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Computational Toolsfor Probing Interactions
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and Latent CurveAnalysis
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Simple slopes, regions of significance, and confidence bands are commonly used
to evaluate interactionsin multiple linear regression (MLR) models, and the use of
these techniques has recently been extended to multilevel or hierarchical linear
modeling (HLM) and latent curve analysis (LCA). However, conducting these
testsand plotting the conditional relationsisoften atediousand error-pronetask.
Thisarticle providesan overview of methods used to probeinteraction effectsand
describesa unified collection of freely available online resour cesthat researchers
can useto obtain significancetestsfor simple s opes, computeregionsof significance,
and obtain confidence bands for simple slopes across the range of the moderator
inthe MLR, HLM, and LCA contexts. Plotting capabilities are also provided.

Keywords: interaction, Johnson—Neyman technique, latent curve analysis, multilevel mod-
eling, multiple regression

Hypothesesinvolving multiplicative interaction or moderation effects are com-
mon inthe social sciences. Interaction effectsaretypically evaluated by testing the
significance of amultiplicative term consisting of the product between two or more
predictor variables controlling for associated lower order main effects (e.g., Cohen,
1978). When a significant interaction isfound, it is common to further decompose
or “probe’ this conditional effect to better understand the structure of the relation
(e.g., Aiken & West, 1991).

Although interactions arise in many seemingly disparate analytic frameworks,
interactions within these frameworks share a common computational form. In
a series of articles, we have explored these computational linkages within three
major analytic frameworks: the multiple linear regression (MLR) model (Bauer &
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of the Carolina Structural Equation Modeling Group for their valuable input. The online resources
described in thisarticle for computing simple slopes and regions of significance are available online at:
http://www.quantpsy.org/.
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Curran, 2005), the random effects multilevel / hierarchical linear model (HLM;
Bauer & Curran, 2005; Curran, Bauer, & Willoughby, 2006), and the structural
equation-based latent curve analysis (LCA) model (Curran, Bauer, & Willoughby,
2004). Inthese articleswe also describe avariety of specific teststhat we believe are
helpful in the probing of complex interaction terms in MLR, HLM, and LCA.
Although we view these tests as potentially powerful and widely applicable, many
of therequired valuesare computed by hand and these cal cul ations can be quite cum-
bersome and consequently error-prone. The complexity of many of these tests also
may substantially reduce the likelihood that these methods will be used in practice.

Our goal hereisto integrate across our three prior articles and capitalize on the
shared computational linkagesin testing interactionsin order to develop aset of freely
available onlinetoolsthat automate the testing and plotting of these complex effects.
We begin by presenting a single shared notational system to define the general
estimation of two-way interactions. Thisgeneral expression can equivalently define
higher order interactions stemming from MLR, HLM, and LCA. Webriefly review
some methods available for the further probing and plotting of these effects. We
present online calculators designed to be easily accessible and to automate the
calculation of avariety of testsfor probing interactionsdescribed in Bauer and Curran
(inpress) and Curran et al. (2004, in press). Finally, we demonstrate our calculators
by probing an interaction in MLR.

I nteractions

Aninteractionimpliesthat the magnitude of the relation between one predictor and
thecriterion variesasafunction of at least one other predictor. It isoften convenient
to think of one predictor as afocal predictor and al other predictorsinvolvedin
product terms with the focal predictor as moderators hypothesized to affect the
relationship between the focal predictor and the criterion (although this distinction
isarbitrary given the symmetry of theinteraction). For simplicity, wewill focus
primarily on the case where there is a single moderator of interest. We denote the
criterion y, the focal predictor X, and the moderator z. A general expression for a
regression equation involving amultiplicative interaction effect is:

Yi =Yo T V1% Y24 +73%% &, @

where the ys represent path coefficients or regression weights and x and z are
typically centered about their respective means. The prediction equation is defined
as the expected value of y conditioned on specific values for x and z

E[y[(x2)] = Yo+ Tx+ T22+ V92 @

where the carat symbol (") represents the sample estimate of the corresponding
parameter. The test of the coefficient y, in Equation 2 is an omnibus test of the
interaction effect (Aiken & West, 1991; Saunders, 1956).
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Smple Intercepts and Smple Sopes

Equation 2 can be rearranged in terms of asimple intercept and simple slope,
asfollows:

E[Y|(sz)]=(?o +?2Z)+(?1+?3Z)X- ()

This highlights the fact that the ssimple intercept (first bracketed term) and ssimple
slope (second bracketed term) for the regression of y on x vary as afunction of z
(Aiken & West, 1991). The simple intercept and simple slope are compound
coefficients that can be compactly expressed as:

Wy =Yy + 7,2

R @)
W; =Y+ Y32

Because @, and @, are linear combinations of parameters and specific values of z,

it is useful to evaluate how the estimates change as the value of the moderator

changes—atopic we now review.

