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lustrate both the design and implementation of Monte Carlo simulations. We present
9 stepsin planning and performing aMonte Carlo analysis: (1) devel oping atheoreti-
cally derived research question of interest, (2) creating avalid model, (3) designing
specific experimental conditions, (4) choosing values of population parameters, (5)
choosing an appropriate software package, (6) executing thesimulations, (7) filestor-
age, (8) troubleshooting and verification, and (9) summarizing results. Throughout
the article, we use asarunning example aMonte Carlo simulation that we performed
to illustrate many of the relevant points with concrete information and detail.

Monte Carlo simulations have become common in eval uating statistical estimators
for structural equation models. Although analytical statistical theory can address
someresearch questions, finite sample properties of structural equation model esti-
mators are often beyond the reach of the established asymptotic theory. In other
casesthe distributions are not known even asymptotically (e.g., many fit indexes).
In such situations, Monte Carlo simulations provide an excellent method for evalu-
ating estimators and goodness-of -fit stati stics under avariety of conditions, includ-
ing sample size, nonnormality, dichotomous or ordinal variables, model complex-
ity, and model misspecification. Examples of Monte Carlo studies in structural
equation modeling (SEM) include Anderson and Gerbing’ s (1984) examination of
fit indexes, nonconvergence, and improper solutions; Curran, West, and Finch’s
(1996) study of likelihood ratio test statistics, Hu and Bentler’ s (1999) analysis of
cutoff criteriafor goodness-of-fit statistics; and Muthén and Kaplan’ s (1985, 1992)
study of the effects of coarse categorizationin structural equation model estimation
(see Gerbing & Anderson, 1993, for a review of Monte Carlo studies on good-
ness-of-fit statistics). Despite the rapid growth of these techniques, many topicsin
SEM would benefit from an empirical analysis through Monte Carlo methods.

Designing a Monte Carlo simulation is not an easy task, however. Although
there are a few books on the technique (e.g., Mooney, 1997; Rubinstein, 1981,
Smith, 1973), none directly relatesthe method to structural equation models. With
the numerous factorsto consider in aMonte Carlo simulation, thereisagreat deal
to belearned from experience. The purpose of thisarticleisto provide that experi-
ence through an introduction to the design and implementation of a Monte Carlo
simulationin the areaof SEM. Wewill lead the reader through the steps of asimu-
lation, provide suggestions on planning and execution at each step, and outline po-
tentia pitfalls in execution. At every stage we stress three interconnected goals:
theory, relevance, and practicality.

We present nine steps in planning and performing a structural equation
Monte Carlo analysis: (1) developing a theoretically derived research question,
(2) creating a valid model, (3) designing specific experimental conditions, (4)
choosing values of population parameters, (5) choosing an appropriate software
package, (6) executing the ssimulations, (7) file storage, (8) troubleshooting and
verification, and (9) summarizing results. Although we present the design of
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Monte Carlo models as a step-by-step process, the steps are actually intercon-
nected. For example, choosing a statistical package for estimation (Step 5) can
influence the experimental conditions (Step 3). Ultimately the process of design
is more simultaneous than we are able to portray here.

After a brief introduction to and justification for Monte Carlo simulationsin
general, we discuss each step in detail. Throughout the article, we use a run-
ning example of a Monte Carlo simulation that we performed. The running ex-
ample illustrates many of the relevant points with concrete information and
detail.

A BRIEF INTRODUCTION TO MONTE CARLO
SIMULATIONS

In the Monte Carlo method “ properties of the distributions of random variablesare
investigated by use of simulated random numbers’ (Gentle, 1985, p. 612).
Typically, the asymptotic properties of an estimator are known, but its finite sam-
pling propertiesare not. Monte Carlo simulationsall ow researchersto assessthefi-
nite sampling performance of estimators by creating controlled conditions from
which sampling distributions of parameter estimates are produced. Knowledge of
the sampling distribution is the key to evaluation of the behavior of astatistic. For
example, aresearcher can determine the bias of astatistic from the sampling distri-
bution, aswell asits efficiency and other desirable properties. Sampling distribu-
tions are theoretical and unobserved, however, so with the Monte Carlo method a
researcher artificialy creates the sampling distribution.

The researcher begins by creating a model with known population parameters
(i.e., thevaluesare set by theresearcher). The analyst then drawsrepeated samples
of size N from that population and, for each sample, estimatesthe parameters of in-
terest. Next, asampling distribution is estimated for each population parameter by
collecting the parameter estimates from all the samples. The properties of that
sampling distribution, such asits mean or variance, come from this estimated sam-
pling distribution.

The Monte Carlo method is thus an empirical method for evaluating statistics.
Through computational “brute force,” aresearcher creates sampling distributions
of relevant statistics. Suppose that we have a new consistent estimator of coeffi-
cients in a structural equation model: We want to assess hias in the estimator in
small and moderate sample sizes. To do so, we create a structural equation model
with known coefficients and distributions for the observed variables. Then we
draw, say, 500 samples of size 50 from that known population. For each sample,
wewould use our new estimator and obtain thevalues of the coefficients. All of the
coefficient estimates (500 for each parameter) would then be put into adistribution
and the mean of that sampling distribution calculated. Comparing the mean of the
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coefficient estimatesto the popul ation value of the coefficient would help usto as-
sess the bias of the estimator.

