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A large literature emphasizes the importance of testing for measurement equiv-

alence in scales that may be used as observed variables in structural equation

modeling applications. When the same construct is measured across more than

one developmental period, as in a longitudinal study, it can be especially critical

to establish measurement equivalence, or invariance, across the developmental

periods. Similarly, when data from more than one study are combined into a

single analysis, it is again important to assess measurement equivalence across the

data sources. Yet, how to incorporate nonequivalence when it is discovered is not

well described for applied researchers. Here, we present an item response theory

approach that can be used to create scale scores from measures while explicitly

accounting for nonequivalence. We demonstrate these methods in the context of

a latent curve analysis in which data from two separate studies are combined to

estimate a single longitudinal model spanning several developmental periods.
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INCORPORATING MEASUREMENT NONEQUIVALENCE 677

Empirically evaluating longitudinal trajectories of a construct over an extended

period of time is associated with a host of complexities. These complexities

include missing data that are both planned (e.g., due to an accelerated de-

sign) and unplanned (e.g., due to subject attrition), and potential measurement

nonequivalence due to developmental period or other factors. By combining

data sets from two or more existing longitudinal studies, researchers may be

able to consider a longer period of development than is covered by any single

study while also alleviating within-study sample size limitations due to missing

data. This approach has been termed mega-analysis (McArdle & Horn, 2002)

or cross-study analysis (Hussong, Flora, Curran, Chassin, & Zucker, 2008).

Prior to fitting structural equation latent curve models to repeated observa-

tions, it is essential to establish the equivalence, or invariance, of measurement

structures over time (e.g., Bollen & Curran, 2006; Khoo, West, Wu, & Kwok,

2006). For example, endorsement of an item about crying behavior may be

more strongly indicative of internalizing symptomatology for adolescents than

for younger children, among whom crying may be more normative. If this source

of nonequivalence is ignored, younger participants may be given spuriously

higher scores on an internalizing scale. By having artificially higher scores at

younger ages, the estimated longitudinal change in internalizing from childhood

to adolescence can be biased relative to the true change. In a cross-study analysis,

the importance of measurement equivalence is amplified because of the need

to establish invariance across the separate studies contributing the longitudinal

data. In this situation, certain characteristics of the sampling schemes of the

contributing studies may lead to different measurement properties that impact

subsequent conclusions drawn from the combined data set.

Although methods for testing measurement equivalence are well documented

(e.g., Reise, Widaman, & Pugh, 1993), procedures for dealing with nonequiv-

alence when it is found are not well described for applied researchers. Thus,

the primary goal for this article is to describe the use of methods drawing

from item response theory (IRT) that may be employed to create scale scores

that explicitly account for measurement nonequivalence. Use of such scores,

relative to standard scoring methods ignoring nonequivalence, leads to improved

validity of subsequent structural equation modeling (SEM), such as latent curve

analyses. Additionally, we describe similarities (and differences) between the

IRT approach and methods relying on confirmatory factor analysis (CFA). There-

fore, the purpose of this article is not to present new analytical developments,

but rather to show a detailed example of how to account for measurement

nonequivalence in practice.

Furthermore, this article demonstrates how these methods may be applied in

a cross-study analysis, where data from more than one study are combined to

estimate a single model. We present the approach for incorporating measure-

ment nonequivalence in the context of a longitudinal cross-study model initially

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
Y
o
r
k
 
U
n
i
v
e
r
s
i
t
y
 
L
i
b
r
a
r
i
e
s
]
 
A
t
:
 
1
7
:
2
1
 
1
4
 
O
c
t
o
b
e
r
 
2
0
0
8



678 FLORA ET AL.

presented by Hussong et al. (2008) examining internalizing symptomatology

from early childhood to late adolescence. Here, in addition to providing detailed

discussion of the IRT scoring procedure, we expand on those analyses by

comparing latent curve model results that account for measurement nonequiv-

alence with results that ignore measurement nonequivalence. In so doing, we

provide detailed discussion about when measurement nonequivalence is likely

to influence subsequent structural equation analyses.

ITEM RESPONSE THEORY

In structural equation growth modeling applications, repeated measures of an

outcome construct are commonly created from multi-item scales by calculat-

ing the sum or mean of item responses within a given time period, with the

items themselves typically producing dichotomous or ordinal distributions of

responses. The sum- and mean-score methods lead to values that are a simple

linear transformation of each other, and, if the items are dichotomous, the pro-

portion of endorsed items. However, these methods cannot account for potential

measurement nonequivalence in any straightforward fashion. IRT provides a

powerful alternative methodology to basic sum scoring that can be particularly

useful in longitudinal analysis (Curran, Edwards, Wirth, Hussong, & Chassin,

2007; Khoo et al., 2006; Seltzer, Frank, & Bryk, 1994). In particular, Cur-

ran et al. (2007) showed that the use of IRT-scaled scores, relative to simple

proportion scores, leads to greater individual variability in the observed scores

that can be used in subsequent analyses, such as a latent curve analysis. This

additional variability then has implications for finding statistically significant

model parameters, such as the variance of latent growth factors. Furthermore,

of key importance for this article is that IRT is readily extended to situations

in which there is measurement nonequivalence due to age differences or other

covariates.

IRT encompasses a class of measurement models for categorical item-level

data with the purpose of estimating parameters that describe the relation between

each item and a latent construct (see Embretson & Reise, 2000). A crucial

advantage of IRT is the ability to create scores on a common metric across more

than one experimental design (e.g., a cross-study analysis where two different

studies administer the same or similar instruments). Another advantage of IRT

is that, unlike sum- or mean-score approaches, items with stronger relations

to the latent construct are given more weight in scoring (i.e., through the

discrimination parameter). Additionally, by ordering items according to their

severity parameters, IRT-scaled scores, relative to sum or mean scores, more

closely approximate interval-level measurement, which is crucial for latent curve

modeling (see Khoo et al., 2006). Finally, as mentioned earlier, IRT easily
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INCORPORATING MEASUREMENT NONEQUIVALENCE 679

incorporates techniques for evaluating measurement equivalence across discrete

groups using tests of differential item functioning (DIF; e.g., Thissen, Steinberg,

& Wainer, 1993).

There are relatively few discussions available to applied researchers of how

to account for DIF explicitly in subsequent modeling analyses. Therefore, in

this article, we describe and demonstrate the incorporation of DIF for cre-

ating IRT-scaled scores for a measure of child and adolescent internalizing

symptomatology. We then use these scores as observed variables in a latent

curve model of internalizing from age 2 to 17. Furthermore, we show how this

IRT approach facilitates a cross-study analysis in which we use DIF testing

to establish a common scale of measurement across two longitudinal studies

and then fit a latent curve model to the combined data from both studies. In

addition to describing how to account for DIF, an important aspect of this article

is comparing IRT-scaled scores and subsequent growth model results that do

and do not incorporate DIF. In so doing, we examine DIF effect size to help

illuminate whether DIF is likely to have an effect on ensuing analyses using

IRT-scaled scores.

