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The use of Monte Carlo simulations for the empirical assessment of statistical estima-
tors is becoming more common in structural equation modeling research. Yet, there is
little guidance for the researcher interested in using the technique. In this article we il-
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lustrate both the design and implementation of Monte Carlo simulations. We present
9 steps in planning and performing a Monte Carlo analysis: (1) developing a theoreti-
cally derived research question of interest, (2) creating a valid model, (3) designing
specific experimental conditions, (4) choosing values of population parameters, (5)
choosing an appropriate software package, (6) executing the simulations, (7) file stor-
age, (8) troubleshooting and verification, and (9) summarizing results. Throughout
the article, we use as a running example a Monte Carlo simulation that we performed
to illustrate many of the relevant points with concrete information and detail.

Monte Carlo simulations have become common in evaluating statistical estimators
for structural equation models. Although analytical statistical theory can address
some research questions, finite sample properties of structural equation model esti-
mators are often beyond the reach of the established asymptotic theory. In other
cases the distributions are not known even asymptotically (e.g., many fit indexes).
In such situations, Monte Carlo simulations provide an excellent method for evalu-
ating estimators and goodness-of-fit statistics under a variety of conditions, includ-
ing sample size, nonnormality, dichotomous or ordinal variables, model complex-
ity, and model misspecification. Examples of Monte Carlo studies in structural
equation modeling (SEM) include Anderson and Gerbing’s (1984) examination of
fit indexes, nonconvergence, and improper solutions; Curran, West, and Finch’s
(1996) study of likelihood ratio test statistics; Hu and Bentler’s (1999) analysis of
cutoff criteria for goodness-of-fit statistics; and Muthén and Kaplan’s (1985, 1992)
study of the effects of coarse categorization in structural equation model estimation
(see Gerbing & Anderson, 1993, for a review of Monte Carlo studies on good-
ness-of-fit statistics). Despite the rapid growth of these techniques, many topics in
SEM would benefit from an empirical analysis through Monte Carlo methods.

Designing a Monte Carlo simulation is not an easy task, however. Although
there are a few books on the technique (e.g., Mooney, 1997; Rubinstein, 1981;
Smith, 1973), none directly relates the method to structural equation models. With
the numerous factors to consider in a Monte Carlo simulation, there is a great deal
to be learned from experience. The purpose of this article is to provide that experi-
ence through an introduction to the design and implementation of a Monte Carlo
simulation in the area of SEM. We will lead the reader through the steps of a simu-
lation, provide suggestions on planning and execution at each step, and outline po-
tential pitfalls in execution. At every stage we stress three interconnected goals:
theory, relevance, and practicality.

We present nine steps in planning and performing a structural equation
Monte Carlo analysis: (1) developing a theoretically derived research question,
(2) creating a valid model, (3) designing specific experimental conditions, (4)
choosing values of population parameters, (5) choosing an appropriate software
package, (6) executing the simulations, (7) file storage, (8) troubleshooting and
verification, and (9) summarizing results. Although we present the design of
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Monte Carlo models as a step-by-step process, the steps are actually intercon-
nected. For example, choosing a statistical package for estimation (Step 5) can
influence the experimental conditions (Step 3). Ultimately the process of design
is more simultaneous than we are able to portray here.

After a brief introduction to and justification for Monte Carlo simulations in
general, we discuss each step in detail. Throughout the article, we use a run-
ning example of a Monte Carlo simulation that we performed. The running ex-
ample illustrates many of the relevant points with concrete information and
detail.

A BRIEF INTRODUCTION TO MONTE CARLO
SIMULATIONS

In the Monte Carlo method “properties of the distributions of random variables are
investigated by use of simulated random numbers” (Gentle, 1985, p. 612).
Typically, the asymptotic properties of an estimator are known, but its finite sam-
pling properties are not. Monte Carlo simulations allow researchers to assess the fi-
nite sampling performance of estimators by creating controlled conditions from
which sampling distributions of parameter estimates are produced. Knowledge of
the sampling distribution is the key to evaluation of the behavior of a statistic. For
example, a researcher can determine the bias of a statistic from the sampling distri-
bution, as well as its efficiency and other desirable properties. Sampling distribu-
tions are theoretical and unobserved, however, so with the Monte Carlo method a
researcher artificially creates the sampling distribution.

The researcher begins by creating a model with known population parameters
(i.e., the values are set by the researcher). The analyst then draws repeated samples
of size N from that population and, for each sample, estimates the parameters of in-
terest. Next, a sampling distribution is estimated for each population parameter by
collecting the parameter estimates from all the samples. The properties of that
sampling distribution, such as its mean or variance, come from this estimated sam-
pling distribution.

The Monte Carlo method is thus an empirical method for evaluating statistics.
Through computational “brute force,” a researcher creates sampling distributions
of relevant statistics. Suppose that we have a new consistent estimator of coeffi-
cients in a structural equation model: We want to assess bias in the estimator in
small and moderate sample sizes. To do so, we create a structural equation model
with known coefficients and distributions for the observed variables. Then we
draw, say, 500 samples of size 50 from that known population. For each sample,
we would use our new estimator and obtain the values of the coefficients. All of the
coefficient estimates (500 for each parameter) would then be put into a distribution
and the mean of that sampling distribution calculated. Comparing the mean of the
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coefficient estimates to the population value of the coefficient would help us to as-
sess the bias of the estimator.