Monte Carlo simulations are appropriate for questions that we cannot evaluate
with asymptotic theory. Statistical theory is superior because it often covers
broader classes of models than can a Monte Carlo experiment. However, in SEM
aswell as other areas, the statistical properties rely on unrealistic conditions such
as the availability of alarge sample or ideal distributional assumptions for vari-
ables. It isin these instances that Monte Carlo methods step in to fill the gap and
augment analytical results. For example, a practitioner working with amoderately
sized structural equation model (say, 1,000 cases) and normality islessin need of
information from Monte Carlo simulations—asymptotic theory providesthe rele-
vant information about the sampling distribution of the estimator. But if a practi-
tioner is working with 100 cases and variables from a distribution with high
kurtosis, Monte Carlo simulations may bethe only way to determinethe properties
of the sampling distribution of an estimator. Monte Carlo methods are set up asan
experiment, where we gather datato test specific theoretically derived hypotheses.
For introductions to the method, see Mooney (1997), Rubinstein (1981), or Smith
(1973). A basic brief exposition of the technique is available in Kennedy (1992,
chapter 2).

NINE STEPS IN DESIGNING AND PERFORMING A
MONTE CARLO ANALYSIS

Step 1: Developing a Theoretically Derived Research
Question of Interest

Thevalidity and utility of asimulation study isonly as strong as the quality of the
guestions being assessed. One of the key criticisms of Monte Carlo studiesisthe
lack of strong theory guiding the design and analysis of the simulation. Without
strong theory, simulation studies are often thought to be akin to randomly looking
for aneedleinahaystack. Itisthusimperativethat theresearch questionsof interest
bestrongly tied to statistical theory and that the simul ation serve asamethod to col -
lect data to empirically evaluate the proposed hypotheses. Because Monte Carlo
simulations can be huge undertakings, with multiple conditions and massive
amounts of resultant data, a fortunate by-product of the careful identification and
selection of research hypotheses is that the scope of the ssmulation study can be
more focused and manageable.

Outlining specific, theory-based questions at the outset of the project is one of
the best waysto increase manageability and scientific relevance. For example, our
Monte Carlo project initially had three main research interests: an examination of
goodness-of-fit statistics under varying degrees of misspecification, an investiga-
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tion of aglobal goodness-of-fit statistic, and acomparison of the maximum likeli-
hood (ML) estimator to the newly developed two-stage least squares (2SLS)
estimator (Bollen, 1996). Outlining our research questionsin the beginning made
it clear that our Monte Carlo design would need to include misspecifications
(where the estimated model does not perfectly correspond to the population
model). We also knew from the outset that we would need two estimation meth-
ods. More important, our initial research hypotheses did not relate to nonnormal
distributions, which subsequently allowed us to reduce the number of experimen-
tal conditions with consideration of only multivariate normal distributions.

As another example, Anderson and Gerbing (1984) were interested in the ef-
fects of sampling error on test statistics, nonconvergence, and improper solutions.
With their research question in mind, they knew they needed to vary sample size,
the size of the model, and the population parameters (all factors that could affect
sampling error). Because they were only interested in sampling error, however,
they did not need to include misspecification as an experimental condition. Ulti-
mately, the goal is to construct an optimal match between the research question
and the experimental design. Outlining specific research questionsearly inthe pro-
ject aidsin that task.

Step 2: Creating Representative Models

A second major criticism of Monte Carlo simulation studiesisalack of external va-
lidity. Often only asmall number of model types are examined, or the models that
aretested bear little resemblanceto those commonly estimated in applied research.
A key stepindesigningaMonte Carlo experiment isthereforeto createamodel that
is representative from an applied standpoint.

To address this issue, the Monte Carlo researcher should review structura
equation model applications across a large number of journalsin several areas of
research to which they would like to generalize the subsequent results. In our liter-
ature review, we focused on structural equation model applications published in
key sociological and psychological journals over the previous 5 years. Based on
such areview, theresearcher can make an informed, subjectivejudgment about the
general types of structural equation models common in applied research.
Typically, the goal of maximizing external validity will be parallel to the goal of
optimally testing a proposed research hypothesis. However, there may be situa-
tionsinwhich the research hypothesisdemands a particular model and external va-
lidity islessimportant.

There are several specific questionsto consider in the construction of amodel.
First, what will bethe overall structure of the model—a confirmatory factor analy-
sis (CFA) or afull structural equation model? CFAs are typical in simulation de-
signs(seeHu & Bentler, 1998, for adiscussion), but practitioners often use general
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structural equation models in practice. Second, how large should the model be?
The number of latent factors and the number of indicators for each factor deter-
mine the size of the model. Third, how complex should the model be? Should the
model have cross-loaded indicators? Reciprocal paths? Exogenous predictors?
Each of these factorsincreases complexity and are not uncommon in applications.
Fourth, should the model incorporate categorical variables? Categorical variables
are very common in practice, especially with the use of survey data.

We devel oped three model s that we concluded were commonly encountered in
applied research: those with asmall number of |atent factorsand asmall number of
indicators per factor; those with asmall number of latent factors and alarge num-
ber of indicators per factor; and those with two or more latent factors regressed on
two or more measured exogenous variables. We selected one target model to rep-
resent each of these general model types. Our first model, Model 1, contained nine
measured variables and three latent factors. Six of the nine measured variables
loaded on asinglefactor (simpleloadings), and the remaining three measured vari-
ablesloaded on two factors (complex |oadings). Further, Factor 2 wasregressed on
Factor 1, and Factor 3 was regressed on Factor 2 (creating achain of causality for
thelatent variables). Thesethreemodelsare presented in Figures 1A, 1B, and 1C.

Our second model, Model 2, had the same basic structure as Model 1 but con-
tained 15 measured variables, with five indicators per factor. Twelve of the mea-
sured variables loaded on a single factor and three measured variables loaded on
two factors, and regression parameters were again present between adjacent latent
factors. Finally, Model 3 contained 13 measured variables with the same measure-
ment structure asModel 1 (threeindicators per factor) but added four observed ex-
ogenous variables. Factor 1 depended on al four correlated exogenous variables,
and Factors 2 and 3 depended on just the first and third exogenous variables.