Two-Parameter Logistic Item Response Model

All IRT analyses presented here use the two-parameter logistic (2PL) model for

dichotomous items (Birnbaum, 1968). This model uses a logistic function, often

called a trace line or item characteristic curve, to describe the probability of

endorsing a given item j as

P.yj D 1j™/ D
1

1 C expŒ�1:7aj .™ � bj /�
; (1)

where yj is the observed response, aj is the discrimination parameter, and bj

is the severity parameter. The continuous latent construct measured by the set

of items is represented by ™. In the following analyses, ™ is internalizing symp-

tomatology as measured by the Child Behavior Checklist (CBCL; Achenbach

& Edelbrock, 1983). For scale identification purposes, ™ is usually assumed to

follow a normal distribution with a mean of zero and variance equal to one.

The discrimination (or slope) parameter describes the extent to which an item

is related to the latent construct, and the severity (or location) parameter defines

the point along the latent continuum at which there is a 50% probability of item

endorsement (the value of the severity parameter is also the inflection point of

the logistic curve for a given item). Important assumptions for the 2PL model

are that the set of items is unidimensional (i.e., there is a single latent construct,

™, accounting for the interrelations among items) and that the items are “locally

independent,” meaning that responses to a given item are completely indepen-

dent of other responses when controlling for ™. Although this article illustrates
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680 FLORA ET AL.

methods for dichotomous item response data, these are readily generalized to

ordinal item response data using Samejima’s (1969) graded response model, of

which the 2PL model is a special case (Thissen, Nelson, Rosa, & McLeod,

2001). Figure 1 provides an illustration of 2PL trace lines, estimated in the

analyses described later, for a single CBCL item that vary as a function of both

age and gender, thus showing measurement nonequivalence, or DIF.

FIGURE 1 Trace lines for “Cries a lot” by age and gender. Solid lines represent trace lines

for younger participants (age 2–11); dashed lines represent trace lines for older participants

(age 12–17).
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INCORPORATING MEASUREMENT NONEQUIVALENCE 681

Once the discrimination and severity parameters have been estimated for

each item in a scale, it is then possible to use these item parameters to compute

an estimate of the underlying ability score for each participant (see Thissen

& Orlando, 2001). In longitudinal applications where the same scale has been

administered to participants on multiple occasions, scores may be calculated for

each repeated measure of each participant (i.e., person- and time-specific scores).

These IRT scale scores may subsequently serve as the dependent variables in

standard longitudinal analyses, such as latent curve analysis (e.g., Bollen &

Curran, 2006).

Potential Effects of DIF

For longitudinal modeling results to be valid, it is critical that the item parameters

be sufficiently invariant across time. Or, as we elaborate later, if the item param-

eters show a nontrivial lack of invariance, it is of key importance to adjust the

scoring procedure to account for the measurement difference due to time. Fur-

thermore, it may be important to assess measurement equivalence across other

relevant study variables, such as gender, or, in the case of cross-study analysis,

study membership.1 Failure to find and account for measurement nonequivalence

compromises internal validity and could have undesired consequences for the

interpretation of models estimated from scale scores (regardless of whether

the scores are calculated based on IRT methods or more traditional methods;

e.g., Reise et al., 1993). Because latent curve models represent both latent

mean and covariance structures, measurement nonequivalence affecting either

observed means or observed covariances can produce misleading results. Thus,

accounting for measurement nonequivalence is even more important for these

longitudinal analyses. By introducing biases in observed means or covariances,

critical substantive results due to developmental status or other covariates could

be masked by measurement differences, or conversely, observed developmental

or covariate differences might be artifacts of measurement differences rather

than true differences.

The nature and size of the impact of measurement nonequivalence on final

model interpretations will depend on the direction and effect sizes associated

with each item showing DIF and how those DIF effects accumulate across

items to affect the scale as a whole. Several researchers have emphasized

that statistically significant group bias at the item level does not necessarily

translate into practically significant differences in test scores (e.g., Drasgow,

1In any given study, there may be many potential covariates that could be subjected to

measurement invariance testing. However, we recommend that researchers carefully consider theory

and prior psychometric analyses to choose a small number of important covariates for invariance

testing.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
Y
o
r
k
 
U
n
i
v
e
r
s
i
t
y
 
L
i
b
r
a
r
i
e
s
]
 
A
t
:
 
1
7
:
2
1
 
1
4
 
O
c
t
o
b
e
r
 
2
0
0
8



682 FLORA ET AL.

1987; Roznowski & Reith, 1999; Stark, Chernyshenko, & Drasgow, 2004). For

instance, if two separate items have DIF across two groups but in opposite

directions (e.g., one item may have stronger discrimination for males relative

to females, whereas another may have stronger discrimination for females than

males), these DIF effects will cancel each other out to some extent in the creation

of scale scores. Additionally, because items with greater discrimination are given

more weight in the scoring process than items with lower discrimination, we

would expect DIF effects from items with relatively low discrimination values

to have little influence on overall scale scores. However, the possible effects

of DIF on the scoring of a particular scale and subsequent data analyses using

those scores remains a question that should be answered empirically.

On finding significant DIF for a particular item, a researcher may choose to

ignore it, drop the offending item from the scale, or adapt a scoring procedure

that accounts for the measurement noninvariance across groups. As discussed

earlier, depending on the impact of DIF on overall scale scores, ignoring DIF

may severely confound measurement differences with true differences (or a

lack thereof) in scale scores due to theoretically important covariates such

as age. Dropping an item (or more) with DIF from the scale will have the

undesirable consequences of altering the scale’s content validity and reducing

its reliability. Therefore, we recommend the careful assessment of DIF effects,

and if these appear nontrivial, we recommend using scoring procedures that

explicitly account for these differences in measurement.

Following a brief description of the longitudinal data sources for our cross-

study analyses, we present an evaluation of measurement invariance in the CBCL

internalizing scale as a function of age, gender, and study using DIF tests for

the 2PL model. We then describe a straightforward approach to item parameter

estimation and scoring that takes into account the results from the DIF tests, thus

maximizing the validity of the IRT scale scores across age, gender, and study

for use in subsequent latent curve analysis. Ultimately, we present latent curve

model results using scores that do and do not take DIF into account to help

demonstrate whether and how DIF is likely to affect such an analysis. Readers

can obtain computer code for the analyses by contacting the first author via

electronic mail or at www.yorku.ca/dflora.