Monte Carlo simulations are appropriate for questions that we cannot evaluate
with asymptotic theory. Statistical theory is superior because it often covers
broader classes of models than can a Monte Carlo experiment. However, in SEM
as well as other areas, the statistical properties rely on unrealistic conditions such
as the availability of a large sample or ideal distributional assumptions for vari-
ables. It is in these instances that Monte Carlo methods step in to fill the gap and
augment analytical results. For example, a practitioner working with a moderately
sized structural equation model (say, 1,000 cases) and normality is less in need of
information from Monte Carlo simulations—asymptotic theory provides the rele-
vant information about the sampling distribution of the estimator. But if a practi-
tioner is working with 100 cases and variables from a distribution with high
kurtosis, Monte Carlo simulations may be the only way to determine the properties
of the sampling distribution of an estimator. Monte Carlo methods are set up as an
experiment, where we gather data to test specific theoretically derived hypotheses.
For introductions to the method, see Mooney (1997), Rubinstein (1981), or Smith
(1973). A basic brief exposition of the technique is available in Kennedy (1992,
chapter 2).

NINE STEPS IN DESIGNING AND PERFORMING A
MONTE CARLO ANALYSIS

Step 1: Developing a Theoretically Derived Research
Question of Interest

The validity and utility of a simulation study is only as strong as the quality of the
questions being assessed. One of the key criticisms of Monte Carlo studies is the
lack of strong theory guiding the design and analysis of the simulation. Without
strong theory, simulation studies are often thought to be akin to randomly looking
for a needle in a haystack. It is thus imperative that the research questions of interest
be strongly tied to statistical theory and that the simulation serve as a method to col-
lect data to empirically evaluate the proposed hypotheses. Because Monte Carlo
simulations can be huge undertakings, with multiple conditions and massive
amounts of resultant data, a fortunate by-product of the careful identification and
selection of research hypotheses is that the scope of the simulation study can be
more focused and manageable.

Outlining specific, theory-based questions at the outset of the project is one of
the best ways to increase manageability and scientific relevance. For example, our
Monte Carlo project initially had three main research interests: an examination of
goodness-of-fit statistics under varying degrees of misspecification, an investiga-
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tion of a global goodness-of-fit statistic, and a comparison of the maximum likeli-
hood (ML) estimator to the newly developed two-stage least squares (2SLS)
estimator (Bollen, 1996). Outlining our research questions in the beginning made
it clear that our Monte Carlo design would need to include misspecifications
(where the estimated model does not perfectly correspond to the population
model). We also knew from the outset that we would need two estimation meth-
ods. More important, our initial research hypotheses did not relate to nonnormal
distributions, which subsequently allowed us to reduce the number of experimen-
tal conditions with consideration of only multivariate normal distributions.

As another example, Anderson and Gerbing (1984) were interested in the ef-
fects of sampling error on test statistics, nonconvergence, and improper solutions.
With their research question in mind, they knew they needed to vary sample size,
the size of the model, and the population parameters (all factors that could affect
sampling error). Because they were only interested in sampling error, however,
they did not need to include misspecification as an experimental condition. Ulti-
mately, the goal is to construct an optimal match between the research question
and the experimental design. Outlining specific research questions early in the pro-
ject aids in that task.

Step 2: Creating Representative Models

A second major criticism of Monte Carlo simulation studies is a lack of external va-
lidity. Often only a small number of model types are examined, or the models that
are tested bear little resemblance to those commonly estimated in applied research.
A key step in designing a Monte Carlo experiment is therefore to create a model that
is representative from an applied standpoint.

To address this issue, the Monte Carlo researcher should review structural
equation model applications across a large number of journals in several areas of
research to which they would like to generalize the subsequent results. In our liter-
ature review, we focused on structural equation model applications published in
key sociological and psychological journals over the previous 5 years. Based on
such a review, the researcher can make an informed, subjective judgment about the
general types of structural equation models common in applied research.
Typically, the goal of maximizing external validity will be parallel to the goal of
optimally testing a proposed research hypothesis. However, there may be situa-
tions in which the research hypothesis demands a particular model and external va-
lidity is less important.

There are several specific questions to consider in the construction of a model.
First, what will be the overall structure of the model—a confirmatory factor analy-
sis (CFA) or a full structural equation model? CFAs are typical in simulation de-
signs (see Hu & Bentler, 1998, for a discussion), but practitioners often use general
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structural equation models in practice. Second, how large should the model be?
The number of latent factors and the number of indicators for each factor deter-
mine the size of the model. Third, how complex should the model be? Should the
model have cross-loaded indicators? Reciprocal paths? Exogenous predictors?
Each of these factors increases complexity and are not uncommon in applications.
Fourth, should the model incorporate categorical variables? Categorical variables
are very common in practice, especially with the use of survey data.

We developed three models that we concluded were commonly encountered in
applied research: those with a small number of latent factors and a small number of
indicators per factor; those with a small number of latent factors and a large num-
ber of indicators per factor; and those with two or more latent factors regressed on
two or more measured exogenous variables. We selected one target model to rep-
resent each of these general model types. Our first model, Model 1, contained nine
measured variables and three latent factors. Six of the nine measured variables
loaded on a single factor (simple loadings), and the remaining three measured vari-
ables loaded on two factors (complex loadings). Further, Factor 2 was regressed on
Factor 1, and Factor 3 was regressed on Factor 2 (creating a chain of causality for
the latent variables). These three models are presented in Figures 1A, 1B, and 1C.

Our second model, Model 2, had the same basic structure as Model 1 but con-
tained 15 measured variables, with five indicators per factor. Twelve of the mea-
sured variables loaded on a single factor and three measured variables loaded on
two factors, and regression parameters were again present between adjacent latent
factors. Finally, Model 3 contained 13 measured variables with the same measure-
ment structure as Model 1 (three indicators per factor) but added four observed ex-
ogenous variables. Factor 1 depended on all four correlated exogenous variables,
and Factors 2 and 3 depended on just the first and third exogenous variables.