Probing Interactionsin MLR, HLM, and LCA

Two approaches have been outlined in the literature for evaluating the form of
interactive effects: the simple slopestechnique and the Johnson—Neyman technique.

Smple Sopes Technique

Thetraditional approach to probing significant interaction effectsisto choose sev-
era conditional values of zat which to evaluate the significance of the simple slope
for the regression of y on x (Aiken & West, 1991; Rogosa, 1980, 1981). The sig-
nificance of simpleinterceptsisrarely of interest, and thusisnot covered here. For
any conditional value of the moderator(s), the significance of ®, may be found by
first deriving the variance of the simple slope. For example, the calculation of the
variance of @, in Equation 4 isasimple function of the variances and covariances
of the parameter estimates:

var(@, | z) = var(¥,)+ 2zcov(¥,,¥,) + 2 var (¥), (5)

wherevar(+) and cov() are the corresponding elements from the sampl e estimate of
the asymptotic covariance (ACOV) matrix. The standard error of @,, SE;, issimply
the square root of this quantity. Finally, we can form the critical ratio to perform a
significance test for the difference between @, and zero:

: (6)
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the significance of which is determined by comparing the obtained t to at distri-
bution at the desired o, level and degrees of freedom (df) = N— p— 1, where N is
the sample size and p is the number of predictors.

In order to employ the simple slopes method described above, conditional values
of the moderator, denoted cv,, must be chosen (what Rogosa, 1980, refersto asthe
“pick-a-point” approach). For dichotomous moderators, cv, assumes values of the
dichotomy (usually 0 and 1). For continuous moderators, the specific choices for
cv, are less obvious and may be any value of scientific interest. In the absence of
theoretically meaningful values, Cohen and Cohen (1983) recommend choosing
values at the mean of zand at 1 SD above and below the mean of z.

The Johnson—Neyman Technique

Despiteits broad useful ness, the simple slopes method hasan important limitation:
the choicesof cv, are ultimately arbitrary. An alternativeisthe Johnson—-Neyman
(J-N) technique (Johnson & Neyman, 1936). The J-N technique essentially works
backwards from the critical ratio defined in Equation 6. Instead of calculating t
as afunction of @, and SE;, and a chosen value cv,, the J-N technique calcu-
latesthe cv, that yields aspecifict (usually the critical t valueto obtain ap value
of .05 at agivendf). The conditional valuesthat arereturned by the J-N technique
define the regions of significance on z, and represent the range of zwithin which
the simple slope of y on x is significantly different from zero at the chosen o..
Assuming solutions exist, the result will be two values: upper and lower bound-
aries of theregion of significance. In many cases, theregression of y on thefocal
predictor is significant at values of the moderator that are less than the lower
bound and greater than the upper bound, while the regression is nonsignificant
at values of the moderator falling within the region. However, there are some
casesin which the opposite holds (i.e., the significant slopesfall within theregion
boundaries).

Confidence Bands

Both the ssmple slopes and J-N techniques rely on traditional null hypothesis
testing logic. It iswell known that confidence intervals (Cls) provide more infor-
mation than hypothesistests, and methodol ogistsincreasingly recommend the use
of Clsinaddition to, or in place of, hypothesistests whenever possible (Wilkinson
& APA Task Force, 1999). The general formulafor a100 x (1 — )% Cl for asimple
slope (Cohen, Cohen, West, & Aiken, 2003) is:

Cl,, = o, +1,,SE;, - (7

:

Because the formulafor SE;, relies on particular choices for z, Cl; variesas a
function of the moderator. When Cl; is plotted across all relevant values of z, the
resultisapair of confidence bands (Bauer & Curran, in press, Rogosa, 1980, 1981;
Tate, 2004).
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Interactionsin HLM

The same methods used to represent interactions in MLR in terms of simple
intercepts and simple slopes (i.e., Equation 4) can also be used to represent inter-
actionsin HLM and LCA.. In each modeling context, the dependency of the crite-
rion on the focal predictor can be represented as a function of the moderator(s) by
defining two compound coefficients, ®, and ®,.