DATA AND SUBSTANTIVE BACKGROUND

We used data drawn from two existing longitudinal data sets, both coming from

studies that use an accelerated longitudinal design to compare the developmental

trajectories of various outcomes for children of alcoholics (COAs) with trajec-

tories for children of nonalcoholics (non-COAs). The Michigan Longitudinal

Study (MLS) consists of 583 children assessed from one to four times between
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INCORPORATING MEASUREMENT NONEQUIVALENCE 683

ages 2 and 15 (see Zucker & Fitzgerald, 1991; Zucker et al., 2000, for details).

The second study, the Adolescent and Family Development Project (AFDP),

consists of 443 adolescents assessed from one to three times between ages 10

and 17 (see Chassin, Barrera, Bech, & Kossak-Fuller, 1992; Chassin, Rogosch,

& Barrera, 1991, for details). Taken together, the two data sets span a period

from 2 to 17 years of age. In both studies, mothers reported on participant

internalizing symptomatology using the CBCL. For the current analyses, we

used 13 items from the anxiety-depression subscale.2

Our ultimate goal for the current analyses is to construct a model for in-

ternalizing that spans the full age range covered by the two studies and to

test whether and how a model-implied trajectory for COAs differs from that

for non-COAs (see Hussong et al., 2008, for theoretical background). Before

doing so, however, we establish measurement equivalence across the two studies

and across developmental period. We also test for measurement equivalence by

gender because prior studies suggest that internalizing-related items often show

different measurement properties according to gender (e.g., Schaeffer, 1988).

IRT ANALYTIC METHOD AND RESULTS

Our IRT analyses proceeded according to four stages: dimensionality assessment,

item calibration (i.e., IRT parameter estimation) and subsequent scale scoring

assuming no DIF across all items, DIF testing, and item calibration and scale

scoring accounting for DIF. We thus arrived at two sets of scale scores, one

under the assumption of no DIF and one accounting for DIF, for the purposes

of our investigation into the effects of measurement nonequivalence.

To conduct DIF testing and item calibration, it was necessary to create a “cali-

bration sample” consisting of independent observations drawn from the repeated

measures of the 1,026 participants. In doing so, we sought to keep the calibration

sample as large as possible to obtain accurate item parameter estimates while

maintaining age heterogeneity to facilitate testing for DIF according to age. We

thus created the calibration sample by randomly selecting one observation from

each participant’s set of repeated observations. (Although a given participant

was observed at as many as four different ages, that participant’s set of item

responses from only one age was selected for item calibration.) The calibra-

tion sample consisted of one set of 13 item responses for each of the 1,026

participants.

2For both studies, the Likert-type response scale ranged from 0 to 2; however, because of sparse

response frequencies at the highest value, we dichotomized each item to represent either the absence

(item score D 0) or presence (score D 1) of a given internalizing symptom.
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684 FLORA ET AL.

Dimensionality Assessment

As mentioned earlier, an important assumption for the 2PL IRT model is that the

set of items is unidimensional. Therefore, prior to conducting our IRT analyses,

we conducted exploratory factor analysis (EFA) for the 13 internalizing items,

applying a robust weighted least squares estimator to the interitem tetrachoric

correlations (see Flora & Curran, 2004). A scree test suggested that there was a

single, dominant factor. The root mean squared error of approximation (RMSEA)

statistic for the one-factor model was .053, further suggesting reasonable fit

of a one-factor model (see Browne & Cudeck, 1993). We obtained similar

results when we conducted separate EFAs within each group created for DIF

testing.

Item Calibration and Scoring Without DIF

Item calibration is the phase of the analysis where the discrimination and severity

parameters of the IRT model are estimated for each item. Because we ultimately

seek to analyze data from two studies simultaneously in a single latent curve

analysis of CBCL internalizing scores, it is essential that we first establish a

common metric for scoring the 13 items from the two studies. A variety of

methods, known as common-items equating, are available for scale equating

across two data sources using IRT when there is a set of items that is shared by,

or common to, the two samples being combined (see Kolen & Brennan, 2004,

for a detailed overview).

Here, because the two studies included the same set of 13 internalizing items

and because we are initially assuming that there is no DIF due to data source,

defining a common scale for the two studies was straightforward. Specifically,

to estimate a set of item parameters (and hence establish the internalizing scale)

that was constant across the two studies, we simply concatenated the item data

from the two samples into a single file, without inclusion of a variable for group

membership (i.e., data source). Thus, we treated the data from two samples

as if they came from a single source. Technically, this approach is a type of

common-items equating procedure called concurrent calibration (Wingersky &

Lord, 1984).3 Methodological research has shown that concurrent calibration

and other equating methods tend to produce very similar results (Kim & Co-

hen, 1988). Thus, for this initial item calibration, we assumed that there were

no measurement differences across the two studies and also ignored potential

DIF by age and gender. We then estimated the 2PL item parameters for each

of the 13 items using the full calibration sample of 1,026 with MULTILOG

3Unlike other common-items equating methods that rely on a multiple-group formulation,

concurrent calibration produces single-population item parameter estimates without the need to

transform item parameters according to the mean and variance shift across groups.
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INCORPORATING MEASUREMENT NONEQUIVALENCE 685

TABLE 1

Item Parameter Estimates and Standard Errors Assuming No Differential Item Functioning

Discrimination Severity

Item PC Estimate SE Estimate SE

1. Complains of loneliness .20 1.34 .15 1.38 .13

2. Cries a lot .20 0.81 .12 1.89 .26

3. Fears might do bad .17 1.40 .16 1.48 .14

4. Has to be perfect .43 1.13 .12 0.32 .09

5. Complains no one loves him/her .24 1.54 .15 1.06 .10

6. Feels worthless .21 2.36 .23 1.00 .07

7. Nervous/high strung/tense .21 1.32 .15 1.33 .13

8. Too fearful/anxious .17 1.89 .20 1.27 .10

9. Feels too guilty .11 2.58 .30 1.46 .09

10. Self-conscious .52 1.35 .13 �0.10 .07

11. Unhappy/sad/depressed .21 2.46 .24 0.97 .06

12. Worries .37 2.07 .19 0.44 .06

13. Feels others out to get him/her .10 1.53 .20 1.97 .18

Note. N D 1,026. P C D proportion of participants with valid data endorsing the item.

(Thissen, Chen, & Bock, 2003). The estimated item parameters are given in

Table 1.

In the scoring phase, we used the item parameter estimates from the cali-

bration phase to calculate IRT-scaled internalizing scores for each participant’s

set of repeated observations based on her or his item responses. In other words,

each participant contributed data from only one age (i.e., one randomly selected

repeated observation) in the item calibration phase, but then the set of item pa-

rameters estimated from the calibration phase was used to calculate scale scores

for all ages (i.e., all repeated observations for each participant). Specifically, we

estimated maximum a posteriori scale scores (MAPs; see Thissen & Orlando,

2001), as implemented by the scoring function in MULTILOG. In short, a given

participant’s scale score is estimated from the maximum of the posterior function

derived from the product of the trace lines associated with that person’s pattern

of responses to the 13 internalizing items (along with a standard normal prior

density). These MAPs then served as the observed dependent variables in the

subsequent latent curve analysis, described later.