The chain of causality between the latent variables made these models general
structural equation models rather than CFAs. We felt this was important because
chains of causality among latent variables are common in published research but
rare in structural equation model Monte Carlo simulations. Also, our models vary
in size. In fact, the similarity in structure between Models 1 and 2 allowed us to
compare results solely on the basis of the size of the model. We also introduced in-
creasing complexity, such as the exogenous variables in Model 3.

There are tradeoffs in any Monte Carlo design. Choosing a general structural
equation model meant that we would not study CFAs. Introducing cross-loadings
meant that our measurement models were not “clean.” Though the external valid-
ity of the models in a Monte Carlo simulation will always be subject to criticism,
researchers can strive for a balance between external validity, manageability, and
answering specific research questions. One of the most useful strategies that a re-
searcher can follow is to choose models that resemble those in published research.
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Step 3: Designing Specific Experimental Conditions

With a target model in place, the next step is to determine the experimental condi-
tions to vary in the simulation. As discussed previously, the actual conditions that a
researcher considers will vary depending on the research question. In this section,
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FIGURE 1A Model 1, three latent variables with three indicators and cross-loadings (dashed
lines indicate misspecifications).

FIGURE 1B Model 2, three latent variables with five indicators and cross-loadings (dashed
lines indicate misspecifications).
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we discuss some of the most common experimental conditions a researcher may
choose to evaluate.

One of the most important variables in a simulation is sample size. Often we do
not know the properties of estimators or goodness-of-fit statistics for small to mod-
erate sample sizes. Therefore, almost universally, Monte Carlo simulations vary
sample size. The researcher has extensive choice in the number of sample sizes to
consider, but sample sizes under 100 are especially important. Some areas of re-
search, such as psychology or cross-national analyses in sociology or political sci-
ence, routinely use sample sizes under 100. Much remains to be understood about
the properties of estimators at such small sample sizes.

Two other conditions that are often varied in structural equation model Monte
Carlo simulations are the distribution of the observed variables (multinormally
distributed or not) and the estimation method (ML, generalized least squares,

294 PAXTON ET AL.

FIGURE 1C Model 3, three latent variables with three indicators, cross-loadings, and exoge-
nous variables (dashed lines indicate misspecifications).
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2SLS, asymptotic distribution free, etc.). Whether a researcher chooses to vary
these conditions will depend on his or her research questions.

An additional potential condition to vary is the extent of misspecification. If
we acknowledge that researchers rarely work with perfect models, then it is im-
portant to consider the effect of misspecification on estimation, goodness of fit,
and other outcomes. In a Monte Carlo simulation the true population model is
known (i.e., created by the researcher). Samples are drawn from this known pop-
ulation and models are estimated on those samples. The models can be correct or
misspecified. That is, the researcher can choose to estimate a model that is a
mirror of the population model, or he or she can estimate a model that is differ-
ent (i.e., misspecified) to some extent. In choosing misspecifications, we advise
the researcher to pick ones that range from trivial to severe and that are reason-
able theoretically.

An important question for misspecifications in Monte Carlos is whether to omit
paths or include paths that are not in the true population model (see Curran, 1994,
for a discussion of the benefits of each approach). Another issue is that more than
one misspecification of a model is possible. Researchers may want to consider in-
cluding several misspecifications of increasing severity. That is, one path could be
omitted, then two, then three, in three separate specifications. Other strategies for
increasing severity are also possible. Depending on the question of interest, re-
searchers might also consider estimating the null independence model (no relation
between the observed variables) as a specification.

To return to our running simulation example, our research questions dictated
that we vary sample size, estimation method, and misspecification. We chose
seven sample sizes—50, 75, 100, 200, 400, 800, and 1,000—along with two esti-
mators: ML and 2SLS. We chose to limit the complexity of our simulation by ig-
noring the issue of what happens under conditions of nonnormality. Our decision
was based on the belief that systematic examination of nonnormally distributed
variables would require a separate simulation with a wide variety of distributions.
This would multiply the number of experimental design conditions beyond what
we could comfortably generate and analyze. So part of simulation design is to
know how to restrict your questions to a manageable size.

The misspecifications we chose for our models involved the cross-loadings and
the exogenous variables. We judged these omitted paths to be the most likely in
empirical research.1 The misspecified paths were omitted and are denoted by
dashed lines in Figures 1A, 1B, and 1C. For each model type we selected five
model specifications: a properly specified model (labeled Specification 1), where
the estimated model perfectly corresponded to the population model; and four

MONTE CARLO DESIGN 295

1These misspecifications were theoretically reasonable because it is likely that cross-loadings might
be ignored by researcher, and it is also likely that a researcher might have the effect of exogenous vari-
ables go only to the first variable in the chain.
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misspecified models (Specifications 2, 3, 4, and 5). For Model 1, Specification 2
omitted the cross-loading linking Factor 2 with item 7; Specification 3 additionally
omitted the cross-loading linking Factor 6 with item 3; Specification 4 additionally
omitted the complex loading linking Factor 4 with item 1; and Specification 5 was
the standard null independence model. The four misspecifications of Model 1
therefore introduced increasing misspecification—first one cross-loading was
omitted, then two, and so on. Thus, Specification 4 was more severely
misspecified than Specification 3, which was in turn more severely misspecified
than Specification 2.

We similarly defined the misspecifications of Model 2. Specification 2 omitted
the cross-loading linking Factor 2 with item 11; Specification 3 additionally omit-
ted the cross-loading linking Factor 3 with item 10; Specification 4 additionally
omitted the cross-loading linking Factor 1 with item 6; and Specification 5 was the
standard null (uncorrelated variables) model.

The misspecifications of Model 3 were somewhat different: Specification 2
jointly omitted the set of three cross-loadings (Factor 2 to item 7, Factor 3 to item
6, and Factor 1 to item 4); Specification 3 jointly omitted the set of four regression
parameters (Factor 2 on Predictor 1, Factor 3 on Predictor 1, Factor 2 on Predictor
3, and Factor 3 on Predictor 3); Specification 4 jointly combined the omissions of
Specifications 2 and 3 (omission of the set of three factor loadings and the set of
four regression parameters); and Specification 5 was the standard null
(uncorrelated variables) model.