In HLM with two predictors, interactions may occur between two Level 1
predictors (Case 1), between two Level 2 predictors (Case 2), or between Level 1
and Level 2 predictors (Case 3, or cross-level interaction). A cross-level (Case 3)
interaction occurs when the random slope of aLevel 1 predictor is predicted by
aLevel 2 predictor. This last type of interaction is probably most commonly
encountered in HLM, sowewill focusonit here. In cross-level interactions, either
theLevel 1 or Level 2 predictor may be chosen asthefocal predictor. Typically,
however, itisthe Level 1 predictor that is chosen to be the focal predictor. The
Level 1 equationis:

Yi =Boj +ByX; + 1, ®

where x; represents the Level 1 predictor for the ith individual nested within the
jthgroup. Becausetheintercept and slopein HLM areviewed asrandom variables,
they can be expressed in the Level 2 equations:

Boj =Yoo + YauW; + Uy,

By = Yio + YW, + Uy,

©)

where w; representsthe Level 2 predictor for the jth group. Substituting the Level 2
equationsinto Equation 8 resultsin the reduced form expression:

Vi = (Yoo + V10X T Yo Wj + Y1 X5 W, ) + (qu + U X% 1 ) (10)
The prediction equation derived from Equation 10 is:
E[Y| (X:W)] = ?oo + ?mx + '?01W+ ?nxw- (11)

In Equation 11, thetest of the coefficient y,, isan omnibustest of theinteraction effect.
Defining x as the focal predictor and w as the moderator results in the prediction
equation:

E[Y| (X,W)] = (?oo + ?mw) + (?10 + ?nw) X.
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This rearrangement again highlights the simple intercept and slope of the regres-
sion of y on x at specific values of w. Using the same notation as before, these are
defined as

Wy = ?00 + ?01W
o . (12)
®; =Yg + Y2 W-

The simple slope, @,, may be interpreted and evaluated using the simple slopes,
regions of significance, and confidence band strategies described earlier.

Interactionsin LCA

The same methods used to represent interaction effectsin MLR and HLM can
also be used to represent interactionsin LCA, an application of structural equation
modeling (SEM). LCA represents the repeated measures of a dependent variabley
asafunction of latent factorsthat capture different aspects of change, typically an
intercept factor (n,) and one or more slope factors (n;). The equation for the
repeated measures of y for individual i at timetis:

Yie = MNoi + AN + & 13

where )\, represents a fixed factor loading on the slope factor corresponding to a
value of the time metric (see Curran et a., 2004, for details).

Thefactors representing the intercept and slope then often serve as endogenous
(dependent) variables in other model equations. For instance, the latent curve
factors could be regressed on the exogenous predictor x:

nai = I’Loc + lei + C.tozi

14)
Mg = My +Y2% + Gy
The reduced form equation is then:
Vi = (Ha + “[57% + Y% + VoA X )+ (C(xi + CBi Ao+, ) 15

Thefixed component (first part) of Equation 15 containsan intercept term (i.e., p,),
conditional main effects for time (i.e., pg) and the exogenous predictor X (i.e., ),
and theinteraction of timeand x (i.e., v,). Thus, theregression of y on time depends
in part on the level of x, so x can be considered the moderator and time the focal
predictor. Taking the expectation of Equation 15 and rearranging yields aprediction
equation that highlightsthe role of x asamoderator of the time effect (the slope of
theindividua trajectories):

E[y|(7\,t,x)] = (1, +?1X)+(ﬁ’ﬁ "‘?2)()7%- (16)
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This expression showsthat L CA interactions may also be cast interms of asimple
intercept and simple slope, ®, and @, respectively:

6)0 = lloc + ?1)(
A e A7)
®; =My + VX

Thetechniquesfor cal culating simple slopes, regions of significance, and confidence
bands described earlier all apply here aswell.