DIF testing. Although a variety of methods have been developed for testing

DIF (see Wainer, 1993), here, we rely on the likelihood ratio method of Thissen

et al. (1993) because this approach has good statistical power and Type I error

control (see Wang & Yeh, 2003) and because it easily builds on the basic 2PL

model we have discussed so far. For dichotomous items, this method relies on a
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686 FLORA ET AL.

multiple-group generalization of the 2PL model, giving the probability of item

endorsement for item j in group g as

P.yjg D 1j™/ D
1

1 C expŒ�1:7ajg.™ � bjg/�
: (2)

The location and scale of ™ is identified by fixing its mean to 0 and variance to

1 for one of the groups; this group is often called the reference group, and a

second group for which the mean and variance must be estimated is often called

the focal group.4

DIF testing proceeds by comparing the fit of a model with the discrimination

and severity parameters allowed to be free across groups with the fit of a model

where these parameters are constrained to be equal across groups. Specifically,

the familiar likelihood ratio statistic is calculated from these two models, such

that

G2.d:f:/ D �2.l lModel 1 � l lModel 2/; (3)

where l lModel 1 is the log-likelihood value of the model where item parameters

are equal across groups and l lModel 2 is the log-likelihood value of the model

where item parameters differ across groups. To test for DIF in a single item j ,

the value of G2 is evaluated against a ¦2 distribution with degrees of freedom

equal to two if both the discrimination and severity parameter are freed across

groups for DIF testing. If it may be assumed that the discrimination parameter

does not vary across groups, then it is possible to test for DIF in the severity

parameter only, in which case G2 is evaluated against a ¦2 distribution with

1 df. G2 tests the null hypothesis that the parameters of an item’s trace line do

not differ between groups; if the statistic is significant, there is sample evidence

that the item has DIF.

Often, researchers will choose a subset of items to serve as an “anchor”

for which it is assumed a priori from theory or previous research that there is

no DIF. The anchor items are constrained to have equal parameters across all

groups and thus provide a basis for estimating the group-mean difference on the

latent construct (see Thissen et al., 1993). Alternatively, one can test for DIF in

each item separately without designating an anchor by fitting a series of models

in which a single item is tested for DIF with all remaining items serving as

an anchor. We followed the latter procedure for the current analyses because

we did not have solid theoretical expectations about which of the 13 items in

4Note that it is possible to estimate separate item parameters for several groups simultaneously.

However, in this article, our DIF analyses compare only two groups because of sample size

considerations.
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INCORPORATING MEASUREMENT NONEQUIVALENCE 687

the CBCL anxiety-depression subscale would display DIF according to age.

Using standard IRT software such as MULTILOG, this approach can be quite

time consuming given the number of separate models that must be estimated.

Fortunately, the freely available software IRTLRDIF (Thissen, 2001) automates

the process.

Another potential limitation of testing for DIF across multiple items is that

a large number of significance tests accumulates, thus raising concerns about

family-wise Type I error. Williams, Jones, and Tukey (1999) discussed the

benefits of a procedure by Benjamini and Hochberg (1995) for controlling the

false discovery rate associated with multiple tests relative to the well-known

Bonferroni multiple comparison adjustment. The Benjamini-Hochberg procedure

is easy to implement (see Thissen, Steinberg, & Kuang, 2002) and has been

successfully applied in DIF testing contexts (e.g., Steinberg, 2001). In the current

analyses we have also used the Benjamini–Hochberg criteria for determining that

a given item has significant DIF in the context of DIF testing across all 13 items.

We first tested for age-related DIF in the 13 CBCL items, pooling data across

the two studies. Given the goal of assessing measurement invariance as a function

of age, ideally we would have tested for DIF across each pair of adjacent ages

(i.e., age 2 vs. age 3, age 3 vs. age 4, etc.). This approach is common in

educational settings where large samples of participants are commonly sampled

within each school grade (e.g., Thissen, Sathy, Flora, Edwards, & Vevea, 2001).

However, doing so would have severely depleted our within-group sample sizes

given that the full calibration sample of 1,026 consisted of observations drawn

at each age from 2 to 17. Thus, we dichotomized the calibration sample into two

groups, young (age 2–11; n D 475) and old (age 12–17; n D 551). In addition

to providing ample sample size for each of the two groups, it is important to note

that there is also a theoretical basis for this age cutoff based on developmental

patterns of internalizing symptomatology (see Angold & Costello, 2001).

Seven of the 13 items showed significant DIF across these age groups. Four

items had DIF in both the discrimination and severity parameters: Item 2, “cries

a lot”; Item 3, “fears he or she might do something bad”; Item 4, “has to be

perfect”; and Item 5, “complains no one loves him or her.” With the exception

of Item 4, the discrimination parameter was greater for older than younger

participants for each of these items, indicating that there is a stronger relation

between each item and the underlying internalizing construct among older par-

ticipants than among younger participants (or, equivalently, the items have a

greater amount of measurement error with younger participants). The severity

parameter of Items 2 and 5 was greater for older participants, indicating that older

participants endorsing these items tended to have higher levels of internalizing

than younger participants. For Items 3 and 4, the severity parameter was greater

for younger participants, indicating that younger participants endorsing these

items tended to have higher levels of internalizing than older participants. Three
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688 FLORA ET AL.

items had DIF in the severity parameter only: Item 1, “complains of loneliness”;

Item 8, “too fearful or anxious”; and Item 9, “feels too guilty.” With Items 1

and 8, the severity parameter was greater, and thus indicative of higher levels

of internalizing, for older participants, whereas the severity parameter of Item 9

was greater for younger participants.

Although this DIF testing stage of our analyses produced specific item pa-

rameter estimates, these estimates pertain to the situation where parameters are

free to vary due to DIF only one item at a time. Therefore, we present specific

parameter estimates and discuss effect sizes for these significant DIF tests later

in the section on item calibration, where we account for DIF in multiple items

simultaneously.

Because we wanted to account for age DIF while testing gender DIF, we

implemented a procedure to allow each item with age DIF to have two sets of

item parameters, one set for younger participants and one for older participants.

Specifically, if item j was characterized by age DIF, we created two new

item response variables: Item j -young consisted of responses to item j for

younger participants but was set as missing for older participants, and item

j -old contained responses for older participants but was missing for younger

participants (see Wainer, 1993, p. 130). These new items, which we refer to as

subitems, then replaced the original item in subsequent analyses, thus accounting

for age DIF.