In sum, when the dust had cleared and we had decided on the specific experi-
mental conditions to vary, there were 210 unique experimental conditions. Each of
three models had five specifications (one proper and four misspecified). Each of
these 15 “model types” had seven sample sizes (50, 75, 100, 200, 400, 800, 1,000).
We estimated each with both the ML and 2SLS estimators. This resulted in 210
unique experimental conditions—three models by five specifications by seven
sample sizes by two estimation methods.2 It should now be apparent how exponen-
tial growth (and consequent problems with manageability) are easy to achieve in
Monte Carlo simulations.

Step 4: Choosing Values of Population Parameters

At this point a researcher has selected a model (or models) and has determined the
appropriate experimental conditions to be varied. The next step is to select specific
values for the population model parameters. Like the other steps, this process
should be a combination of theory, research, and utility. There are five issues to
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2A rather amusing side note is that we originally considered this project to be a “pilot” project in prep-
aration for a much larger study!
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consider in picking the values of the parameters. First, they should reflect values
commonly encountered in applied research. A traditional cutoff for a practically
(vs. statistically) significant coefficient is a standardized coefficient of .10. As
such, this forms a useful lower bound for coefficient values. Second, the R2 values
the chosen coefficients produce should also be reasonable for applied research. We
recommend that the R2s take values that are representative of the areas of research
with which one is most concerned. For instance, R2 values with cross-sectional, in-
dividual-level data frequently range between .2 and .8. Third, the parameters of the
model should be statistically significant, even at the smallest sample size of the
simulation.

Choosing values for the parameters becomes more complicated when
misspecifications are part of the design. A fourth important consideration in that
case is whether the model has enough power to detect the proposed
misspecifications at a reasonable sample size. Alternatively, models may have too
much power to detect misspecifications at all sample sizes. Researchers should in-
vestigate the power of their models (e.g., MacCallum, Browne, & Sugawara,
1996; Satorra & Saris, 1985) and select particular values for the coefficients to
produce a reasonable power to detect them.3 Table 1 presents the power estimates
for our running example (we discuss the values we chose later in this article). It il-
lustrates that, as would be expected, the power to detect misspecifications in-
creases with sample size, model complexity, and extent of misspecification. The
smallest model, Model 1, at the smallest sample sizes, has little power to detect
(.065) the most minor misspecification. At the largest sample size, the power to de-
tect this misspecification rises to .635. At more severe misspecifications, or in
more complicated models, we reach power estimates of 1.0. The most important
feature of Table 1 is the wide range of calculated estimates.

The fifth consideration in choosing the values of the misspecified models is the
amount of “bias” in the estimates that will be introduced by the misspecifications.
At the most extreme misspecifications we would like to see nonnegligible bias in
the other estimated parameters. Table 2 presents a table of the expected bias for
Model 1’s four specifications when the ML fitting function is applied to the popu-
lation covariance matrix. Specification 1, which is the perfectly specified model,
shows no bias. The other specifications show bias increasing and encompassing
more parameters, and several of the biases are clearly nonnegligible, with values
exceeding 30%.

To summarize our decision process in choosing our parameter values, we based
these decisions on issues of effect size (e.g., selection of R2 values and bias that
would be substantively interpretable), statistical significance (e.g., all parameters
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3By power to detect, we mean the power to reject a false model, using the chi-square test. If power is
too low, strongly misspecified models will likely not be rejected. If power is too high, then minor
misspecifications may be rejected too often.
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TABLE 1
Power Estimates as a Function of Sample Size and Misspecification

Model df Min FCN N = 50 N = 75 N = 100 N = 200 N = 400 N = 800 N = 1000

Model 1
Specification 2 (omit λ7,2) 23 .01656 .065 .074 .084 .127 .239 .509 .635
Specification 3 (omit λ7,2 , λ6,3) 24 .03763 .087 .111 .138 .267 .568 .926 .977
Specification 4 (omit λ7,2 , λ6,3 , λ4,1) 25 .09441 .162 .243 .334 .689 .975 .999 1.0

Model 2
Specification 2 (omit λ11,2) 86 .03962 .068 .079 .091 .150 .313 .687 .823
Specification 3 (omit λ11,2 , λ10,3) 87 .08275 .096 .127 .163 .348 .744 .992 .999
Specification 4 (omit λ11,2 , λ10,3 , λ6,1) 88 .14081 .133 .194 .267 .602 .960 .999 1.0

Model 3
Specification 2 (omit λ7,2 , λ6,3 , λ4,1) 53 .12625 .151 .225 .312 .675 .977 1.0 1.0
Specification 3 (omit γ2,1 , γ2,3 , γ3,1 , γ3,3) 54 .38457 .497 .746 .898 .999 1.0 1.0 1.0
Specification 4 (omit λ7,2 , λ6,3 , λ4,1 ,

γ2,1 , γ2,3 , γ3,1 , γ3,3)
57 .53688 .684 .907 .981 1.0 1.0 1.0 1.0
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TABLE 2
Bias in Model 1

