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TOOLS OF THE TRADE

Twelve Frequently Asked Questions
About Growth Curve Modeling

Patrick J. Curran, Khawla Obeidat, and Diane Losardo
University of North Carolina at Chapel Hill

Longitudinal data analysis has long played a significant role in empirical
research within the developmental sciences. The past decade has given rise to
a host of new and exciting analytic methods for studying between-person differ-
ences in within-person change. These methods are broadly organized under the
term growth curve models. The historical lines of development leading to current
growth models span multiple disciplines within both the social and statistical
sciences, and this in turn makes it challenging for developmental researchers
to gain a broader understanding of the current state of this literature. To help
address this challenge, the authors pose 12 questions that frequently arise in
growth curve modeling, particularly in applications within developmental
psychology. They provide concise and nontechnical responses to each question
and make specific recommendations for further readings.

A foundational goal underlying the developmental sciences is the systematic
construction of a reliable and valid understanding of the course, causes, and
consequences of human behavior. Consistent with this goal, longitudinal
studies have long played a critically important role in developmental
psychology, and these designs are becoming increasingly common in
contemporary research practices. However, consistent with the old adage
be careful for what you ask—you might just get it, once longitudinal data
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are obtained, they must then be thoughtfully and rigorously analyzed. And
as any developmental researcher can attest, statistical models for longitudi-
nal data can become exceedingly complex exceedingly quickly, both in terms
of fitting models to data and properly interpreting results with respect to
theory (e.g., Curran & Willoughby, 2003; Nesselroade, 1991; Wohlwill,
1991). Further, during the past decade, a host of powerful analytic methods
have been developed that allow for the empirical evaluation of theoretically
derived research hypotheses in ways not previously possible. Given the rapid
onslaught of new methods, it can often be a significant challenge for
researchers to stay abreast of ongoing developments and to incorporate
these new techniques into their own programs of research. As quantitative
psychologists who conduct substantive programs of research, we feel these
very same pressures ourselves.

In an attempt to help organize the constantly shifting sands of new infor-
mation, we have posed 12 specific questions that frequently arise with
respect to growth curve modeling. We are under tight space constraints,
so our rather modest intent is to provide brief and nontechnical responses
to these questions and to recommend specific resources for further reading.
The questions we pose are by no means exhaustive nor are our associated
responses. Importantly, given our quest for brevity, we offer only a subset
of available citations; the inclusion of one citation at the expense of another
should be taken to mean nothing more than that we ran out of space. We
hope that our brief foray through the intriguing yet sometimes bewildering
topic of growth modeling might entice readers to consider ways in which
these approaches might be incorporated into your own program of research.
So let’s give it a go.

WHAT IS GROWTH CURVE MODELING?