The chain of causality between the latent variables made these models general
structural equation models rather than CFAs. We felt this was important because
chains of causality among latent variables are common in published research but
rarein structural equation model Monte Carlo simulations. Also, our models vary
in size. In fact, the similarity in structure between Models 1 and 2 allowed us to
compareresults solely on the basis of the size of the model. We a so introduced in-
creasing complexity, such as the exogenous variablesin Model 3.

There are tradeoffs in any Monte Carlo design. Choosing a general structural
equation model meant that we would not study CFASs. Introducing cross-loadings
meant that our measurement models were not “clean.” Though the external valid-
ity of the modelsin a Monte Carlo simulation will always be subject to criticism,
researchers can strive for a balance between external validity, manageability, and
answering specific research questions. One of the most useful strategies that are-
searcher canfollow isto choose model sthat resemblethosein published research.
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FIGURE 1A Mode 1, threelatent variables with three indicators and cross-loadings (dashed
lines indicate misspecifications).
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FIGURE 1B Model 2, three |atent variables with five indicators and cross-loadings (dashed
lines indicate misspecifications).

Step 3: Designing Specific Experimental Conditions

With atarget model in place, the next step isto determine the experimental condi-
tionsto vary inthesimulation. Asdiscussed previously, theactual conditionsthat a
researcher considerswill vary depending on the research question. In this section,
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FIGURE 1C Model 3, threelatent variableswith threeindicators, cross-loadings, and exoge-
nous variables (dashed lines indicate misspecifications).

we discuss some of the most common experimental conditions a researcher may
choose to evaluate.

One of the most important variablesin asimulation is sample size. Often we do
not know the properties of estimators or goodness-of -fit statisticsfor small to mod-
erate sample sizes. Therefore, amost universally, Monte Carlo simulations vary
sample size. The researcher has extensive choice in the number of sample sizesto
consider, but sample sizes under 100 are especially important. Some areas of re-
search, such as psychology or cross-national analysesin sociology or political sci-
ence, routinely use sample sizes under 100. Much remains to be understood about
the properties of estimators at such small sample sizes.

Two other conditions that are often varied in structural equation model Monte
Carlo smulations are the distribution of the observed variables (multinormally
distributed or not) and the estimation method (ML, generalized least squares,




Downloaded by [University North Carolina - Chapel Hill] at 11:47 03 September 2014

MONTE CARLO DESIGN 295

2SLS, asymptotic distribution free, etc.). Whether a researcher chooses to vary
these conditions will depend on his or her research questions.

An additional potential condition to vary is the extent of misspecification. If
we acknowledge that researchers rarely work with perfect models, then it isim-
portant to consider the effect of misspecification on estimation, goodness of fit,
and other outcomes. In a Monte Carlo simulation the true population model is
known (i.e., created by the researcher). Samples are drawn from this known pop-
ulation and models are estimated on those samples. The models can be correct or
misspecified. That is, the researcher can choose to estimate a model that is a
mirror of the population model, or he or she can estimate a model that is differ-
ent (i.e., misspecified) to some extent. In choosing misspecifications, we advise
the researcher to pick ones that range from trivial to severe and that are reason-
able theoreticaly.

Animportant question for misspecificationsin Monte Carlosiswhether to omit
paths or include paths that are not in the true popul ation model (see Curran, 1994,
for adiscussion of the benefits of each approach). Another issueisthat more than
one misspecification of amodel is possible. Researchers may want to consider in-
cluding several misspecifications of increasing severity. That is, one path could be
omitted, then two, then three, in three separate specifications. Other strategies for
increasing severity are also possible. Depending on the question of interest, re-
searchers might also consider estimating the null independence model (norelation
between the observed variables) as a specification.

To return to our running simulation example, our research questions dictated
that we vary sample size, estimation method, and misspecification. We chose
seven sample sizes—50, 75, 100, 200, 400, 800, and 1,000—along with two esti-
mators: ML and 2SLS. We chose to limit the complexity of our simulation by ig-
noring the issue of what happens under conditions of nonnormality. Our decision
was based on the belief that systematic examination of nonnormally distributed
variables would require a separate simulation with awide variety of distributions.
This would multiply the number of experimental design conditions beyond what
we could comfortably generate and analyze. So part of simulation design is to
know how to restrict your questions to a manageable size.

The misspecifications we chose for our modelsinvolved the cross-loadings and
the exogenous variables. We judged these omitted paths to be the most likely in
empirical research.l The misspecified paths were omitted and are denoted by
dashed lines in Figures 1A, 1B, and 1C. For each model type we selected five
model specifications: a properly specified model (labeled Specification 1), where
the estimated model perfectly corresponded to the population model; and four

1These misspecificationswere theoretically reasonable becauseit islikely that cross-loadings might
beignored by researcher, and it isalso likely that aresearcher might have the effect of exogenous vari-
ables go only to thefirst variable in the chain.
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misspecified models (Specifications 2, 3, 4, and 5). For Model 1, Specification 2
omitted the cross-loading linking Factor 2 with item 7; Specification 3 additionally
omitted the cross-loading linking Factor 6 with item 3; Specification 4 additionally
omitted the complex loading linking Factor 4 with item 1; and Specification 5 was
the standard null independence model. The four misspecifications of Model 1
therefore introduced increasing misspecification—first one cross-loading was
omitted, then two, and so on. Thus, Specification 4 was more severely
misspecified than Specification 3, which was in turn more severely misspecified
than Specification 2.

We similarly defined the misspecifications of Model 2. Specification 2 omitted
the cross-loading linking Factor 2 with item 11; Specification 3 additionally omit-
ted the cross-loading linking Factor 3 with item 10; Specification 4 additionally
omitted the cross-loading linking Factor 1 with item 6; and Specification 5 wasthe
standard null (uncorrelated variables) model.