Specification 1 Specification 2 Specification 3 Specification 4

Parameter
Population

Value
Percent

Bias
Population

Value
Percent

Bias
Population

Value
Percent

Bias
Population

Value
Percent

Bias

λ1,1 1.0 — 1.0 0 1.0 0 1.0 0
λ2,1 1.0a — 1.0a — 1.0a — 1.0a —
λ3,1 1.0 — 1.0 0 1.0 0 1.0 0
λ4,1 .300 — .300 0 .380 26.7 0.0b 100
λ4,2 1.0 — 1.0 0 .936 –6.4 1.206 20.6
λ5,2 1.0a — 1.0a — 1.0a — 1.0a —
λ6,2 1.0 — .960 –4.0 1.286 28.6 1.237 23.7
λ6,3 .300 — .337 12.3 0.0b 100 0.0b 100
λ7,2 .300 — 0.0b 100 0.0b 100 0.0b 100
λ7,3 1.0 — 1.328 32.8 1.338 33.8 1.341 34.1
λ8,3 1.0a — 1.0a — 1.0a — 1.0a —
λ9,3 1.0 — 1.0 0 1.0 0 1.0 0
β2,1 .600 — .600 0 .555 –7.5 .631 5.2
β3,2 .600 — .653 8.8 .736 22.7 .715 19.2
ψ1,1 .490 — .490 0 .490 0 .490 0
ψ2,2 .314 — .314 0 .310 –1.3 .272 –13.4
ψ3,3 .314 — .232 –26.1 .188 –40.1 .198 –36.9

aFixed parameter. bOmitted parameter.
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were statistically significant even at the smallest sample size), and statistical
power (e.g., selecting values that would result in a broad range of power to detect
the misspecification across all sample sizes). For Model 1, the primary factor load-
ings were set to a standardized value of .70 (unstandardized value 1.0) to represent
a communality of 49%. The complex loadings were set to a standardized value of
.21 (unstandardized value .30). Finally, the regression parameters among the latent
factors were set to a standardized value of .60 (unstandardized value of .60) to rep-
resent a multiple R2 of 36%. For Model 2, all of the values were precisely those of
Model 1 except for the addition of two measured variables per factor. For Model 3,
the values of the factor loadings were equal to those of Model 1. However, the
standardized regression parameter between Factors 1 and 2 was .71 and between
Factors 2 and 3 was .54. These values differed from those of Models 1 and 2 given
that these are now partial regressions with the inclusion of the four exogenous vari-
ables. The population values we chose for each model are included in their respec-
tive figures (1A, 1B, and 1C).

Some research questions may require that the values of the coefficients be var-
ied as an experimental condition. That is, a researcher may choose multiple values
for the coefficients and run each set of values as a separate condition to be ana-
lyzed. An example of this can be found in Anderson and Gerbing (1984). In addi-
tion, the previous suggestions are guidelines. In specific applications, other criteria
may make more sense for the given question of interest. So it would be a mistake
and too confining to consider our guidelines as “hard and fast” rules.

Step 5: Choosing an Appropriate Software Package

The choice of a Monte Carlo modeling package should be based on the require-
ments of the modeling design. Some simulation capability is available in most SEM
packages, including AMOS, EQS, GAUSS/MECOSA, SAS/CALIS/IML, Fortran
(ISML), MPLUS, and PRELIS/LISREL. These packages have been reviewed in
general elsewhere (e.g., Hox, 1995; Waller, 1993). To avoid repetition, we only
briefly discuss factors to consider when choosing a software package.

Packages have different strengths and weaknesses depending on the research
question. Also, packages can change dramatically over time, adding new features
and altering old ones. Researchers should, therefore, at the time of their simula-
tion, review the possible software options to identify the optimal fit of software to
the particular research design. For example, some research designs may require
the software package to create nonnormal data, whereas others might require anal-
ysis of missing values. Bear in mind that multiple software packages may be
needed to produce all the data relevant to a particular study.

For our Monte Carlo design, after much research we decided to utilize Version
5 of EQS (Bentler, 1995) for four reasons: a record of successful simulations in
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previous studies, an ability to generate nonnormal distributions, an ability to gen-
erate data and fit the model in a single step, and an ability to fit a misspecified
model to data generated from a different population model. However, EQS alone
was not adequate to meet all of our analytic needs. We thus also used SAS exten-
sively for data management, creation of additional fit statistics, and 2SLS estima-
tion (using Proc SYSLIN).

Step 6: Executing the Simulations

With a target model designed and the values of the population parameters deter-
mined, a researcher can now create population covariance matrices. In our case, we
created three population covariance matrices, one for each population model. The
actual process of running a simulation will vary by statistical package, so we de-
scribe the process by which we generated the data for our example in EQS. This
gives the general flavor of simulation and introduces technical considerations that
cross all statistical packages.

Our simulated raw data was generated in EQS as random draws from our three
population matrices. Although there were 210 unique experimental conditions, we
generated 21 × 500 raw data sets in EQS. Specifically, we created 500 raw data
sets at each sample size for each model type (with three model types and seven
sample sizes, 21 × 500 raw data sets result). We then fit each of the five specifica-
tions within model type to the corresponding 500 data sets and produced parameter
estimates and fit statistics. For example, consider a single raw data set generated
for Model 1 at N = 100—we fit all five specifications of Model 1 at N = 100 to the
same data set. Parameter estimates varied across specifications because of in-
creased bias. In addition, fit statistics changed to reflect the increasing
misspecification.

There are a number of technical considerations to consider in performing the
simulations, regardless of what package generates the data. The first is the selec-
tion of samples. The random draws can produce any number of data sets, but some
of these may suffer from problems. Specifically, some data sets may not converge
or converge to “improper solutions.” We call these “imperfect” samples, and the
first technical consideration is whether they should be kept in the analysis.4

There is debate about whether nonconverged samples should remain in Monte
Carlo simulations. Unless the object of interest is nonconverged samples, how-
ever, we suggest that a researcher avoid including them in the analysis. If the pur-
pose of the Monte Carlo analysis is to provide realistic information to users of the
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4Of course, the definition of a “nonconverged” sample depends on the maximum number of iterations
a researcher will allow before declaring the sample to be nonconverged. Based on our experience with
nonconverged models, we choose 100 iterations as our limit.
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technique, then nonconverged samples, which are rarely assessed in practice, will
provide irrelevant information and subsequently threaten external validity. It is
important to make the conditions of the Monte Carlo simulation match practice to
the greatest extent possible.