Online Tools

Because these methodsfor eval uating interactions are not fully incorporated into
commonly used statistical software, we have devel oped aunified collection of online
resources that implement these techniques at: http://www.quantpsy.org. From a
link on this page, researchers may accessaprimer on regression techniquesand any
of six interactive Web pages designed to facilitate the probing two-way and three-
way interactionsin MLR, HLM, and LCA. We now briefly describe the contents
of these pages, followed by a worked example of a cross-level interactionin a
multilevel model.

At the bottom of the two-way interaction pages aretableswhere researchers may
enter information from analysisoutput. Thesetablesrequirethe user toinput all four
estimated regression coefficients, the variances of these coefficients and two of
the covariances from the ACOV matrix, df, and o.. By default, o. is set equal to
.05, but this may be changed by the user. The tables contain optional sections
called “Pointsto Plot.” Users may input values of thefocal predictor hereto obtain
coordinates useful in producing visual representations of interaction effects. These
sections assume that the x-axis on such a plot represents values of the focal pre-
dictor, they-axisrepresentsthe dependent variable, and that separate linesaredesired
for each conditional value of the moderator.

Onceall the necessary information isentered, clicking on the“ Calculate” button
will produce output in the “ Output Window.” If thereisaproblem, it will be noted
inthe*” Status” cell toward the middle of the table. Thefirst two sections of the out-
put simply repeat the information entered into the table. Theregion of significance,
and simpleintercepts and simple slopes cal cul ated at the boundaries of thisregion,
are provided by default. If conditional values of the moderator are entered into the
table, the utility will aso provide simpleinterceptsand simple slopes at each desired
value. If simple intercepts and simple slopes are required for more than three con-
ditional values of the moderator, the tables can be reused any number of times by
changing the desired conditional valuesand clicking onthe* Calculate” button again.
Each line of output includes a point estimate of the simpleintercept or ssmple slope
of interest, the standard error, a critical ratio, and ap value. Findly, if the “Points
to Plot” option is selected, coordinates for lines will be reported at the end of the
output. Contents of the output window are in plain text and may be copied and
pasted into any word processing program for further editing.
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The tables for three-way interactions are considerably larger than the two-way
interaction tables, primarily because many more elements of the ACOV matrix
must be entered, but they are entirely analogousto the two-way tables. The only
significant difference is that the three-way interaction tables enable the user to
request simple intercepts and simple slopes of y on x at conditional values of both
moderators z and w.

TheHLM two-way interaction tool hasthree separatetablesfor the Case 1, Case 2,
and Case 3 interactions described above. In addition, the user has the option of
entering custom df for tests of simpleintercepts, testsof simple slopes, or both simple
interceptsand simple slopes. If either of these boxesisleft blank, asymptotic ztests
will be conducted instead of t tests. TheHLM three-way interaction tool isanal ogous
to the MLR three-way interaction tool. However, it islimited to the case in which
thereisacross-level interaction between asingle Level 1 (focal) predictor and two
Level 2 moderators.

The LCA interaction tools are similar to the MLR and HLM tools. The LCA
two-way interaction tool contains two tables: one table is used for situations
involving time asthe focal predictor and the other is used for situationsinvolving
an exogenous predictor of slopes asthefocal predictor. The LCA three-way inter-
action tool treats time as the focal predictor, and allows users to request simple
interceptsand simple slopes at conditional values of two exogenous predictors, x;
and X;.

If conditional values are entered for the moderator(s), these tools also produce
graphs of the simpleregression linesfor thefocal predictor at those values. Specif-
ically, they generate R syntax that can be submitted to an Rweb server (or toalocal
R application for better resolution) viathe click of abutton to generate the plot.
R syntax isalso generated for the plotting of confidence bands, which again can be
submitted to R or Rweb with the click of a button to produce the plot.