Growth curve modeling is a broad term that has been used in different
contexts during the past century to refer to a wide array of statistical models
for repeated measures data (see Bollen, 2007, and Bollen & Curran, 2006,
pp. 9-14, for historical reviews). However, within the past decade or so, this
term has primarily come to define a discrete set of analytical approaches,
particularly as applied within the social sciences. More specifically, the con-
temporary use of the term growth curve model typically refers to statistical
methods that allow for the estimation of inter-individual variability in
intra-individual patterns of change over time (e.g., Bollen & Curran, 2006;
Browne & du Toit, 1991; McArdle, 2009; Preacher, Wichman, MacCallum
& Briggs, 2008; Raudenbush & Bryk, 2002, pp. 160-204; Singer & Willett,
2003). In other words, growth models attempt to estimate between-person
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differences in within-person change. Often these within-person patterns of
change are referred to as time trends, time paths, growth curves, or latent
trajectories. These trajectories might take on a variety of different character-
istics that vary from person to person: They might be flat (i.e., showing no
change over time), they might be systematically increasing or decreasing
over time, and they might be linear or curvilinear in form. In many applica-
tions, the trajectories are the primary focus of analysis, whereas in others,
they may represent just one part of a much broader longitudinal model.
The most basic growth model is composed of the fixed and random
effects that best capture the collection of individual trajectories over time.
Loosely speaking, a fixed effect represents a single value that exists in the
population (e.g., the population mean height for men), and a random effect
represents the random probability distribution around that fixed effect (e.g.,
the population variance in height for men). Consistent with these defini-
tions, in the growth model, the fixed effects represent the mean of the trajec-
tory pooling of all the individuals within the sample, and the random effects
represent the variance of the individual trajectories around these group
means. For example, for a linear trajectory, the fixed effects are estimates
of the mean intercept (i.e., starting point) and mean slope (i.e., rate of
change) that jointly define the underlying trajectory pooling of the entire
sample; in contrast, the random effects are estimates of the between-person
variability in the individual intercepts and slopes. Smaller random effects
(i.e., smaller variances of intercepts and slopes) imply that the parameters
that define the trajectory are more similar across the sample of individuals;
at the extreme situation where the random effects equal 0, all individuals are
governed by precisely the same trajectory parameters (i.e., there is a single
trajectory shared by all individuals). In contrast, larger random effects
(i.e., larger variances of intercepts and slopes) imply that there are greater
individual differences in the magnitude of the trajectory parameters around
the mean values; that is, some individuals are reporting higher or lower
intercepts, or steeper or less-steep slopes relative to others. Taken together,
the fixed and random effects capture the general characteristics of growth
for both the group as a whole and for the individuals within the group.

HOW DO GROWTH MODELS DIFFER FROM MORE TRADITIONAL
LONGITUDINAL MODELS?

There is a long and rich history in the analysis of repeated measures data,
and many methods have been proposed for use within the social sciences.
Key traditional approaches include repeated measures analysis of variance
and multivariate analysis of variance, as well as various methods for
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analyzing raw and residualized change scores (see Hedeker & Gibbons,
2006, chaps. 2 and 3, for a review). The history of these methods has at times
been quite contentious with strongly worded recommendations supporting
or refuting particular approaches (e.g., Cronbach & Furby, 1970; Rogosa,
1980; Rogosa & Willett, 1985). Despite the disagreements over the use
of one approach over another, growth models differ from traditional
methods in several key respects. Most importantly, current approaches to
growth modeling are highly flexible in terms of the inclusion of a variety
of complexities including partially missing data, unequally spaced time
points, non-normally distributed or discretely scaled repeated measures,
complex nonlinear or compound-shaped trajectories, time-varying covari-
ates (TVCs), and multivariate growth processes. All of these issues routinely
arise in developmental research, yet all present significant challenges within
traditional analytic approaches. Further, both analytical and simulation
results show that growth models are typically characterized by much higher
levels of statistical power than comparable traditional methods applied to
the same data (e.g., B. O. Muthén & Curran, 1997). To stress, traditional
methods for analyzing repeated measures data remain a powerful tool in
many research applications when the underlying assumptions are met.
However, these methods become increasingly limited under conditions
commonly encountered in social science research, whereas growth models
typically are not.

HOW ARE GROWTH MODELS FIT TO DATA?