The researcher must also decide the fate of converged analyses with improper
solutions. Improper solutions are estimates that take on values that would be im-
possible for the corresponding parameters (such as a negative error variance). This
question is less clear-cut than nonconvergent samples, because researchers some-
times analyze models that have improper estimates whereas they should never in-
terpret models that have not converged. Perhaps the safest strategy is to do
analyses with and without improper solutions. This strategy allows the assessment
of their influence on the conclusions of the experiment. Also, a researcher can con-
duct tests of whether the improper solution estimates are within sampling error of a
proper value (e.g., Chen, Bollen, Paxton, Curran, & Kirby, forthcoming). A re-
searcher should bear in mind that removing nonconverged and improper solutions
can reduce the “useable” number of samples for the Monte Carlo analysis, and he
or she should generate sufficient number of samples to take account of the loss of
cases due to these two factors.

In our analysis, we decided the goal was to generate 500 “good” replications for
each perfect specification at each sample size.5 To achieve that many good replica-
tions, we initially generated 550 raw data sets for most sample sizes (650 data sets
were generated for the smallest sample sizes [N = 50 and N = 75] because
nonconverged samples and improper solutions are more likely). We next fit the
properly specified models to these 550 raw data sets, some of which converged
and some of which did not. We selected the first 500 replications of the initial pool
of 550 replications that provided proper solutions and discarded the remainder. For
example, if Model 2, N = 100, replication number 15 resulted in an improper solu-
tion, then it was discarded. If Model 1, N = 75, replication number 125 converged
and was proper, it was included. However, if Model 3, N = 200, replication number
546 was converged and proper but 500 good replications had been obtained after
replication number 532, then number 546 would be discarded anyway. This strat-
egy resulted in 500 good solutions for each of the three properly specified condi-
tions across all seven sample sizes.

In the misspecified models, any samples that were identified as “imperfect” in
the perfectly specified model were removed. Therefore, in practice, only those 500
good solutions from the perfectly specified model were considered for the
misspecified models. It is also possible, however, that the misspecified model
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5Remember that replications at each condition are necessary to generate the sampling distribution. In
the analysis of the generated data, means and other statistics can be estimated using the 500 replications.
Five hundred replications provide a large enough sample size to accurately calculate statistics while tak-
ing less computer time to generate than other options, like 1,000 replications.

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 N

or
th

 C
ar

ol
in

a 
- 

C
ha

pe
l H

ill
] 

at
 1

1:
47

 0
3 

Se
pt

em
be

r 
20

14
 



would create an improper solution in the misspecified estimation of that sample
(we did not encounter any nonconverged samples in the misspecified models, al-
though it is theoretically possible). The researcher would again need to decide
whether to keep or exclude those samples. Our decision was to remove them. This
resulted in fewer than 500 samples for analysis for some of the misspecified mod-
els.6 As a concrete example, say for Model 1, N = 100, replication number 223
failed to converge under proper specification. This case would be excluded from
the perfect specification and all misspecifications as well. Similarly, if Model 2, N
= 75, replication number 32 estimated an improper solution for the proper solution,
it would be removed from all misspecifications. Even if the estimated solutions for
a misspecified model were all proper, the replication would not be part of the final
Monte Carlo analysis. To illustrate our selection process, we provide Figure 2.

Another technical consideration in simulation is the use of “seeds.” Random
draws can be controlled by giving the program a starting point. That is, if the same
seed (the starting point) is given in two subsequent analyses, the same data will be
produced. This is a way of controlling the “randomness” of the random number
generation. It allows for replication and is the way we used the same raw data
across specifications. To acquire the seeds, we utilized a random number book
(e.g., Beyer, 1984; Research and Education Association, 1984) because random
numbers from calculators are not completely random.

Data generation takes time, which introduces several other technical consider-
ations. First, to achieve convergence as quickly as possible for each replication, we
suggest that the population parameters be used as starting values.7 Second, we sug-
gest that researchers determine a protocol for their data generation because it is un-
likely that all the data will be generated in a single sitting. Having a protocol means
that the data generation will be consistent across both time and collaborators. In
general, it is impossible to have too much documentation during a Monte Carlo
simulation. The protocol for our simulation was simple:

EQS: Changes to Program Before Each Run

• Change sample size.
• Change fit output file name.
• Change data output file name.

MONTE CARLO DESIGN 303

6Another way to view the exclusion criteria for the misspecified models is as follows. We utilized the
same initial pool of raw data sets generated for the perfectly specified models (550 replications for N =
100 and greater, 650 replications for N = 50 and N = 75). For the misspecified models, however, there
were two criteria for exclusion: (a) Cases were excluded if the misspecified model’s solution was im-
proper, and (b) cases were excluded if that case had resulted in an improper solution for the proper speci-
fication, regardless of the properness of the solution under misspecification.

7Starting values are needed because EQS estimates the model and produces fit statistics as part of its
data generation.
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• Change seed.
• Save as new program.

Modifications to Files After Each Run

• Delete output file.
• Rename data file.
• Move data file to data subdirectory.
• Move “fit” file to fit subdirectory.

A Monte Carlo simulation creates an enormous amount of output. Organization
is therefore key to control over the project both at the time of data generation and
during later analyses. Without clear, consistent naming conventions for files, it is

304 PAXTON ET AL.

FIGURE 2 Selection of samples (N = 50 or N = 75). For N > 75, the picture looks similar, with
550 replications to begin.
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likely that a researcher will be unable to determine what was done after the simula-
tion is completed. Researchers should determine a naming convention for files
early in the project (before any data is generated) and modify it only if absolutely
necessary. Our naming convention was MxSxNxxx.xxx, where M indicated model
type (1, 2, or 3), S indicated specification (perfectly specified and the four
misspecifications), and N indicated sample size. Various extension labels indi-
cated whether the file was an EQS program (.eqs), a fit file (.fit), a SAS program
(.sas), or various other types of programs.