The misspecifications of Model 3 were somewhat different: Specification 2
jointly omitted the set of three cross-loadings (Factor 2 to item 7, Factor 3 to item
6, and Factor 1 to item 4); Specification 3 jointly omitted the set of four regression
parameters (Factor 2 on Predictor 1, Factor 3 on Predictor 1, Factor 2 on Predictor
3, and Factor 3 on Predictor 3); Specification 4 jointly combined the omissions of
Specifications 2 and 3 (omission of the set of three factor loadings and the set of
four regression parameters); and Specification 5 was the standard null
(uncorrelated variables) model.

In sum, when the dust had cleared and we had decided on the specific experi-
mental conditionsto vary, there were 210 unique experimental conditions. Each of
three models had five specifications (one proper and four misspecified). Each of
these 15 “model types’ had seven sample sizes (50, 75, 100, 200, 400, 800, 1,000).
We estimated each with both the ML and 2SL S estimators. This resulted in 210
unique experimental conditions—three models by five specifications by seven
sampl e sizes by two estimation methods.2 It should now be apparent how exponen-
tial growth (and consequent problems with manageability) are easy to achievein
Monte Carlo simulations.

Step 4: Choosing Values of Population Parameters

At thispoint aresearcher has selected amodel (or models) and has determined the
appropriate experimental conditionsto be varied. The next step isto select specific
values for the population model parameters. Like the other steps, this process
should be a combination of theory, research, and utility. There are five issues to

2A rather amusing sidenoteisthat weoriginally considered thisproject tobea“ pilot” projectin prep-
aration for amuch larger study!
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consider in picking the values of the parameters. First, they should reflect values
commonly encountered in applied research. A traditional cutoff for a practically
(vs. statistically) significant coefficient is a standardized coefficient of .10. As
such, thisformsauseful lower bound for coefficient values. Second, the Rz values
the chosen coefficients produce shoul d al so be reasonabl e for applied research. We
recommend that the Res take values that are representative of the areas of research
with which oneismost concerned. For instance, R2 valueswith cross-sectional, in-
dividual-level datafrequently range between .2 and .8. Third, the parameters of the
model should be statistically significant, even at the smallest sample size of the
simulation.

Choosing values for the parameters becomes more complicated when
misspecifications are part of the design. A fourth important consideration in that
case is whether the model has enough power to detect the proposed
misspecifications at areasonable sample size. Alternatively, models may havetoo
much power to detect misspecificationsat all sample sizes. Researchers should in-
vestigate the power of their models (e.g., MacCalum, Browne, & Sugawara,
1996; Satorra & Saris, 1985) and select particular values for the coefficients to
produce areasonable power to detect them.3 Table 1 presents the power estimates
for our running example (we discuss the valueswe chose later inthis article). It il-
lustrates that, as would be expected, the power to detect misspecifications in-
creases with sample size, model complexity, and extent of misspecification. The
smallest model, Model 1, at the smallest sample sizes, has little power to detect
(.065) the most minor misspecification. At thelargest sample size, the power to de-
tect this misspecification rises to .635. At more severe misspecifications, or in
more complicated models, we reach power estimates of 1.0. The most important
feature of Table 1 isthe wide range of calculated estimates.

Thefifth consideration in choosing the val ues of the misspecified modelsisthe
amount of “bias’ in the estimates that will be introduced by the misspecifications.
At the most extreme misspecifications we would like to see nonnegligible biasin
the other estimated parameters. Table 2 presents a table of the expected bias for
Model 1'sfour specifications when the ML fitting function is applied to the popu-
|ation covariance matrix. Specification 1, which is the perfectly specified model,
shows no bias. The other specifications show bias increasing and encompassing
more parameters, and several of the biases are clearly nonnegligible, with values
exceeding 30%.

To summarize our decision processin choosing our parameter values, we based
these decisions on issues of effect size (e.g., selection of R? values and bias that
would be substantively interpretable), statistical significance (e.g., all parameters

3By power to detect, we mean the power to reject afalse model, using the chi-square test. If power is
too low, strongly misspecified models will likely not be rejected. If power is too high, then minor
misspecifications may be rejected too often.
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TABLE 1

Power Estimates as a Function of Sample Size and Misspecification

Model df Min FCN N=50 N=75 N=100 N=200 N=400 N=800 N=1000

Model 1

Specification 2 (omit A;>) 23 .01656 .065 .074 .084 127 .239 .509 .635

Specification 3 (omit A7z, Ag3) 24 .03763 .087 11 138 .267 .568 .926 977

Specification 4 (Omit Ava , Ags s Aaz) 25 09441 162 243 334 689 975 99 10
Model 2

Specification 2 (omit A112) 86 .03962 .068 .079 .091 150 313 .687 .823

Specification 3 (OMit Azs , Aros) 87 08275 096 127 163 348 744 992 .99

Specification 4 (omit A112, Aoz, Ae1) 88 .14081 133 194 .267 .602 .960 1999 1.0
Model 3

Specification 3 (OMit Yoy , Vos , Var, Vos) 54 38457 497 746 898 999 10 10 10

Specification 4 (omit A7z, Aez, Mgz, 57 .53688 .684 .907 .981 1.0 1.0 1.0 1.0

Vo1 Y23 Va1 Ya3)
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TABLE 2
Bias in Model 1
Specification 1 Specification 2 Specification 3 Specification 4
Population Percent Population Percent Population Percent Population Percent