Several items and subitems displayed gender DIF. In particular, the subitem

created for young participants from Item 2 (“cries a lot”) had a significant gender

difference in the severity parameter, which was greater for males than females,

but not in the discrimination parameter. The subitem for old participants created

from Item 2 had significant gender differences in both discrimination (such that

it was greater for females) and severity (such that it was greater for males).

Finally, there was also a significant gender difference in the severity of the

subitem created for old participants from Item 8 (“too fearful or anxious”) such

that the severity was greater for females.

As earlier, we created additional subitems to account for gender DIF so that

we could next test for DIF according to study membership while accounting for

both age and gender DIF. No items or subitems displayed significant study DIF,

indicating that any potential sources of measurement nonequivalence across the

two data sources were explained by age differences or gender differences.5

5Our decision to estimate DIF according to age first, followed by gender and study, may appear

somewhat arbitrary. However, given that our primary focus here is on the incorporation of DIF in

longitudinal analyses spanning several developmental periods, we felt that establishing measurement

equivalence according to age was of primary importance. We chose to examine DIF according

to study last because it was our hope that any measurement differences across studies would be

accounted for by differences in the age and gender distributions of each study.
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INCORPORATING MEASUREMENT NONEQUIVALENCE 689

Item Calibration and Scoring With DIF

We fit the 2PL IRT model to the internalizing item response data from the

calibration sample, again using MULTILOG. To account for age and gender

DIF, item parameters were estimated separately for subitems created as a result

of DIF testing. If an item had significant DIF in the severity parameter but not

the discrimination parameter, for parsimony, the discrimination parameter was

constrained to be equal across the two subitems created to account for DIF. The

results of this item calibration are shown in Table 2.

Following Steinberg and Thissen (2006), we view direct comparisons between

item parameter estimates as “the most straightforward presentation of effect size”

TABLE 2

Item Parameter Estimates and Standard Errors Accounting

for Differential Item Functioning

Discrimination Severity

Item PC Estimate SE Estimate SE

1. Complains of loneliness (young)a .20 1.48 .12 1.06 .12

1. Complains of loneliness (old)a .19 1.48 .12 1.47 .12

2. Cries a lot (young female)a .36 0.76 .10 0.59 .34

2. Cries a lot (young male)a .24 0.76 .10 1.49 .24

2. Cries a lot (old female) .23 1.98 .40 1.24 .15

2. Cries a lot (old male) .08 1.07 .32 2.76 .65

3. Fears might do bad (young) .17 1.09 .22 1.52 .30

3. Fears might do bad (old) .17 1.91 .27 1.40 .13

4. Has to be perfect (young) .32 1.64 .23 0.43 .11

4. Has to be perfect (old) .52 0.79 .15 0.06 .16

5. Complains no one loves him/her (young) .23 1.32 .22 0.96 .18

5. Complains no one loves him/her (old) .24 1.96 .26 1.07 .10

6. Feels worthless .21 2.44 .24 0.98 .06

7. Nervous/high strung/tense .21 1.34 .15 1.30 .13

8. Too fearful/anxious (young female)a .09 2.00 .16 1.20 .11

8. Too fearful/anxious (young male)a .16 2.00 .16 1.20 .11

8. Too fearful/anxious (old female)a .19 2.00 .16 1.41 .13

8. Too fearful/anxious (old male)a .21 2.00 .16 1.11 .12

9. Feels too guilty (young)a .05 2.62 .24 1.70 .14

9. Feels too guilty (old)a .17 2.62 .24 1.31 .08

10. Self-conscious .52 1.37 .14 �0.11 .07

11. Unhappy/sad/depressed .21 2.49 .25 0.95 .06

12. Worries .37 2.07 .19 0.43 .06

13. Feels others out to get him/her .10 1.55 .21 1.93 .18

Note. N D 1,026. P D proportion of participants with valid data endorsing the item.
aThese subitems had discrimination parameters constrained to be equal across groups as

suggested by the differential item functioning results.
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690 FLORA ET AL.

(p. 405) for DIF. Differences in the discrimination parameter across groups

reflect differences in the change in log odds of item endorsement per unit

change in theta (the latent construct measured by the item), holding the severity

parameter constant. Severity parameter differences correspond to differences in

the observed rates of item endorsement (in population standard deviation units),

holding the discrimination parameter constant (see Steinberg & Thissen, 2006).

When both item parameters differ across groups, graphical displays offer the

most effective means of demonstrating DIF effect size (Steinberg & Thissen,

2006; also see Orlando & Marshall, 2002). Therefore, trace lines for subitems

created as a result of significant DIF in both the discrimination and slope

parameters are illustrated in Figures 1 to 4.

The trace lines for Item 2, “cries a lot” (Figure 1) are particularly interesting,

in that this item had significant DIF as a function of both age and gender.

For both males and females, the steepness of the dashed line relative to the

solid line indicates that this item was notably more discriminating among older

participants than among younger participants. Among younger participants, this

item does not appear to be strongly related to the latent construct. This result

is intuitively appealing because some younger children may be prone to crying

regardless of their standing on the underlying construct of internalizing, whereas

frequent crying should be more strongly indicative of psychological distress

among adolescents. Furthermore, for both younger and older participants, the

trace lines for boys are shifted to the right relative to those for girls, indicating

that this item is more likely to be endorsed by girls. This result is consistent with

FIGURE 2 Trace lines for “Fears he/she might do something bad” by age. Solid line

represents trace line for younger participants (age 2–11); dashed line represents trace line

for older participants (age 12–17).
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INCORPORATING MEASUREMENT NONEQUIVALENCE 691

FIGURE 3 Trace lines for “Complains no one loves him/her” by age. Solid line represents

trace line for younger participants (age 2–11); dashed line represents trace line for older

participants (age 12–17).

FIGURE 4 Trace lines for “Has to be perfect” by age. Solid line represents trace line for

younger participants (age 2–11); dashed line represents trace line for older participants (age

12–17).
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692 FLORA ET AL.

previous studies examining gender DIF among items related to crying behavior

(e.g., Schaeffer, 1988). The size of the gaps between the solid and dashed trace

lines are indicative of the overall DIF effect size for these items; relative to the

trace lines in Figures 2 to 4, this item has larger DIF effect size. However, it

is important to note that for the male trace lines in Figure 1, although the gap

between the solid and dashed lines is notable, both trace lines are at the upper end

of the theta continuum (severity D 1.49 for young, 2.76 for old) where there are

relatively few participants. Thus, this item primarily serves to distinguish among

male participants with particularly high levels of internalizing, especially among

older male participants.