An Example

We now provide an illustration of the MLR two-way interaction tool. For this
examplewerely on datafrom the National Longitudinal Survey of Y outh (NLSY).
Data consist of scores on measures of math ability (math; the Peabody Individual
Achievement Test math subsection) and associated predictor variablesfrom 956 stu-
dents (52% female) ranging in age from 59 to 156 months. Of interest inthisanalysis
wasthe finding of asignificant interaction between the predictors antisocial behavior
(antisocial) and hyperactivity (both centered) in predicting math test scores. The
model is of the same form as Equations 1-3, where antisocial takes the place of
x and hyperactivity takes the place of z, except that age, sex, grade, and minority
status were added as covariates. The results from fitting the model are reported in
Table 1. The main effect of antisocial is positive but nonsignificant, and the main
effect of hyperactive is negative and significant. In addition, the significant nega-
tive coefficient associated with the interaction term (—0.3977) indicates that the
relationship between antisocial and math tends to be more strongly negative for
individualswith higher overall hyperactivity.
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TABLE 1
Output for Antisocial x Hyperactivity Interaction With Asymptotic (Co)Variances
Effect Coefficient S Critical Ratio
Intercept (o) 38.0690 0.3224 118.08
Antisocial (y,) 0.0373 0.2681 0.14
Hyperactivity (y2) —0.7995 0.2148 -3.72
Anti. x hyper. (vs) -0.3977 0.1429 -2.78
Sample Asymptotic Covariance Matrix of the Regression Coefficients
Effect Intercept Antisocia Hyperactivity Anti. x Hyper.
Intercept 0.1039%4
Antisocial 0.01295 0.07186
Hyperactivity —0.00032 —0.02680 0.04614
Anti. x hyper. —0.02136 —0.01239 0.00031 0.02042
Descriptive Satistics
Variable Mean D Minimum Maximum
Antisocial 0 1.342 -1.344 4.656
Hyperactivity 0 1.546 -1.940 3.060

Note. Results pertaining to covariates were obtained, but were omitted from thistable because they are
not relevant for our calculations.

Probing theinteraction further using our ML R two-way interaction tool provides
additiond informationto aid in theinterpretation of thisconditional effect. Weentered
specific values of (centered) hyperactivity into the utility to assess the effect of
antisocial on math at specific conditional values of the moderator, in thiscase at the
mean and at 1 SD above and below the mean (i.e., where centered hyperactivity =
—1.546, 0, and +1.546). As hyperactivity increases, the slope rel ating math to anti-
social becomesmore strongly negative. Thesimpleslopeis0.652 at —1 SD (p=.102,
not significant), 0.037 at the mean of hyperactivity (p = .889, not significant),
and —0.577 at +1 SD (p = .044, significant). Submitting the R syntax for the ssim-
pleregression linesto the Rweb server produces the plot of these effects shownin
Figure 1.

Probing shows that the simple slope of math regressed on antisocial is significant
at only one of the chosen conditional values of hyperactivity; this finding adds
substantially to our understanding of the interaction effect. However, the choice of
+1 SD for the moderator was essentially arbitrary. Of more interest are the values
of hyperactivity for which the simple dlopeis statistically significant. The region of
significance on the moderator (hyperactivity) rangesfrom —2.320to 1.493, indicating
that any given simple slope outside thisrangeis statistically significant. Given that
centered hyperactivity rangesfrom about —1.94 to about +3.06, thisindicatesthat the
effect of antisocial on math is significant only for relatively high observed values
of hyperactive. Submitting the second R program produces aplot of the confidence
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FIGURE 1. Mean plotillustrating theinteraction of antisocial behavior and hyperactivity.
More negative slopes correspond to higher levels of hyperactivity.

bands (see Figure 2). Thedefault values of themoderator (—10 and +10) were changed
to -3 and +3 in Figure 2 to better match the range of observed data. Because the
confidence bands do not include simple slopes of zero for values of hyperactivity
above 1.493, it can be concluded that the simple slope of math regressed on antisocial
issignificantly different from zero for values of hyperactivity above this point.

Discussion
When a significant interaction is detected in MLR, HLM, or LCA, theinter-
pretation of theinteraction becomes critically important. Aside from the point esti-
mate itself, much important information about the interaction can be obtained by
evaluating the simple slopes, regions of significance, and confidence bands. Indeed,
itisdifficult toimagineasituation where theinterpretation of an interaction would not

beimproved by using these methods. Y et two issues have impeded the application
of these methods in practice: uncertainty that methods developed for MLR also
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Simple Slope

-3 -2 -1 0 1 2 3
Hyperactivity

FIGURE 2. Plot illustrating confidence bands for observed sample values of hyperactivity.

apply to HLM and LCA and alack of implementation in software. As reviewed
here, however, these methods are equally valid and useful for all three statistical
models. Furthermore, the online tools described above now make these methods
freely availableto any researcher, regardless of their statistical software of choice.
Together, we believe that these developments will enable applied researchers to
better interpret and communicate complex conditional effectsin MLR, HLM, and
LCA, including both two-way and three-way interactions.