There are two general approaches used to fit growth models to observed
data that share certain similarities but are also characterized by certain
distinct differences (e.g., Bauer, 2003; Curran, 2003; Raudenbush, 2001;
Willett & Sayer, 1994). The first approach is to fit the growth model
within the multilevel modeling framework (Bryk & Raudenbush, 1987;
Raudenbush & Bryk, 2002; Singer & Willett, 2003). The multilevel model
was originally developed to allow for the nesting of multiple individuals
within a group, such as children nested within classroom or siblings nested
within family. However, the model can equivalently be applied to multiple
repeated measures nested within each individual that allows for the direct
estimation of a variety of powerful and flexible growth models. The second
approach is to fit the growth model within the structural equation modeling
(SEM) framework (e.g., Bollen & Curran, 2006; Duncan, Duncan, &
Strycker, 2006; McArdle, 1988; McArdle & Epstein, 1987; Meredith &
Tisak, 1990). The SEM incorporates the observed repeated measures as mul-
tiple indicators on one or more latent factors to characterize the unobserved
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growth trajectories. In many situations, the multilevel and SEM approaches
to growth modeling are numerically identical, yet in others, there are impor-
tant differences. For example, the multilevel model naturally expands to
estimate higher levels of nesting (e.g., repeated measures nested within child,
and child nested within classroom); the SEM approach is currently more
limited in these situations. In contrast, the SEM is well suited to the esti-
mation of latent variables that estimate and remove the effects of measure-
ment error that might exist in the predictors or the outcomes; the multilevel
model is currently more limited with respect to the estimation of comprehen-
sive measurement models. However, the similarities between the multilevel
and SEM approaches often outweigh the differences, and the optimal
approach should be selected as a function of the particular research
application at hand (Raudenbush, 2001).

WHAT ARE THE DATA REQUIREMENTS
TO USE GROWTH MODELS?

Although there are few strict requirements for the types of data that might
be analyzed using growth models, there are a number of general data
characteristics that are particularly amenable to these methods. First, an
adequate sample size is needed to reliably estimate growth models. How-
ever, what constitutes “‘adequate” cannot be unambiguously stated, because
this depends in part on other characteristics of the research design (e.g.,
complexity of the growth model, amount of variance explained by the
model). For example, growth models have successfully been fitted to sam-
ples as small as »=22 (Huttenlocher, Haight, Bryk, Seltzer, & Lyons,
1991), although sample sizes approaching at least 100 are often preferred.
Further, there is a close relation between the number of individuals and
the number of repeated observations per individual (e.g., B. O. Muthén &
Curran, 1997); as such, the total number of person-by-time observations
plays an important role in model estimation and statistical power as well.
Second, growth models typically require at least three repeated measures
per individual, although this requirement is also rather vague. For example,
in the presence of partially missing data, some individuals might have just
one or two observations, whereas others have three or more. However, three
repeated measures over-identifies a linear trajectory (that is, there is more
observed information than estimated information) and is thus preferred
for at least a sizeable portion of the cases. Third, for the typical method
of estimation called maximum likelihood (ML), it is assumed that the
repeated measures are continuous and normally distributed. However,
alternative methods of estimation allow for measures that are continuous
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and non-normally distributed (Satorra, 1990) or even discretely or ordinally
scaled (e.g., Mehta, Neale, & Flay, 2004). In sum, growth models may be
fitted to many types of sample data structures, although care must be taken
in the selection of proper models and methods of estimation that maximally
correspond to the characteristics of the given data set.

CAN GROWTH MODELS BE ESTIMATED WITH
PARTIALLY MISSING DATA?

Growth models can be estimated in the presence of partially missing data,
although certain assumptions regarding the mechanism of “missingness”
must be invoked for valid results. There are two general approaches to esti-
mating models with partially missing data (Allison, 2001; Schafer, 1997
Schafer & Graham, 2002). The first is direct ML (Arbuckle, 1996; Little
& Rubin, 1987). Under direct ML, the growth model is estimated by
summing the individual contributions of each case such that observations
with a larger number of data points are weighted more heavily than observa-
tions with a smaller number of data points. The second approach is called
multiple imputation, and the growth model is estimated in a two-stage
sequence (Rubin, 1987; Schafer, 1999). In the first stage, the missing data
points are imputed based upon the characteristics of the non-missing data
points, and this is done multiple times (typically 5 to 10 times). In the second
stage, the growth model is fitted separately to each of the imputed data sets,
and the results are pooled into a final set of estimates. Although extremely
flexible, both approaches invoke explicit assumptions about the nature of
missing data. Specifically, the missing data must be characterized as missing
completely at random (e.g., cases are truly missing at random) or missing at
random (e.g., cases are missing as a function of measured characteristics
such as gender or ethnicity). Importantly, data that are missing not at ran-
dom (e.g., cases are missing as a direct function of unmeasured characteris-
tics such as the very value that is missing) cannot be included in standard
growth modeling applications, and much more complex procedures are
required (e.g., Heckman, 1976; Rubin, 1988).