To complete our discussion of the technical aspects of running a simulation, we
provide two sample programs for EQS and SAS as Appendixes A and B. The EQS
sample program presents Specification 1 of Model 1, which is the perfectly speci-
fied model. The paths described under the /EQUATIONS command therefore
match the diagram in Figure 1A perfectly. The misspecified models (such as
Model 1, Specification 2) would thus omit some paths in the /EQUATIONS com-
mand. The matrix provided in the /MATRIX command is the population
covariance matrix. It is this matrix from which the random samples are drawn. The
lines at the end of the program are the commands for the simulation itself. Of spe-
cial interest are the requested parameter estimates and standard errors under
/OUTPUT, and the specification of the seed (19922197) and number of replica-
tions (650) under /SIMULATION.

The SAS program reads in the data from the fit files, transforms it, and outputs a
working SAS data set for future analyses. The input statement provides the vari-
ables placed into the .fit file by EQS. These include technical information, such as
the method of estimation (method) and whether the sample was nonconverged
(nonconv), information about the goodness-of-fit statistics (e.g., modchi, gfi), the
parameter estimates (e.g., v7f3pe), and the standard errors (e.g., v7f3se). The next
section removes all nonconverged and improper solutions and keeps 500 good
samples. A few additional variables are created for reference and the data is output
to a SAS data set.8

Step 7: File Storage

A researcher beginning a Monte Carlo simulation is unlikely to realize how much
data will be created in the process. Ultimately, a vast amount of computer space will
be needed for storage. For example, our 500 sets of raw data for N = 1,000 for Model
2, Specification 2 took up 108,900 kilobytes of space and the corresponding .fit file
took up 679 kilobytes. Indeed, our current master subdirectory requires over 300
megabytes of data storage. Space is cheap and getting cheaper, but researchers
should still consider space storage issues when performing a simulation. Another
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8It should also be noted that while EQS gave us the ML estimates, we used SAS (and the raw datasets
output by EQS) to create the 2SLS (Bollen, 1996) estimates.
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consideration is that the original files need to be kept safe during later analyses, and
multiple users may need to access the files. In this section, we discuss file storage is-
sues in Monte Carlo simulations.

The first question a researcher should ask is whether the raw data needs to be
saved. The raw data files are typically those that take up the most amount of space.
Under some circumstances, saving the parameter estimates and goodness-of-fit sta-
tistics is all that is required. In that case, the raw data can be deleted, especially if
seeds are recorded and data generation programs saved (in that case the raw data sets
could be recreated if desired).

When there will be multiple users of the programs and data sets, it becomes cru-
cial to keep original programs and data sets safe. Often questions arise later in a pro-
ject that can only be answered by going back to the data creation programs. If these
have been modified by one or more users, then it may be impossible to remember or
recreate the simulation conditions. Therefore, an “archive” should be created to hold
all original programs. A separate “working” area should be designated for program-
ming. Files should not be modified outside the working area. Within the working
area, researchers can have three main subdirectories for programming, a “testing” di-
rectory, a “finished programs” directory, and a “back-up” directory. All unfinished
programs are housed in the testing directory and, once finished, are moved to the pro-
grams directory and the back-up directory. One way to make your data both accessi-
ble and safe is to implement read-only conventions for all archived, finished, and
back-up files.9

To help present how a working Monte Carlo project could operate, we provide
Figure 3, a picture of the ML portion of the file structure for our Monte Carlo simula-
tion. To begin, consider the subdirectory labeled archive. This directory contains all
the original programs: the EQS simulation programs, the raw data files created by
EQS, the goodness-of-fit files created by EQS, and the original SAS programs to de-
termine improper solutions and obtain 500 good replications. These files are desig-
nated as read-only. Any member of the simulation group can access them for
reference, but no one can change them. They serve as a record of our process. The
working .fit files and SAS data sets have their own subdirectories. The safe method
of testing and saving working programs is illustrated under the “sasprograms” direc-
tory. Once these were established, we burned the entire file structure on compact
discs for permanent storage and backup.

Step 8: Troubleshooting and Verification

Once the simulation is completed, the data stored, and programming begun, how do
you know whether you did it correctly? Fortunately, you can perform a number of
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9If multiple users are involved in the project, then file access becomes as important as file storage. There
are many options for file access, including networks, mainframes, and the web.
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FIGURE 3 File structure.D
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checks to provide verification that the simulation worked. For example, do raw data
files with larger sample sizes take up more storage space? Does the number of re-
sultant replications match what you asked the program to create? These are checks
for logical consistency. Another check is whether the results seem reasonable. For
example, at sample sizes at or above 1,000, parameter estimates should be within
.01 of the population parameter. Another check would be whether empirical power
estimates match the theoretically determined power estimates. That is, if a given
model, specification, and sample size has .10 power to detect a misspecification,
then the chi-square test of fit should be rejected at that approximate frequency
across the 500 replications.

Step 9: Summarizing Results

Once the Monte Carlo simulation is completed, results obtained, and the data
verified, a researcher must determine how to present the results. Because Monte
Carlo simulations can produce so much data, data summary and presentation is
not an easy task. In this section we briefly discuss some ways to summarize and
present results.