Parameter Value Bias Value Bias Value Bias Value Bias
A1 1.0 — 10 0 1.0 0 1.0 0
A21 1.02 — 1.08 — 1.08 — 1.00 —
As1 1.0 — 10 0 1.0 0 1.0 0
a1 .300 — .300 0 .380 26.7 0.0° 100
A2 1.0 — 10 0 .936 6.4 1.206 20.6
As2 100 — 1.07 — 1.0° — 1.0° —
Ne2 10 — .960 -4.0 1.286 28.6 1.237 23.7
Ne3 .300 — 337 12.3 0.0 100 0.0 100
A2 .300 — 0.0° 100 0.0° 100 0.0 100
A3 10 — 1.328 328 1.338 338 1.341 34.1
As3 1.00 — 1.02 — 1.00 — 1.00 —
N3 1.0 — 1.0 0 1.0 0 1.0 0
B21 .600 — .600 0 5655 -75 .631 52
Ba2 .600 — .653 8.8 736 22.7 715 19.2
Wy 490 — 490 0 490 0 490 0
[P 314 — 314 0 310 -13 272 -134
Y3 314 — 232 —26.1 .188 —40.1 .198 —36.9

Fixed parameter. "Omitted parameter.
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were statistically significant even at the smallest sample size), and statistical
power (e.g., selecting values that would result in abroad range of power to detect
the misspecification acrossall samplesizes). For Model 1, the primary factor load-
ingswere set to astandardized value of .70 (unstandardized value 1.0) to represent
acommunality of 49%. The complex loadings were set to a standardized value of
.21 (unstandardized value .30). Finally, the regression parametersamong the latent
factorswere set to a standardized value of .60 (unstandardized value of .60) to rep-
resent amultiple R2 of 36%. For Model 2, all of the values were precisely those of
Model 1 except for the addition of two measured variables per factor. For Model 3,
the values of the factor loadings were equal to those of Model 1. However, the
standardized regression parameter between Factors 1 and 2 was .71 and between
Factors 2 and 3 was .54. These values differed from those of Models 1 and 2 given
that these are now partial regressionswith theinclusion of thefour exogenousvari-
ables. The population valueswe chose for each model areincluded in their respec-
tivefigures (1A, 1B, and 1C).

Some research questions may require that the values of the coefficients be var-
ied as an experimental condition. That is, aresearcher may choose multiple values
for the coefficients and run each set of values as a separate condition to be ana-
lyzed. An example of this can be found in Anderson and Gerbing (1984). In addi-
tion, the previous suggestions are guidelines. In specific applications, other criteria
may make more sense for the given question of interest. So it would be a mistake
and too confining to consider our guidelines as “hard and fast” rules.

Step 5: Choosing an Appropriate Software Package

The choice of a Monte Carlo modeling package should be based on the require-
mentsof themodeling design. Somesimulation capability isavailablein most SEM
packages, including AMOS, EQS, GAUSS/MECOSA, SAS/CALIS/IML, Fortran
(ISML), MPLUS, and PRELIS/LISREL. These packages have been reviewed in
general elsewhere (e.g., Hox, 1995; Waller, 1993). To avoid repetition, we only
briefly discuss factors to consider when choosing a software package.

Packages have different strengths and weaknesses depending on the research
question. Also, packages can change dramatically over time, adding new features
and altering old ones. Researchers should, therefore, at the time of their simula-
tion, review the possible software optionsto identify the optimal fit of softwareto
the particular research design. For example, some research designs may require
the software package to create nonnormal data, whereas others might require anal-
ysis of missing values. Bear in mind that multiple software packages may be
needed to produce all the datarelevant to a particular study.

For our Monte Carlo design, after much research we decided to utilize Version
5 of EQS (Bentler, 1995) for four reasons: a record of successful simulations in
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previous studies, an ability to generate nonnormal distributions, an ability to gen-
erate data and fit the model in a single step, and an ability to fit a misspecified
model to data generated from a different population model. However, EQS alone
was not adequate to meet all of our analytic needs. We thus also used SAS exten-
sively for data management, creation of additional fit statistics, and 2SL S estima-
tion (using Proc SYSLIN).

Step 6: Executing the Simulations

With atarget model designed and the values of the population parameters deter-
mined, aresearcher can now create population covariance matrices. In our case, we
created three population covariance matrices, one for each population model. The
actual process of running a simulation will vary by statistical package, so we de-
scribe the process by which we generated the data for our example in EQS. This
givesthe general flavor of simulation and introduces technical considerations that
cross al statistical packages.

Our simulated raw data was generated in EQS as random draws from our three
population matrices. Although there were 210 unique experimental conditions, we
generated 21 x 500 raw data sets in EQS. Specifically, we created 500 raw data
sets at each sample size for each model type (with three model types and seven
sample sizes, 21 x 500 raw data setsresult). We then fit each of the five specifica-
tionswithin model typeto the corresponding 500 data setsand produced parameter
estimates and fit statistics. For example, consider asingle raw data set generated
for Model 1 at N = 100—wefit all five specifications of Model 1 at N = 100 to the
same data set. Parameter estimates varied across specifications because of in-
creased bias. In addition, fit statistics changed to reflect the increasing
misspecification.

There are a number of technical considerations to consider in performing the
simulations, regardless of what package generates the data. The first is the selec-
tion of samples. The random draws can produce any number of data sets, but some
of these may suffer from problems. Specifically, some data sets may not converge
or converge to “improper solutions.” We call these “imperfect” samples, and the
first technical consideration is whether they should be kept in the analysis.4

There is debate about whether nonconverged samples should remain in Monte
Carlo simulations. Unless the object of interest is nonconverged samples, how-
ever, we suggest that aresearcher avoid including them in the analysis. If the pur-
pose of the Monte Carlo analysisisto provide realistic information to users of the

40Of course, thedefinition of a“ nonconverged” sampledependson the maximum number of iterations
aresearcher will allow before declaring the sample to be nonconverged. Based on our experience with
nonconverged models, we choose 100 iterations as our limit.
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technique, then nonconverged samples, which arerarely assessed in practice, will
provide irrelevant information and subsequently threaten external validity. It is
important to make the conditions of the Monte Carlo simulation match practice to
the greatest extent possible.

