard linear model’s interpretation is more opaque because the dependent
alcohol frequency variable represents the category numbers from the ordinal response variable ranging
from 0 to 5. The resulting interpretation is that the expected value of alcohol frequency is 0.11 units
greater for individuals with an MDE compared with individuals without an MDE. Clearly, the ONB, PO,
and standard linear models differ substantially in how they treat the substantive construct of interest for
hypothesis testing.

Table V shows the results for the ZINB model fitted to alcohol frequency counts and the proposed
OZINB and ZIPO models fitted to the ordinal data. We found that our proposed OZINB model produced
similar substantive results to those obtained fitting a ZINB model to the open-ended counts, but the ZIPO
model results were substantially different. For the ZINB and the OZINB, age, peer substance use, and
depression status significantly predicted the decreases in the log odds of being a non-drinker, whereas the
ZIPO produced no significant covariate effects. Furthermore, the parameter estimates from the logistic
portion of the model were similar between OZINB and ZINB models, whereas the estimates from the
ZIPO were markedly discrepant. The substantive findings from the second portion of the model were
similar across all three models. Results indicated that older individuals, men, Whites, and individuals with
greater reported peer substance use had significantly greater frequency of alcohol use among drinkers.

Copyright © 2015 John Wiley & Sons, Ltd. Statist. Med. 2015, 34 2312–2324
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Table V. Results for the zero-inflated negative binomial model fitted to
alcohol frequency counts and the ordinal zero-inflated negative bino-
mial and zero-inflated proportional odds models fitted to the ordinal data
drawn from the National Survey on Drug Use and Health.

Ordinal

ZINB OZINB ZIPO
Est(SE) Est(SE) Est(SE)

𝛽0 ∶ (intercept) −0.22(0.15) −0.56(0.16) —
𝛽1 ∶ (age13) 0.08(0.03) 0.09(0.03) 0.29(0.08)
𝛽2 ∶ (male) 0.20(0.06) 0.23(0.06) 0.31(0.07)
𝛽3 ∶ (minority) −0.24(0.06) −0.25(0.06) −0.36(0.07)
𝛽4 ∶ (peer use) 0.44(0.06) 0.49(0.07) 1.52(0.23)
𝛽5 ∶ (MDE) 0.09(0.08) 0.12(0.08) 0.27(0.17)
𝛼 ∶ (dispersion) 2.65(0.33) 3.78(0.36) —
𝛾0 ∶ (Inf intercept) 3.40(0.13) 3.37(0.15) 0.72(1.16)
𝛾1 ∶ (Inf age13) −0.40(0.03) −0.44(0.04) −0.17(0.10)
𝛾2 ∶ (Inf peer use) −1.39(0.11) −1.60(0.13) −0.13(0.41)
𝛾3 ∶ (Inf MDE) −0.53(0.12) −0.65(0.15) −0.32(0.19)
𝜏1 ∶ intercept 1 — — −3.29(0.78)
𝜏2 ∶ intercept 2 — — −4.40(0.70)
𝜏3 ∶ intercept 3 — — −5.56(0.68)
𝜏4 ∶ intercept 4 — — −6.27(0.67)
𝜏5 ∶ intercept 5 — — −7.80(0.68)

ZINB, zero-inflated negative binomial; OZINB, ordinal zero-inflated negative
binomial; age13 is age centered at 13 years old (e.g., age-13). The parameter
estimates from the ZIPO model are not directly comparable with those from the
ZINB and OZINB models because they operate in different metrics. MDE, major
depressive episode.

However, unlike our single process models (NB, ONB, PO, and linear), depression did not significantly
predict increased frequency of alcohol use. Thus, the proposed OZINB permitted a more rigorous evalu-
ation of the subtle relationship between depression and substance use, which is highly debated in applied
research [27–30]. Similar to the NB and ONB models, the parameter estimates between the ZINB and
OZINB were quite close. The only OZINB parameter estimates that did not fall in the 95% CIs for the
corresponding ZINB parameter estimates were the dispersion parameter (𝛼) and the intercept parameter
from the count process (𝛽0). In sum, the proposed OZINB model recovered the underlying count process
in a manner that is impossible using the existing ZIPO model.

5. Discussion

We have introduced a novel modeling framework for ordinal data that represent ranges of underlying
counts. We demonstrated how ordinal responses can be explicitly linked to an underlying count construct
of substantive interest through cumulative probabilities. We believe that this ordinal-count modeling
framework offers both quantitative and substantive advantages over currently available methods. While
standard models often violate assumptions and lack clear substantive interpretations, the ordinal mod-
eling framework that we have outlined overcomes many of these statistical limitations and offers rich
substantive interpretations.

In our simulations, the ONB and OZINB models performed similarly to their count model counter-
parts across conditions. This indicated that, assuming the underlying construct of interest truly follows
a count distribution (e.g., NB), our proposed ordinal-count models perform well. The simulations also
indicated that the proposed ordinal-count models outperformed existing models with regard to the rate
of model convergence, empirical power, and relative efficiency. These findings were further buttressed
by the comparable performance of the proposed ordinal-count models and the standard count models
in the empirical adolescent alcohol use example. Importantly, the proposed OZINB model was able to
obtain similar parameter estimates and substantive conclusions compared with the count ZINB, while
this was not the case for the ZIPO model. These discrepant results were important because they illustrated
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that the ZIPO model can result in different patterns of effects compared with the ZINB and OZINB
models. From substantive standpoint, the OZINB model is also more consistent with the actual con-
struct of interest (e.g., number of drinking days) than the ZIPO model. Taken together, the simulation
and empirical analysis demonstrated that ordinal-count models offer utility above and beyond existing
ordinal modeling techniques if the true construct of interest is a count, not ordinal response categories.

Limitations and future directions

Our work here considered two potential ordinal-count model applications. We focused on ONB and
OZINB models because they aligned with our substantive goal of assessing adolescent alcohol use. How-
ever, there is a host of other possible models that we did not consider including Poisson models, NB
models with heterogeneous dispersion, Poisson and NB Hurdle models, and more (see Hilbe [21], for
a review of potential count models). One limitation of our ordinal-count modeling framework is that
it assumes that the cut-points are fixed and known. If these cut-points are not known, our modeling
strategy cannot be implemented. Furthermore, ordinal-count models face limitations similar to their stan-
dard count model counterparts. For instance, if the count distribution is misspecified, the accuracy of
results will be impacted and more complicated models such as models for zero inflation require relatively
large sample sizes.

We also did not consider the impact of measurement error and unreliability in participant recall, which
likely arises in practice. Indeed, these are important issues to address in future research. Although it does
not undermine the findings of the current study, future research should also investigate the performance
of a wider array of ordinal-count models under various conditions (e.g., missing data, different cut-point
selections, misspecification of the latent response variable distribution, and alternative generating dis-
tributions), develop goodness-of-fit tests, and extend the models in meaningful ways (e.g., inclusion of
random effects). Despite these potential limitations, we believe that our ordinal-count framework offers
researchers quantitative and substantive advantages compared with existing techniques that can progress
substance use research in meaningful ways.
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