There are three main ways to present output: descriptive, graphical, and infer-
ential. Descriptive statistics present information concisely and simply. Re-
searchers may only need to present a mean or variance of a sampling distribution to
illustrate a point. Other descriptive statistics to consider reporting include the
mean relative bias {[(coefficient estimate–population parameter value)/popula-
tion parameter value] × 100}, or the mean, mean square error [(coefficient esti-
mate–population parameter)2]. Correlation or covariance tables can also concisely
represent great quantities of data.

Graphical techniques are also extremely useful in presenting data. Figures such
as box plots, scattergrams, or power curves can succinctly demonstrate the find-
ings. Of course, the graphical technique a researcher chooses will depend on the
research question and findings to be reported. Graphical representations of data are
reviewed in a number of excellent sources (e.g., Cleveland, 1993; Tufte, 1983).

Inferential statistics can augment the descriptive and graphical analysis. For ex-
ample, design factors such as sample size, model type, and estimation method can
be dummy or effect coded, and main effects and interactions among design factors
can be evaluated using standard regression procedures. Logistic regressions can be
used for categorical outcomes, and generalized least squares methods can be used
to account for heteroskedastic distributions of errors commonly found in simula-
tion outcomes. Taken together, these techniques allow for the formal testing of the
significance the design factors as well as the computation of various effect size es-
timates (e.g., percent of variance explained). Given the tremendous number of ob-
servations stemming from the multiple replications (e.g., for our 210 conditions
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we generated approximately 105,000 samples), it is common for all estimated ef-
fects to drastically exceed traditional significance levels. It is thus important to in-
terpret the meaningfulness of effects using effect sizes as well.

CONCLUSION

Monte Carlo simulations are growing in popularity, as researchers consider the
small sample properties of estimators and goodness-of-fit statistics in SEM. Al-
though every simulation is different, they also hold many features in common. This
article attempted to provide an overview of the design and implementation of
Monte Carlo simulations for structural equation models with the goal of aiding fu-
ture researchers in their projects. We used a running example throughout the article
to provide a concrete example of a working Monte Carlo project. Researchers are
likely to encounter many unique situations in their own modeling, but we hope that
this article provides a useful general orientation to get them started.
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APPENDIX A

Sample EQS Program for Model 1, Specification 1, Sample
Size 50

/TITLE Model 1: 3-factor 9-indicator; primary loadings=1.0; secondary load-
ings=.30; regression beta=.60;
/SPECIFICATIONS
VAR=9; CAS=50; MET=ML; MAT=COV;
/EQUATIONS
v1=1*f1+e1;
v2=1f1+e2;
v3=1*f1+e3;
v4=1*f2+.3*f1+e4;
v5=1f2+e5;
v6=1*f2+.3*f3+e6;
v7=1*f3+.3*f2+e7;
v8=1f3+e8;
v9=1*f3+e9;
f1=d1;
f2=.6*f1+d2;
f3=.6*f2+d3;
/VARIANCES
e1=.51*; e2=.51*; e3=.51*; e4=.2895*; e5=.51*;
e6=.2895*; e7=.2895*; e8=.51*; e9=.51*;
d1=.49*; d2=.3136*; d3=.3136*;
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/MATRIX
1
0.49 1
0.49 0.49 1
0.441 0.441 0.441 1
0.294 0.294 0.294 0.5782 1
0.34692 0.34692 0.34692 0.682276 0.5782 1
0.2646 0.2646 0.2646 0.52038 0.441 0.61446 1
0.1764 0.1764 0.1764 0.34692 0.294 0.441 0.5782 1
0.1764 0.1764 0.1764 0.34692 0.294 0.441 0.5782
0.49 1
/TEC
itr=100;
/OUTPUT
pa; se;
data=’c:\simproj\MLE\archive\fit\m1s1n050.fit’;
/SIMULATION
seed=19922197;
replication=650;
population=matrix;
data=’n50’;
save=con;
/PRINT
digit=6;
/END

APPENDIX B

Sample SAS Program for Model 1, Specification 1, Sample
Size 50

* MODEL 1
SPECIFICATION 1

50 CASES

filename in1 ’c:\simproj\MLE\archive\fit\m1s1n050.fit’;
libname out1 ’c:\simproj\sasdata\’;

*Model 1, Specification 1, N=50;
*’pe’=parameter estimate, ’se’=standard error, ’rb’=relative bias;
*’sq’=squared error;
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* note: rather than the typical 550 replications, this one had 650;

data a; infile in1;
input method concode nonconv nullchi modchi moddf modprob

nfi tli cfi gfi agfi rmsr srmsr rmsea rmscilo rmscihi iterate
e1e1pe e2e2pe e3e3pe e4e4pe e5e5pe e6e6pe e7e7pe e8e8pe e9e9pe
d1d1pe d2d2pe d3d3pe v1f1pe v3f1pe v4f1pe v4f2pe v6f2pe v6f3pe
v7f2pe v7f3pe v9f3pe f2f1pe f3f2pe
e1e1se e2e2se e3e3se e4e4se e5e5se e6e6se e7e7se e8e8se e9e9se
d1d1se d2d2se d3d3se v1f1se v3f1se v4f1se v4f2se v6f2se v6f3se
v7f2se v7f3se v9f3se f2f1se f3f2se;

*creating index variable that indexes observations;
index=_N_;

* going through and picking out the converged solutions only;
* first I keep only the converged solutions;
* then I also pick out only the ones with proper solutions;
* then I keep only the first 500 of the converged solutions;
data b; set a; where nonconv=0;
data bb; set b; where concode=0;
index2=_N_;
data c; set bb; where index2 < 501;

data working; set c;
* creating a reject variable to record if chi-square was rejected;
reject=0; if modprob lt .050 then reject=1;

* cleaning the RMSEA confidence intervals;
if rmscilo=–99 then rmscilo=.; if rmscihi=99 then rmscihi=.;
model=1; spec=1; n=50;
run;

proc means data=working; run;

data out1.m1s1n050; set working;
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