The researcher must also decide the fate of converged analyses with improper
solutions. Improper solutions are estimates that take on values that would be im-
possiblefor the corresponding parameters (such asanegative error variance). This
question is less clear-cut than nonconvergent samples, because researchers some-
times analyze models that have improper estimates whereas they should never in-
terpret models that have not converged. Perhaps the safest strategy is to do
analyseswith and without improper solutions. This strategy allows the assessment
of their influence on the conclusions of the experiment. Also, aresearcher can con-
duct tests of whether theimproper solution estimates are within sampling error of a
proper value (e.g., Chen, Bollen, Paxton, Curran, & Kirby, forthcoming). A re-
searcher should bear in mind that removing nonconverged and improper solutions
can reduce the “useable’ number of samples for the Monte Carlo analysis, and he
or she should generate sufficient number of samples to take account of the loss of
cases due to these two factors.

In our analysis, we decided the goal wasto generate 500 “good” replicationsfor
each perfect specification at each sample size.5 To achieve that many good replica-
tions, weinitially generated 550 raw data sets for most sample sizes (650 data sets
were generated for the smallest sample sizes [N = 50 and N = 75] because
nonconverged samples and improper solutions are more likely). We next fit the
properly specified models to these 550 raw data sets, some of which converged
and some of which did not. We selected the first 500 replications of theinitial pool
of 550 replicationsthat provided proper solutionsand discarded the remainder. For
example, if Model 2, N = 100, replication number 15 resulted in an improper solu-
tion, then it was discarded. If Model 1, N = 75, replication number 125 converged
and was proper, it wasincluded. However, if Model 3, N = 200, replication number
546 was converged and proper but 500 good replications had been obtained after
replication number 532, then number 546 would be discarded anyway. This strat-
egy resulted in 500 good solutions for each of the three properly specified condi-
tions across all seven sample sizes.

In the misspecified models, any samples that were identified as“imperfect” in
the perfectly specified model wereremoved. Therefore, in practice, only those 500
good solutions from the perfectly specified model were considered for the
misspecified models. It is also possible, however, that the misspecified model

SRemember that replications at each condition are necessary to generate the sampling distribution. In
theanalysisof the generated data, means and other statistics can be estimated using the 500 replications.
Five hundred replications providealarge enough samplesizeto accurately cal cul ate statisticswhiletak-
ing less computer time to generate than other options, like 1,000 replications.
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would create an improper solution in the misspecified estimation of that sample
(we did not encounter any nonconverged samples in the misspecified models, al-
though it is theoretically possible). The researcher would again need to decide
whether to keep or exclude those samples. Our decision wasto remove them. This
resulted in fewer than 500 samples for analysis for some of the misspecified mod-
els.6 As a concrete example, say for Model 1, N = 100, replication number 223
failed to converge under proper specification. This case would be excluded from
the perfect specification and all misspecificationsaswell. Similarly, if Model 2, N
=75, replication number 32 estimated an improper solution for the proper solution,
it would be removed from all misspecifications. Evenif the estimated solutionsfor
amisspecified model were all proper, the replication would not be part of the final
Monte Carlo analysis. To illustrate our selection process, we provide Figure 2.

Another technical consideration in simulation is the use of “seeds.” Random
draws can be controlled by giving the program astarting point. That is, if the same
seed (the starting point) is given in two subsequent analyses, the same datawill be
produced. Thisis away of controlling the “randomness’ of the random number
generation. It alows for replication and is the way we used the same raw data
across specifications. To acquire the seeds, we utilized a random number book
(e.g., Beyer, 1984; Research and Education Association, 1984) because random
numbers from calculators are not completely random.

Data generation takes time, which introduces several other technical consider-
ations. First, to achieve convergence as quickly aspossiblefor each replication, we
suggest that the popul ation parameters be used as starting val ues.” Second, we sug-
gest that researchers determine aprotocol for their datageneration becauseitisun-
likely that all the datawill be generated in asinglesitting. Having aprotocol means
that the data generation will be consistent across both time and collaborators. In
general, it isimpossible to have too much documentation during a Monte Carlo
simulation. The protocol for our simulation was simple:

EQS: Changes to Program Before Each Run
e Change sample size.

» Changefit output file name.
» Change data output file name.

8Another way to view theexclusion criteriafor the misspecified modelsisasfollows. Weutilized the
sameinitial pool of raw data sets generated for the perfectly specified models (550 replicationsfor N =
100 and greater, 650 replicationsfor N =50 and N = 75). For the misspecified models, however, there
were two criteriafor exclusion: (a) Cases were excluded if the misspecified model’ s solution was im-
proper, and (b) caseswereexcluded if that case had resulted in animproper sol ution for the proper speci-
fication, regardless of the properness of the solution under misspecification.

Starting values are needed because EQS estimates the model and producesfit statistics as part of its
data generation.
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Number of
Replications ™

650

Nonconverged or improper solutions under perfect specification
575
500 Additional replications removed to reach 500 cases
Perfectly Specified Model
500 good replications
0
500

Nonconverged or improper solutions under second specification
475

First Misspecification of Model
475 good replications

500

Nonconverged or improper solutions under third specification

466

Second Misspecification of Model 466 good replications

FIGURE 2 Selection of samples(N =50 or N=75). For N> 75, the picturelookssimilar, with
550 replications to begin.

» Change seed.
» Save as new program.

Modifications to Files After Each Run

» Delete output file.

e Rename datafile.

e Move datafile to data subdirectory.
e Move“fit” file to fit subdirectory.