WHAT ARE THE DIFFERENT SHAPES OF GROWTH
CURVES THAT CAN BE MODELED?

A critically important first step in any growth model is the identification of
the optimal functional form of the trajectory over time; that is, it must be
established exactly how the repeated measures change as a function of time.
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If the incorrect functional form is used as the basis for the initial growth
model, then expanding this model to include complexities such as predictors
of growth or multiple group analysis will likely lead to biased results. The
most basic form of growth is a random intercept-only model; this implies
that there is a stable overall level of the repeatedly measured construct over
time and individuals vary randomly around this overall level at any given
time point. It may seem an oxymoron to call an intercept-only model
“growth,” but this is consistent with the notion of a trajectory that is simply
flat with respect to time. This intercept-only model can then be expanded in
a variety of directions. The most straightforward method is to consider the
family of polynomial functions; examples include a straight line, a quadratic
curve, and a cubic curve. Polynomials are widely used given that these can
be easily estimated within either the SEM or multilevel frameworks. Other
more complex functional forms are possible including entire families of
interesting exponential trajectories (e.g., monomolecular, logistic; Cudeck
& Harring, 2007). However, a variety of complications arise when incorpor-
ating these types of trajectories, because the parameters enter the model
nonlinearly, making model estimation substantially more difficult, if not
at times impossible. A flexible alternative is to use piecewise linear modeling
to approximate complex nonlinear functions in which two or more linear
trajectories are joined together to correspond to a potentially intractable
nonlinear function (Bollen & Curran, 2006, pp. 103-106; Raudenbush &
Bryk, 2002, pp. 178-179; Singer & Willett, 2003, pp. 207-208). A final
option is a fully latent curve model available within the SEM framework
in which some or all of the loadings on the slope factor are freely estimated
so that change optimally corresponds to the unique characteristics of the
data under study (McArdle, 1988; Meredith & Tisak, 1990).

HOW IS THE ADEQUACY OF FIT FOR GROWTH
MODELS ASSESSED?

It is as essential to establish the adequate fit of the hypothesized model
within the growth modeling framework as it is in any other statistical model
(but see Coffman & Millsap, 2006, for an alternative perspective). How this
is best done directly depends upon the specific analytic strategy used to esti-
mate the growth models. Within the SEM, it is possible to judge the fit of a
hypothesized model relative to a saturated baseline model allowing for the
estimation of standalone indices of overall fit for a given model. Examples
include the model chi-square test statistic and fit indices such as the RMSEA
(root mean squared error of approximation), CFI (comparative fit index),
and TLI (Tucker-Lewis index), among many others. Within the multilevel
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framework, it is not possible to estimate a saturated baseline model to which
to compare the hypothesized model. As such, there are no standalone mea-
sures of overall fit for a hypothesized model (although other indices of
appropriate fit can be used such as residuals and Wald tests). Instead, com-
parisons of competing alternative models are required (which we believe is a
strategy that could be used to a much greater extent within the SEM frame-
work). If two comparison models are nested (i.e., if the parameters of one
model are a direct subset of the parameters of the second model), then for-
mal likelihood ratio tests can be calculated based on the differences between
model deviance (see, e.g., Raudenbush & Bryk, 2002, pp. 283-284). For
models that are not nested, informal comparisons can be made using indices
such as the Bayesian Information Criterion or the Akaike Information Cri-
terion to rank order models (e.g., Bollen & Long, 1993). Regardless of
approach, it is extremely important that clear evidence be presented that
supports the adequacy of fit of the hypothesized model to the observed data
prior to drawing theoretical inferences from the results.