References

Aiken, L. S, & West, S. G. (1991). Multipleregression: Testing and inter preting interactions.
Newbury Park, CA: Sage.

Bauer, D. J., & Curran, P. J. (2005). Probing interactions in fixed and multilevel regression:
Inferential and graphical techniques. Multivariate Behavioral Research, 40, 373-400.
Cohen, J. (1978). Partided products areinteractions; partialed powers are curve components.

Psychological Bulletin, 85, 858-866.

447

Downloaded from http://jebs.aera.net at University of North Carolina at Chapel Hill on March 12, 2015


http://jebs.aera.net

Preacher, Curran, and Bauer

Cohen, J., & Cohen, P. (1983). Applied multiple regression/correlation analyses for the
behavioral sciences (2nd ed.). Hillsdale, NJ: Erlbaum.

Cohen, J., Cohen, P., West, S. G., & Aiken, L. S. (2003). Applied multiple regression/
correlation analysis for the behavioral sciences (3rd ed.). Hillsdale, NJ: Erlbaum.

Curran, P. J., Bauer, D. J,, & Willoughby, M. T. (2004). Testing main effects and interactions
in latent curve analysis. Psychological Methods, 9(2), 220-237.

Curran, P. J., Bauer, D. J., & Willoughby, M. T. (2006). Testing and probing interactions
in hierarchical linear growth models. In C. S. Bergeman & S. M. Boker (Eds.), TheNotre
Dame Series on Quantitative Methodology: Vol. 1. Methodological issues in aging
research (pp. 99-129). Mahwah, NJ: Erlbaum.

Johnson, P. O., & Neyman, J. (1936). Testsof certain linear hypotheses and their applications
to some educational problems. Satistical Research Memoairs, 1, 57-93.

Rogosa, D. (1980). Comparing nonparallel regression lines. Psychological Bulletin, 88,
307-321.

Rogosa, D. (1981). On the relationship between the Johnson-Neyman region of significance
and statistical tests of parallel within group regressions. Educational and Psychological
Measurement, 41, 73-84.

Saunders, D. R. (1956). Moderator variablesin prediction. Educational and Psychological
Measurement, 16, 209-222.

Tate, R. (2004). Interpreting hierarchical linear and hierarchical generalized linear models
with slopes as outcomes. The Journal of Experimental Education, 73, 71-95.

Wilkinson, L., & the APA Task Force on Statistical Inference. (1999). Statistical methodsin
psychology journals: Guidelinesand explanations. American Psychologist, 54(8), 594-604.

Authors

KRISTOPHER J. PREACHER is now Assistant Professor of Quantitative Psychology at
the University of Kansas, 1415 Jayhawk Blvd., Room 426, Lawrence, KS 66045-7556;
preacher@ku.edu. His areas of specialization include factor analysis, structural equation
modeling, multilevel modeling, growth curve analysis, model fit, and the assessment of
mediation and moderation effects.

PATRICK J. CURRAN is aProfessor in the L. L. Thurstone Psychometric Laboratory in
the Department of Psychology at the University of North Carolina at Chapel Hill,
CB #3270 Davie Hall, Chapel Hill, NC 27599-3270; curran@unc.edu. His areas of spe-
cidization are structural equation modeling and multilevel modeling, particularly asapplied
to longitudinal data.

DANIEL J. BAUER is Assistant Professor of Psychology, Department of Psychology,
University of North Carolina at Chapel Hill, CB #3270 Davie Hall, Chapel Hill, NC
27599-3270; dbauer@email .unc.edu. His areas of specialization are mixed-effects mod-
s, structural equation models, and finite mixture models, with an emphasis on applica-
tionsto longitudinal data on adolescent problem behavior.

Manuscript received December 10, 2004
Accepted November 21, 2005

Downloaded from http://jebs.aera.net at University of North Carolina at Chapel Hill on March 12, 2015


http://jebs.aera.net