The trace lines for Item 3, “fears he/she might do something bad” (Figure 2),

and Item 5, “complains no one loves him/her” (Figure 3), are similar in that

for lower ranges of the latent internalizing continuum, younger participants are

more likely to endorse the item, but for upper ranges of the continuum, older

participants are more likely to endorse the item. The trace lines for Item 4,

“feels he/she has to be perfect” (Figure 4), show the opposite pattern. Again,

the sizes of the gaps between the dashed line and the solid line are indicative of

the DIF effect sizes for these items. This DIF effect size is strongest in Figure 4,

particularly at the lower end of the latent continuum, whereas in Figures 2 and

3, the separate trace lines appear quite close to each other, indicating small DIF

effects.

For items with DIF in only the severity parameter, the calibration results

suggest that the DIF effect sizes are quite small. The most notable exception

again pertains to the “cries a lot” item. When this item was split into separate

subitems for young and old participants, the “young” subitem showed significant

gender DIF in the severity parameter but not the discrimination parameter.

Thus, the “young” subitem was divided further into two subitems by gender.

The severity parameter estimate for the “young female” subitem equaled 0.59,

whereas the severity parameter estimate for the “young male” subitem was 1.49.

Thus, the gender DIF effect size for these two subitems was such that the rate

of item endorsement was nearly 1 SD unit lower for boys than for girls (where

1 SD unit refers to the assumed population standard deviation of the latent

internalizing construct). Other items with significant DIF in only the severity

parameter showed DIF effect sizes less than half of 1 SD unit (i.e., differences

in severity parameters across corresponding subitems of less than .50).

In sum, although we found statistically significant DIF according to age,

gender, or both, for 7 of the 13 internalizing items, the effects associated

with these measurement differences tended to be small. Thus, this analysis

suggests that the general IRT likelihood ratio testing method for DIF detection

is associated with strong inferential power. Later, we discuss the implications of

these individual, item-level DIF effects for the overall impact of DIF across the

scale as a whole.
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INCORPORATING MEASUREMENT NONEQUIVALENCE 693

Next, we calculated scores for the internalizing scale, again as MAPs, that

account for these DIF effects. Specifically, these scores were calculated accord-

ing to the item calibration described earlier, but allowed items with significant

DIF to have different parameters according to age or gender (i.e., through the

use of subitems). To evaluate the overall impact of DIF on test scores, we then

compared these scale scores with those that were created under the assumption

of no DIF for any item. Within each age from 2 to 17, these scale scores were

highly correlated, which is consistent with other studies that report correlations

of IRT-scaled scores that account for DIF with scores that ignore DIF (e.g.,

Orlando & Marshall, 2002). Despite these high correlations, no comparisons

have been made regarding how the use of scores that incorporate DIF might

impact model fitting relative to the use of scores ignoring DIF. We explore this

issue later, where we report the results of a latent curve analysis using scores

that do and do not account for DIF.

LATENT CURVE ANALYSIS

After we estimated IRT-based internalizing scores for each participant’s set of

repeated measures, we used these scores to estimate a piecewise linear structural

equation latent curve model (e.g., Bollen & Curran, 2006, pp. 103–106). We

specified an identical model for the internalizing scores that accounted for

DIF and for the scores that ignored DIF. Specifically, this model consisted of

three latent growth factors: The first linear slope represented latent change in

internalizing from age 2 to age 7, the second linear slope represented latent

change in internalizing from age 7 to 17, and the intercept, or status, factor

represented the level of internalizing at age 12 (see Hussong et al., 2008,

for further details). Additionally, these growth factors were regressed on study

membership (i.e., whether a given participant came from the MLS sample or the

AFDP sample), gender, and parental alcoholism (i.e., COA status, or whether

participants came from a family with at least one alcoholic parent).6 Thus,

despite testing for study differences in the measurement phase of our analyses,

we still included a covariate for study membership in the growth modeling phase

to account for the possibility that participants from the two studies showed

different trajectories of internalizing. Additionally, to account for the fact that

both studies used an accelerated longitudinal design, leading to a substantial

amount of missing data within each age, we estimated the model using the full-

6Because all participants contributing data from age 2 to age 7 were from the MLS study, the

first slope factor was not regressed on study membership. Here, we report results using only a subset

of the covariates considered in Hussong et al. (2008).
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694 FLORA ET AL.

information maximum likelihood method (e.g., Arbuckle, 1996) implemented

with Mplus software (L. K. Muthén & Muthén, 1998).

Table 3 presents parameter estimates, standard errors, and associated p values

for the latent curve models estimated using the IRT scores under the assumption

of no DIF and using the IRT scores that account for DIF. Figure 5 presents

the model-predicted internalizing trajectories for COAs and controls estimated

from the IRT scores assuming no DIF, superimposed over the observed means

of those scores. Many, but not all, of the general inferential conclusions are

consistent across the two sets of IRT scores. Specifically, there is a significant

average increase in internalizing from age 2 to 7 coupled with a significant

average decrease from age 7 to 17, regardless of whether scores account for

DIF. Further, both sets of scores detected significant effects of study, gender, and

parent alcoholism on the latent intercept factor, such that age 12 internalizing

was, on average, greater for AFDP participants than MLS participants, greater

for females than males, and greater for COAs than for non-COAs. Additionally,

both sets of scores detected significant effects of gender and parent alcoholism

TABLE 3

Results of Piecewise Growth Model Fitted to Item Response Theory (IRT) Scores

Calculated Under the Assumption of No Differential Item Functioning (DIF)

and to IRT Scores Accounting for DIF

Assuming No DIF Accounting for DIF

Parameter Estimate SE p Estimate SE p

Latent intercept factor

Intercept .335 .053 <.0001 .337 .052 <.0001

Study effect �.457 .058 <.0001 �.445 .057 <.0001

Gender effect �.089 .049 .0679 �.086 .047 .0709

Parent alcoholism effect .167 .054 .0021 .165 .053 .0020

Residual variance .402 .025 <.0001 .386 .024 <.0001

First latent slope factor (age 2–7)

Intercept .101 .036 .0048 .107 .035 .0025

Gender effect .043 .031 .1745 .039 .031 .2128

Parent alcoholism effect �.010 .028 .7151 �.011 .027 .6862

Residual variance .000a .000a

Second latent slope factor (age 7–17)

Intercept �.041 .016 .0131 �.038 .016 .0178

Study effect .025 .017 .1357 .031 .017 .0601

Gender effect �.041 .012 .0010 �.042 .012 .0007

Parent alcoholism effect .022 .013 .0889 .023 .013 .0774

Residual variance .002 .001 .0320 .002 .001 .0286

Note. N D 1,026.
aThis parameter estimate was constrained to zero to arrive at proper solution.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
Y
o
r
k
 
U
n
i
v
e
r
s
i
t
y
 
L
i
b
r
a
r
i
e
s
]
 
A
t
:
 
1
7
:
2
1
 
1
4
 
O
c
t
o
b
e
r
 
2
0
0
8



INCORPORATING MEASUREMENT NONEQUIVALENCE 695

FIGURE 5 Model-predicted trajectories for children of alcoholics and control participants.
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696 FLORA ET AL.

on the second slope factor, such that males showed a greater average decrease

in internalizing from age 7 to 17 than females and non-COAs showed a greater

average decrease than COAs. See Hussong et al. (2008) for further details and

conceptual discussion of these results.