HOW CAN PREDICTORS BE INCORPORATED
INTO THE GROWTH MODEL?

Once the optimal baseline growth model has been established, this can then
be expanded to include one or more predictors of growth. The inclusion of
predictors in the model results in what is often called a conditional growth
model because the fixed and random effects are now ‘“conditioned on”
the predictors. There are generally two types of predictors to consider:
time-invariant covariates (TICs) that do not change in value as a function
of time and TVCs that at least in principle can change as a function of time.
TICs typically predict the random components of growth directly with the
goal of determining what variables are associated with individuals who
report higher versus lower intercepts or steeper versus flatter slopes. For
example, say that a linear trajectory is deemed to be the optimal functional
form over time, and there is evidence of significant random effects in both
the intercept and slope components of the trajectory. TICs can then be
incorporated to predict this random variability in starting point and rate
of change. This would directly evaluate hypotheses about whether charac-
teristics of the individual (e.g., gender, treatment condition) are predictive
of higher or lower starting points or steeper or less steep rates of change over
time (e.g., Curran, Bauer & Willoughby, 2004).

Importantly, TICs are assumed to be independent of the passage of time.
In other words, the given value of the TIC could in principle be assessed at
any time point as this is constant over time. This assumption is sometimes
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strictly true (e.g., biological sex, country of origin), and at other times, the
construct might in principle vary with time but is only assessed at a single
time period (e.g., baseline anxiety or initial reaction time). However, growth
models can easily be expanded to include the effects of covariates that do
vary as a function of time; these are TVC models (Bollen & Curran, 2006,
pp. 192-198; Raudenbush & Bryk, 2002, pp. 179-186; Singer & Willett,
2003, pp. 159-188). Whereas TICs directly predict the growth factors
(e.g., Bollen & Curran, 2006, Figure 5.1), TVCs directly predict the repeated
measures while controlling for the influence of the growth factors (e.g., Bol-
len & Curran, 2006, Figure 7.1). Thus, any given repeated measure is jointly
determined by the underlying growth factors and the impact of the TVC at
that time period. The TVC model can then be expanded to include interac-
tions between the TVCs and time (to assess differences in the magnitude of
the TVC effect as a function of time) and interactions between the TVCs and
the TICs (to assess differences in the magnitude of the TVC effect as a func-
tion of between-person characteristics such as gender or ethnicity). Taken
together, models can be constructed that simultaneously evaluate
within-person influences (via TVCs) and between-person influences (via
TICs) on stability and change of the outcome over time.

CAN GROWTH IN TWO CONSTRUCTS BE SIMULTANEOUSLY
MODELED OVER TIME?

Although the TVC model allows for covariates to change in value over time,
it is assumed that the covariates themselves are not characterized by a
systematic growth process. For example, say that the repeated outcome
was reading ability, and the TVC was number of days of instruction that
were missed in a given academic year. It would be reasonable to assume that
days of instruction may influence reading ability at a given time point but
that there is not a systematic growth process underlying days of instruction
missed (that is, children would not be expected to show consistent develop-
mental trends in days missed). However, say instead that the outcome was
again reading ability, but the TVC is substance use; in this case, develop-
mental theory would predict that the onset and escalation of substance
use itself is characterized by some type of systematic growth function. If
so, then the TVC model may be mis-specified and result in biased effects.
Both the multilevel and SEM growth frameworks can be expanded to
allow for the simultaneous growth of two constructs over time, and this is
commonly called a multivariate growth model (Bollen & Curran, 2006,
chap. 7; MacCallum, Kim, Malarkey, & Kiecolt-Glaser, 1997; McArdle,
1988). Each construct can be characterized by a unique functional form
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(e.g., one may be linear, the other quadratic), and their relation is examined
at the level of the growth factors (e.g., direct estimates of the relation
between the intercepts and slopes within and across construct). Finally,
these multivariate models can themselves be extended to include one or
more TICs to predict the set of growth factors. There are several variations
of the multivariate model that attempt to simultaneously examine bidirec-
tional effects between two constructs both at the level of the growth trajec-
tories and at the level of repeated measures. Two examples include the latent
difference score model (McArdle, Ferrer-Caja, Hamagami, & Woodcock,
2002) and the autoregressive latent trajectory model (Bollen & Curran,
2004; Curran & Bollen, 2001), although several other approaches exist as
well. The systematic study of the bidirectional relation between two or more
constructs is a topic of much ongoing research, so we can expect additional
multivariate methods to become available soon.