A Monte Carlo simulation creates an enormous amount of output. Organization
istherefore key to control over the project both at the time of data generation and
during later analyses. Without clear, consistent naming conventions for files, it is
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likely that aresearcher will be unable to determine what was done after the simula-
tion is completed. Researchers should determine a naming convention for files
early in the project (before any datais generated) and modify it only if absolutely
necessary. Our naming convention was MxSxNxxx.xxX, where M indicated model
type (1, 2, or 3), S indicated specification (perfectly specified and the four
misspecifications), and N indicated sample size. Various extension labels indi-
cated whether the file was an EQS program (.eqs), afit file (.fit), a SAS program
(.sas), or various other types of programs.

To complete our discussion of thetechnical aspects of running asimulation, we
provide two sample programsfor EQSand SAS as Appendixes A and B. The EQS
sample program presents Specification 1 of Model 1, which isthe perfectly speci-
fied model. The paths described under the /EQUATIONS command therefore
match the diagram in Figure 1A perfectly. The misspecified models (such as
Model 1, Specification 2) would thus omit some pathsin the/EQUATIONS com-
mand. The matrix provided in the /IMATRIX command is the population
covariance matrix. It isthismatrix from which the random samplesaredrawn. The
lines at the end of the program are the commands for the simulation itself. Of spe-
cial interest are the requested parameter estimates and standard errors under
/OUTPUT, and the specification of the seed (19922197) and number of replica-
tions (650) under /SIMULATION.

The SAS program readsin the datafrom thefit files, transformsit, and outputsa
working SAS data set for future analyses. The input statement provides the vari-
ables placed into the fit file by EQS. These include technical information, such as
the method of estimation (method) and whether the sample was nonconverged
(nonconv), information about the goodness-of -fit statistics (e.g., modchi, dfi), the
parameter estimates (e.g., v7f3pe), and the standard errors (e.g., v7f3se). The next
section removes all nonconverged and improper solutions and keeps 500 good
samples. A few additional variables are created for reference and the datais output
to aSAS data set.8

Step 7: File Storage

A researcher beginning aMonte Carlo simulation is unlikely to realize how much
datawill becreatedinthe process. Ultimately, avast amount of computer spacewill
beneeded for storage. For example, our 500 setsof raw datafor N=1,000for Model
2, Specification 2 took up 108,900 kil obytes of space and the corresponding .fit file
took up 679 kilobytes. Indeed, our current master subdirectory requires over 300
megabytes of data storage. Space is cheap and getting cheaper, but researchers
should still consider space storage issues when performing a simulation. Another

8]t should also be noted that while EQS gave usthe ML estimates, we used SAS (and theraw datasets
output by EQS) to create the 2SL S (Bollen, 1996) estimates.
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consideration isthat the original files need to be kept safe during later analyses, and
multiple users may need to accessthefiles. In this section, we discussfile storageis-
suesin Monte Carlo simulations.

The first question a researcher should ask is whether the raw data needs to be
saved. The raw datafiles are typically those that take up the most amount of space.
Under some circumstances, saving the parameter estimates and goodness-of-fit sta-
tisticsis al that is required. In that case, the raw data can be deleted, especialy if
seeds are recorded and data generation programs saved (in that case the raw data sets
could be recreated if desired).

When there will be multiple users of the programs and data sets, it becomes cru-
cial to keep original programs and data sets safe. Often questions arise later in apro-
ject that can only be answered by going back to the data creation programs. If these
have been modified by one or more users, then it may be impossible to remember or
recreate the simulation conditions. Therefore, an “archive’ should be created to hold
all original programs. A separate “working” area should be designated for program-
ming. Files should not be modified outside the working area. Within the working
area, researchers can have three main subdirectoriesfor programming, a“testing” di-
rectory, a“finished programs” directory, and a “back-up” directory. All unfinished
programs are housed in the testing directory and, once finished, are moved to the pro-
grams directory and the back-up directory. One way to make your data both accessi-
ble and safe is to implement read-only conventions for all archived, finished, and
back-up files.®

To help present how a working Monte Carlo project could operate, we provide
Figure 3, apicture of the ML portion of thefile structurefor our Monte Carlo simula-
tion. To begin, consider the subdirectory labeled archive. Thisdirectory contains all
the original programs: the EQS simulation programs, the raw data files created by
EQS, the goodness-of-fit files created by EQS, and the original SAS programsto de-
termine improper solutions and obtain 500 good replications. These files are desig-
nated as read-only. Any member of the simulation group can access them for
reference, but no one can change them. They serve as a record of our process. The
working .fit files and SAS data sets have their own subdirectories. The safe method
of testing and saving working programsisillustrated under the “ sasprograms” direc-
tory. Once these were established, we burned the entire file structure on compact
discs for permanent storage and backup.

Step 8: Troubleshooting and Verification

Once the simulation is completed, the data stored, and programming begun, how do
you know whether you did it correctly? Fortunately, you can perform a number of

9If multipleusersareinvolvedinthe project, thenfile accessbecomesasimportant asfile storage. There
are many options for file access, including networks, mainframes, and the web.
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checksto provideverification that the simulation worked. For example, doraw data
fileswith larger sample sizes take up more storage space? Does the number of re-
sultant replications match what you asked the program to create? These are checks
for logical consistency. Another check iswhether the results seem reasonable. For
example, at sample sizes at or above 1,000, parameter estimates should be within
.01 of the popul ation parameter. Another check would be whether empirical power
estimates match the theoretically determined power estimates. That is, if agiven
model, specification, and sample size has .10 power to detect a misspecification,
then the chi-square test of fit should be rejected at that approximate frequency
across the 500 replications.

Step 9: Summarizing Results

Once the Monte Carlo simulation is completed, results obtained, and the data
verified, a researcher must determine how to present the results. Because Monte
Carlo simulations can produce so much data, data summary and presentation is
not an easy task. In this section we briefly discuss some ways to summarize and
present results.