The fact that we obtained similar growth modeling results when DIF was

ignored relative to when DIF was included is not surprising given that the

DIF effect sizes already described were generally small. The only inferential

conclusion that differed according to whether the scale scores accounted for DIF

pertained to the regression of the second slope factor on the study membership

variable. Specifically, the change in internalizing from age 7 to 17 did not

significantly vary according to study when the model was estimated using

scores that ignored DIF .p D :14/. Yet, study was marginally significantly

associated with this slope factor when DIF was accounted for .p D :06/, such

that internalizing scores decreased more, on average, for participants from the

AFDP study than for those from the MFS study.

DISCUSSION

Earlier, we demonstrated a methodology based on IRT that accounts for po-

tential measurement nonequivalence due to age, gender, and data source, build-

ing toward a latent curve model fitted to repeated measures of internalizing

scores spanning several developmental periods, from early childhood to late

adolescence. Our analyses began with formal tests of DIF, followed by the

item calibration phase of the analysis, where the 2PL item parameters for the

internalizing items were estimated. Importantly, we accounted for measurement

nonequivalence by allowing items showing significant DIF to have more than

one set of item parameters across the groups for which the item had differing

measurement properties (i.e., through the use of subitems). Additionally, we

defined a common internalizing scale for the two data sources using concurrent

calibration.

Once the item parameters were estimated, we discussed effect sizes describing

the extent to which statistically significant DIF was associated with observed

differences in item response patterns across age and gender groups. Although

several items showed statistically significant DIF, most of the associated effects

appeared small. We next estimated IRT scale scores for the repeated measures

of internalizing according to the estimates from the item calibration phase. We

created two sets of scores: one that accounted for age and gender DIF and

another that ignored DIF. Finally, we fitted an identical piecewise linear latent

curve model to each set of scores.

In accordance with other researchers (e.g., Khoo et al., 2006), we have

stressed the importance of establishing measurement invariance across time

in the context of longitudinal studies. However, although there is a relatively
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INCORPORATING MEASUREMENT NONEQUIVALENCE 697

large literature on methods for testing measurement invariance, very few authors

have described methods for actually dealing with measurement nonequivalence

(i.e., DIF) once it has been found. Thus, the key aspect of our work here is

that we have demonstrated a method using IRT for incorporating measurement

nonequivalence in the creation of a scale that can be subsequently used in a

latent curve analysis or other SEM applications.

When Does Nonequivalence Matter?

We noted that although 7 of the 13 internalizing items showed significant

nonequivalence, or DIF, the effect sizes associated with these were small. Ac-

cordingly, the particular growth modeling results we presented earlier suggested

that whether DIF was accounted for in the creation of internalizing scores had

little impact on the inferences drawn from the final growth models that were fitted

to these scores. This finding is in line with the assertions of several authors (e.g.,

Roznowski & Reith, 1999; Stark et al., 2004) that nonequivalence across groups

at the item level often does not translate to invariance at the level of the scale as

a whole. For instance, earlier we described how the age DIF effect for Item 4,

“feels he/she has to be perfect,” was in the opposite direction and somewhat

larger relative to the DIF effects for Item 3, “fears he/she might do something

bad,” and Item 5, “complains no one loves him/her.” Thus, when scores are

calculated for a scale incorporating both of these items, the DIF effects cancel

out to some extent. Additionally, we already argued that only one of the items,

“cries a lot,” showed substantial DIF effect sizes. As this is but one of 13 items

contributing to the scale, we might expect that its DIF effect, however large,

might have relatively little influence on overall scale scores. Finally, because

items with greater discrimination are given more weight in the scoring process

than items with lower discrimination, we would expect DIF effects from items

with relatively low discrimination values to have little influence on overall scale

scores. Here, most of the items with large discrimination values (e.g., > 2.00)

did not have statistically significant DIF. Therefore, for these reasons, we did

not expect that accounting for DIF would lead to substantially different scores

for the internalizing scale, despite the fact that 7 of the 13 items had statistically

significant DIF.

Conversely, measurement nonequivalence will affect overall scale scores when

a large proportion of items have large DIF effects (i.e., large differences in

discrimination or severity parameters across groups) that occur in the same

direction for each item. For example, in the preceding analyses, if we had

found that severity parameters were consistently lower, by a relatively large

amount, for younger participants relative to older participants across all items

showing DIF, then we would expect this source of nonequivalence to have

a substantial effect on the scale as a whole. As a result, ignoring these DIF

effects would then distort the latent curve model representation of true change
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698 FLORA ET AL.

in overall internalizing behavior across developmental periods. Or, if we had

found that substantial DIF in discrimination parameters such that several items

were consistently more discriminating among females than among males, this

effect would have ramifications for the reliability of the internalizing scale

because of the relationship between item discrimination and measurement error.

Ignoring this DIF effect would then affect the statistical power for finding

gender differences in the latent curve model. Nonetheless, even subtle DIF

effects on scale scores can affect parameter estimates, potentially leading to

different inferential conclusions. For instance, accounting for small DIF could

determine whether a particular p value reaches statistical significance or just

misses significance (e.g., p D :051 vs. .049). Additional work is needed to

delineate more clearly the situations under which measurement nonequivalence

due to age or other factors is most likely to influence results of latent curve

analyses or other SEM applications.

Another important aspect of our analyses is that we have combined data

from two studies to form what may be called a “cross-study” analysis. Just as

we emphasized the establishment of a common scale as a function of age, we

also noted the necessity of establishing a common scale across these two data

sources. As mentioned already, we did not find that any of the internalizing items

had DIF across studies. However, if an item had DIF according to data source,

we would have incorporated this DIF by estimating separate item parameters

for the two data sources, just as we did for items showing significant age or

gender DIF. It was also relatively simple for us to place the data from the

two studies onto a common scale because the same 13 internalizing items were

administered in both studies. Yet, in other applications, it may be that the studies

being combined administer different item sets for the measurement of the same

theoretical construct. In this case, it is still theoretically possible to define a

common scale across studies as long as there remain items in common (see

Kolen & Brennan, 2004).