CAN GROWTH MODELS BE SIMULTANEOUSLY ESTIMATED
WITHIN TWO OR MORE GROUPS?

It is important to realize that when estimating the growth models described
thus far, strong assumptions are made about the equivalence of the model
parameters across all individuals within the sample (e.g., Bollen & Curran,
2006, chap. 6). As a simple example, consider fitting a model to data that
consist of responses from males and females. If an unconditional growth
model is fitted to the pooled sample (i.e., the usual single-group analysis),
it is explicitly assumed that all of the parameters that define the growth
model are precisely equal for both gender groups. If gender differences were
hypothesized, the growth model can easily be expanded to include gender as
a time-invariant predictor; however, this only introduces differences in the
conditional means of the growth factors (e.g., on average, males may start
higher or lower compared with females and increase more or less steeply).
Gender thus serves to shift the conditional means of the intercept and slope
to higher or lower values, yet all other parameters that govern the model are
assumed to be equal between the two groups.

Whereas in many situations these assumptions are perfectly reasonable,
in others, they may be distinctly questionable. For example, a potential out-
come of a treatment intervention is to decrease variability in the expression
of certain behaviors within the treatment group but not the control group
over time (e.g., an intervention designed to decrease antisocial behavior in
preschool children will also likely decrease the variability of types of disrup-
tive behavior in the children exposed to the treatment). If these estimates of
variability are markedly different across groups, yet a model is fitted that
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assumes these to be the same, then biased parameter estimates are expected.
Both the SEM and multilevel approaches address this issue through the
simultaneous estimation of growth models across two or more groups in
what are called multiple-groups growth models. If all model parameters
are set equal across all groups, this is equivalent to estimating a single-group
growth model. Alternatively, if all parameters are allowed to freely vary
across all groups, this is equivalent to estimating a growth model within
each group separately. The typical application will fall somewhere between
these two extremes in which some parameters are equated and others are
not. This framework provides yet another option for maximally understand-
ing growth processes both within and across groups.

WHAT IF THERE IS A POTENTIALLY IMPORTANT GROUPING
VARIABLE THAT WAS NOT DIRECTLY OBSERVED?

In the multiple-groups growth model described above, any grouping vari-
able of interest must be directly observed within the data. That is, groups
based upon biological sex, treatment condition, or ethnic heritage must be
unambiguously identified for each observation in the data set. This group
identification measure is used to assign each case to its associated
group, and the growth models are then simultaneously fit to the set
of groups. However, there may be situations in which it is hypothesized that
two or more groups exist in the sample, yet the grouping variable was not
directly observed. For example, when studying lifetime trajectories of delin-
quent behavior, developmental theory may dictate that specific subgroups
exist that are indirectly defined by the pattern of behavior over develop-
ment, and thus, group membership is not an observed variable in the data
set (e.g., Moffitt, 1993). That is, there is some latent group that was not
directly observed yet whose existence must be estimated from the character-
istics of the data. There has been a flurry of recent developments in the esti-
mation of models such as these, and a number of terms are used to describe
these types of models. Examples include growth mixture models, latent class
growth models, and semi-parametric groups-based trajectory models,
among others (e.g., B. O. Muthén, 2004; B. O. Muthén & Shedden, 1999;
Nagin, 2005). These techniques are being applied with increasing frequency
in many areas of developmental research including the study of criminology,
alcohol use, parenting, and reading difficulties (e.g., Boscardin, B. Muthén,
Francis, & Baker, 2008; B. O. Muthén & L. K. Muthén, 2000; Nagin &
Land, 1993; Stoolmiller, 2001). Importantly, a number of nontrivial differ-
ences exist across these various approaches, and care must be taken in select-
ing the optimal strategy for a given research application. Further, although
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growth mixture models are both intriguing from a theoretical perspective
and powerful from an analytical one, a number of concerns have been ident-
ified about the use of these techniques in practice (e.g., Bauer, 2007; Bauer &
Curran, 2003, 2004). As with any statistical procedure, it must be clearly
established that the growth mixture model is the most appropriate analytical
approach available for testing the specific research hypotheses at hand.