There are three main ways to present output: descriptive, graphical, and infer-
ential. Descriptive statistics present information concisely and simply. Re-
searchersmay only need to present amean or variance of asampling distribution to
illustrate a point. Other descriptive statistics to consider reporting include the
mean relative bias {[(coefficient estimate—population parameter value)/popula-
tion parameter value] x 100}, or the mean, mean square error [(coefficient esti-
mate—popul ation parameter)?]. Correlation or covariance tables can also concisely
represent great quantities of data.

Graphical techniques are also extremely useful in presenting data. Figures such
as box plots, scattergrams, or power curves can succinctly demonstrate the find-
ings. Of course, the graphical technique a researcher chooses will depend on the
research question and findingsto be reported. Graphical representations of dataare
reviewed in anumber of excellent sources (e.g., Cleveland, 1993; Tufte, 1983).

Inferential statistics can augment the descriptive and graphical analysis. For ex-
ample, design factors such as sample size, model type, and estimation method can
be dummy or effect coded, and main effects and interactions among design factors
can be evaluated using standard regression procedures. Logistic regressions can be
used for categorical outcomes, and generalized least squares methods can be used
to account for heteroskedastic distributions of errors commonly found in simula-
tion outcomes. Taken together, these techniques allow for theformal testing of the
significance the design factors aswell asthe computation of various effect size es-
timates (e.g., percent of variance explained). Given the tremendous number of ob-
servations stemming from the multiple replications (e.g., for our 210 conditions
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we generated approximately 105,000 samples), it is common for all estimated ef-
fectsto drastically exceed traditional significancelevels. It isthusimportant toin-
terpret the meaningfulness of effects using effect sizes aswell.

CONCLUSION

Monte Carlo simulations are growing in popularity, as researchers consider the
small sample properties of estimators and goodness-of-fit statistics in SEM. Al-
though every simulationisdifferent, they also hold many featuresin common. This
article attempted to provide an overview of the design and implementation of
Monte Carlo simulationsfor structural equation modelswith the goal of aiding fu-
tureresearchersintheir projects. We used arunning examplethroughout the article
to provide a concrete example of aworking Monte Carlo project. Researchers are
likely to encounter many unique situationsin their own modeling, but we hopethat
this article provides a useful general orientation to get them started.
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APPENDIX A

Sample EQS Program for Model 1, Specification 1, Sample
Size 50

ITITLE Modd 1: 3-factor 9-indicator; primary loadings=1.0; secondary load-
ings=.30; regression beta=.60;
/SPECIFICATIONS

VAR=9; CAS=50; MET=ML; MAT=COQV;
/EQUATIONS

v1=1*fl+el;

v2=1f1+€2;

v3=1*f1+€e3;

v4=1*f2+.3*f1+e4;

v5=1f2+€5;

v6=1*f2+.3*f3+€6;

v7=1*3+.3*f2+e7;

v8=1f3+€8;

vO=1*f3+€9;

f1=d1,

f2=.6*f1+d2;

f3=.6*f2+d3;

/VARIANCES

el=.51*; e2=.51*; e3=.51*; e4=.2895*; e5=.51*;
€6=.2895*; €7=.2895*; €8=.51*; e9=.51*;
d1=.49*; d2=.3136*; d3=.3136*;
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IMATRIX

1

0.49 1

0.49 0.49 1

0.441 0.441 0.441 1

0.294 0.294 0.294 0.5782 1

0.34692 0.34692 0.34692 0.682276 0.5782 1

0.2646 0.2646 0.2646 0.52038 0.441 0.61446 1
0.1764 01764 0.1764 0.34692 0.294 0.441 0.5782
0.1764 01764 0.1764 0.34692 0.294 0.441 0.5782
0.49 1

ITEC

itr=100;

/OUTPUT

pa; se;

data=" c:\simproj\M L E\archive\fitim1s1n050.fit’;

/SIMULATION

seed=19922197,

replication=650;

population=matrix;

data="n50'";

save=con;

/PRINT

digit=6;

/END

APPENDIX B

Sample SAS Program for Model 1, Specification 1, Sample
Size 50

* MODEL 1
SPECIFICATION 1

50 CASES

filename inl ' c:\simproj\M L E\archive\fit\im1s1n050.fit’;
libname outl ' c:\simproj\sasdatal’;

*Model 1, Specification 1, N=50;
*'pe' =parameter estimate, ' se' =standard error, 'rb’ =relative bias;
*' s =sguared error;

1

311
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* note: rather than the typical 550 replications, this one had 650;

datag; infileinl;
input method concode nonconv nullchi modchi moddf modprob

nfi tli cfi gfi agfi rmsr srmsr rmsea rmscilo rmscihi iterate
elelpe e2e2pe e3e3pe ededpe esebpe ebebpe ererpe eBe8pe e9edpe
dldlpe d2d2pe d3d3pe vifipe v3flpe vaflpe v4f2pe v6f2pe vef3pe
v7f2pe v7f3pe vOf3pe f2flpe f3f2pe

elelse e2e2se e3e3se ededse ebebse ebebse e7e7se e8e8se e9e9se
dldlse d2d2se d3d3se viflse v3flse v4flse v4f2se v6f2se v6f3se
v7f2se v7f3se vOf3se f2flse f3f2seg;

*creating index variable that indexes observations;
index=_N_;

* going through and picking out the converged solutions only;
* first | keep only the converged solutions;

* then | also pick out only the ones with proper solutions;

* then | keep only the first 500 of the converged solutions;
data b; set a; where nonconv=0;

data bb; set b; where concode=0;

index2=_N_;

data c; set bb; where index2 < 501;

dataworking; set c;
* creating areject variable to record if chi-square was rejected;
reject=0; if modprob It .050 then reject=1;

* cleaning the RMSEA confidence intervals;

if rmscilo=—99 then rmscilo=.; if rmscihi=99 then rmscihi=.;
model=1; spec=1; n=50;

run;

proc means data=working; run;

data out1.m1s1n050; set working;