There are potential limitations to our approach. For instance, we tested for

age-related DIF among the internalizing items by dichotomizing our calibration

sample into only two groups, young and old, potentially removing more subtle

effects that may occur across shorter developmental periods. In that DIF testing

methods rely on multiple-group item response models, it was necessary to treat

age as a discrete variable. However, as already mentioned, an ideal analysis

would have tested for DIF across more age groups. Still, we felt that our available

sample sizes would not accurately support a more fine-tuned assessment of DIF

as a function of age. Similarly, it is theoretically possible to test for age and

gender differences simultaneously by creating four groups from crossing the

young and old groups with the male and female groups, and then estimating

four-group rather than two-group IRT models. However, again because of sample

size restrictions, we preferred to test age and gender DIF separately.
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Another potential limitation to our analyses is that we have proceeded us-

ing a “two-stage” modeling process for our repeated measures of internalizing

symptomatology. That is, the first stage of our process consisted of the creation

of an internalizing scale and estimation of scale scores using methods from IRT.

These scores were then saved and used as the observed dependent measure for

the second stage of the modeling process, which was the fitting of latent curve

models. Thus, the second stage of the analyses implicitly assumed that the scale

scores from the first stage were calculated without error. Nonetheless, each of

the IRT scale scores has an associated standard error (see Thissen & Orlando,

2001), which ideally would be included in the growth model. Other researchers

have suggested approaches for simultaneously including a measurement model

for the individual items within a higher order growth model for the scale as a

whole (e.g., Bollen & Curran, 2006, pp. 247–251). However, these methods are

currently difficult to implement in practice given the large number of parameters

that must be simultaneously estimated.

IRT versus CFA

IRT and CFA share the common goal of modeling observed variables as a

function of a latent construct.7 Yet, when the observed variables for a CFA

are dichotomous, as item responses often are, the usual approach of estimating

the model from product–moment correlations or covariances leads to inaccurate

findings (West, Finch, & Curran, 1995). Instead, one method that explicitly

accounts for the categorical nature of the variables estimates the CFA model from

the set of univariate thresholds and tetrachoric correlations calculated from the

marginal and joint distributions of the observed dichotomies (B. Muthén, 1984;

Flora & Curran, 2004). Takane and de Leeuw (1987) showed that a single-factor

CFA model estimated in this fashion leads to parameters that are mathematically

equivalent to the two-parameter normal ogive (2PNO) IRT model.8 That is,

following formulas provided by Takane and de Leeuw, there are one-to-one

relationships between the IRT discrimination parameter for a given item and its

CFA factor loading and between its IRT severity parameter and its threshold

parameter from the dichotomous CFA model.

Just as there is an extensive literature on DIF in IRT, there are also many

resources on invariance testing with CFA. In CFA, invariance testing can be

7Just as CFA can be extended to include more than one factor, additional latent variables can

also be incorporated into IRT models through the use of multidimensional IRT (e.g., Bock, Gibbons,

& Muraki, 1988).
8Whereas we are using the logistic form of the two-parameter model, the scaling constant (1.7)

can convert the logistic parameters back to the normal ogive metric. When this scaling constant

is used, the trace lines generated by these two models are virtually indistinguishable (Thissen &

Orlando, 2001).
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conducted using either a multiple-group approach (e.g., Millsap & Yun-Tein,

2004) or using the multiple indicator, multiple causes (MIMIC) approach (B.

Muthén, 1989). The multiple-group approach proceeds in a manner very similar

to that described earlier for IRT in that likelihood ratio tests compare models

with item parameters constrained across groups to models with parameters freed

across groups. Given the formal relationships between CFA and IRT, very similar

findings should be obtained across these two multiple-group methods. In the

MIMIC approach, the grouping variable is directly included in the model as a

covariate predicting both the latent trait and the individual items. A significant

relation between the covariate and an item response, controlling for the latent

trait, is indicative of threshold DIF (i.e., in a severity parameter).

Despite these parallels between CFA analyses of measurement invariance

and IRT analyses of DIF, here we demonstrate the IRT approach for several

reasons. First, by scaling the latent variable according to a standard normal

prior, IRT scale scores are placed on a meaningful, well-understood metric that

incorporates the severity concept in a relatively clear way. Additionally, IRT

utilizes “full-information” estimation methods that simultaneously estimate all

model parameters directly from the observed data rather than from summary

statistics, whereas the CFA approach previously described relies on “limited-

information” estimation where thresholds, tetrachoric correlations, and model

parameters are separately estimated in a three-stage procedure, such that inac-

curacies at an earlier stage can affect estimates at a later stage (see Wirth &

Edwards, 2007). Furthermore, although we have demonstrated the 2PL model

here, IRT is more flexible than CFA in terms of the item response formats that

can be accommodated. Specifically, the three-parameter logistic IRT model is

well suited for items where a correct response can be guessed, whereas the

nominal IRT model is appropriate for items with unordered response options

(see Embretson & Reise, 2000). Next, a disadvantage of the MIMIC approach

in particular is that group differences in factor loadings, or item discrimination,

cannot be tested in any straightforward fashion (see Finch, 2005). As already

reported, several of the CBCL items had significant DIF in their discrimination

parameter. Finally, IRT has historically developed as a method that heavily relies

on presenting results graphically, which can be particularly useful for examining

DIF (Raju, Laffitte, & Byrne, 2002; Steinberg & Thissen, 2006). We illustrated

the use of IRT trace line plots for examining DIF with IRT earlier.

SUMMARY

Throughout this article, we emphasize the importance of considering the possible

distortion of results that can occur from a lack of measurement equivalence.

This consideration is particularly important in longitudinal studies where mea-
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surement properties often change as a function of respondents’ developmental

period (e.g., Patterson, 1993) or in cross-study analyses where data from two

different studies are combined. In many cases, researchers can use well-validated

instruments for which there is previous research regarding measurement equiv-

alence across developmental periods. Often, however, whether an instrument’s

psychometric properties remain invariant as a function of development or other

covariates is unknown.

Therefore, we recommend formal evaluation of measurement equivalence

using either the IRT-based methods described earlier or using categorical CFA

methods. If a statistically significant lack of measurement equivalence is found,

it is important to consider whether the associated effect sizes are nontrivial. We

described how DIF effect sizes can be evaluated at the item level. A relatively

simple way to determine whether these DIF effect sizes are likely to have an

impact at the overall scale level is through the use of test characteristic curves

(Thissen, Nelson, et al., 2001). These plots can reveal the extent to which the

relationships between the underlying construct and the expected sum score on

a measure of the construct are likely to vary across two groups for which

significant DIF has been found (e.g., Orlando & Marshall, 2002). If the overall

effect of DIF across the scale is nontrivial, it becomes critical that scale scoring

procedures account for this issue. Failure to do so will compromise the validity

of subsequent analyses, such as latent curve modeling, that are based on these

scores.
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