WHERE DO | GO FROM HERE?

We hope that we have been able to help guide you through at least an initial
foray into the exciting collection of growth curve models that can be used
with great effectiveness in many areas of developmental research. A logical
final question is: Where does one go from here? An initial step is to turn to
existing written work in this area. First, there are a number of more pedago-
gically oriented papers that walk the reader through different aspects of the
application and interpretation of growth models; examples include Curran
(2000), Curran and Hussong (2002, 2003), Duncan and Duncan (2004),
Preacher et al. (2008), Singer (1998), and Willett, Singer, and Martin
(1998). Second, there are several recently published textbooks that cover more
comprehensive aspects of these techniques; examples include Bollen and Cur-
ran (2006), Duncan et al. (2006), Hedeker & Gibbons (2006), Raudenbush &
Bryk (2002), and Singer and Willett (2003). Finally, there are a growing num-
ber of quality applications of various types of growth models within the devel-
opmental sciences; several recent examples include Brown, Meadows, and
Elder (2007), McCoach, O’Connell, Reis, and Levitt (2006), Owens and Shaw
(2003), and Williams, Conger, and Blozis (2007). Next, there are many
well-developed online resources available that provide fully worked examples
with empirical data and associated computer code; specific Web site addresses
come and go, so the best strategy is to enter relevant terms in any major
search engine and proceed from there. Finally, there are an increasing number
of workshops available around the country that are focused on the theory and
application of growth modeling within the social sciences; again, specifics
change with time, but a bit of careful online searching will provide a current
summary of available workshops. And if all else fails, send one of us an e-mail
and we’ll try to point you in the right direction.

CONCLUSION

We have only briefly touched on just a few of the many interesting topics
associated with the potential for growth models to help us gain a better
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understanding of individual differences in developmental change. Important
remaining issues include growth models with binary or discrete outcomes
(e.g., Mehta et al., 2004), incorporating alternative metrics of time (e.g.,
Mehta & West, 2000), using growth trajectories as predictors (e.g., B. O.
Muthén & Curran, 1997; Seltzer, Choi, & Thum, 2003), estimating statistical
power for growth models (e.g., B. O. Muthén & Curran; L. K. Muthén &
B. O. Muthén, 2002), and the estimation of hybrid autoregressive and
change score models (Bollen & Curran, 2004; McArdle, 2001). Growth
models offer a plethora of exciting opportunities for testing theoretically
derived hypotheses in ways not previously possible. Despite the strength
and flexibility of these methods, even greater care must be taken to ensure
that the estimated growth model maximally corresponds to the underlying
developmental theory (e.g., Curran & Willoughby, 2003). Any disjoint that
exists between the theoretical model and the statistical model only serves to
undermine our ability to draw empirically informed conclusions about our
theory under study. Despite this caveat, growth models have a tremendous
amount to offer to a broad array of developmental research endeavors and
represent a powerful set of tools to help us continue to propel forward as a
science.
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