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C h a p t e r  1 7

A Multivariate Growth Curve 
Model for Three-Level Data
Patrick J. Curran, James S. McGinley, Daniel Serrano, and Chelsea Burfeind

One of the most vexing challenges that has faced the 
behavioral sciences over the past century has been 
how to optimally measure, summarize, and predict 
individual variability in stability and change over 
time. It has long been known that a multitude of 
advantages are associated with the collection and 
analysis of repeated measures data; indeed, longitu-
dinal data have become nearly requisite in many dis-
ciplines within the behavioral sciences. The 
challenge of how to best empirically capture individ-
ual change cuts across every aspect of the empirical 
research endeavor, including study design, psycho-
metric measurement, subject sampling, data analy-
sis, and substantive interpretation. Although many 
textbooks have been devoted to each of these 
research dimensions, here we have the much more 
modest goal of exploring just one specific type of 
longitudinal data analytic method: the multivariate 
growth model.

Given our love of jargon in the social sciences, 
our field has coined a rather large number of terms 
to describe patterns of intraindividual change over 
time. These terms include (but are not limited to) 
growth, curve, trajectory, and path, among many oth-
ers. Whether the term is growth models, growth tra-
jectories, growth curves, latent trajectories, 
developmental curves, latent curves, time paths, or 
latent developmental growth curve time path trajecto-
ries of growth,1 all tend to refer to the same thing. 
Namely, repeated measures are collected on a  

sample of individuals followed over time, and mod-
els are designed to capture both the mean and vari-
ance components associated with patterns of 
stability and change over time.

There are two broad types of growth models: the 
structural equation model (SEM) and the multilevel 
linear model (MLM). Whereas the SEM approaches 
the repeated measures as observed indicators of an 
underlying latent-growth process (e.g., Bollen & 
Curran, 2006; McArdle, 1988; Meredith & Tisak, 
1990), the MLM approaches these data as the hierar-
chical structuring of repeated measures nested 
within the individual (e.g., Bryk & Raudenbush, 
1987; Raudenbush, 2001; Singer & Willett, 2003). A 
great deal of prior research has explored the similar-
ities and dissimilarities of these two approaches, and 
the lines that demarcate the SEM and MLM are 
becoming increasingly blurred with the passing of 
each year (e.g., Bauer, 2003; Curran, 2003; Mehta & 
Neale, 2005; Newsom, 2002; Willett & Sayer, 1994). 
Suffice it to say that both methods are powerful and 
flexible approaches to the analysis of longitudinal 
data, the optimal choice of which depends strictly 
on the characteristics of the substantive question 
and the experimental design at hand (Raudenbush, 
2001).

That said, here we focus exclusively on the 
growth model as estimated within the framework of 
the MLM, which stems directly from the substantive 
question on which we are currently working. As we 
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1OK, so we made up that last one.
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will describe in greater detail, we are interested in 
the longitudinal development of trust and integrity 
in cadets attending the U.S. Military Academy 
(USMA) at West Point. We quickly encounter, how-
ever, a significant challenge in applying existing 
multilevel growth models to our data. As we will 
describe in a moment, the three-level MLM is well 
developed for examining stability and change in a 
single outcome variable (e.g., trajectories of trust). 
Furthermore, the two-level model is well developed 
for examining stability and change in two or more 
outcome variables at once (e.g., trajectories of trust 
and trajectories of integrity). Our substantive 
research focus, however, is on the interrelations of 
growth in two dimensions of trust, yet the nesting of 
time within cadets and cadets within squads results 
in a three-level data structure. We must thus expand 
the standard three-level univariate growth model to 
allow for growth in two or more outcomes over time.

Although the two-level multivariate growth 
model has been well developed within the MLM 
(e.g., MacCallum, Kim, Malarkey, & Kiecolt-Glaser, 
1997), we are unaware of any extensions of this 
model to allow for three levels of nesting. Our goal 
here is thus to review the current models available 
to estimate growth in two or more outcomes within 
the two-level MLM, to extend these models to allow 
for three levels of nesting, and to demonstrate this 
model using real data. Although by the end of our 
chapter we will find ourselves up to our eyeballs in 
equations, we make a concerted effort to retain a sig-
nificant focus on the practical application of these 
techniques to real social science data in the face of 
the unavoidable yet necessary technical explication 
of the models.

We begin with a review of the univariate two-
level growth model, and we consider predictors that 
do and do not change over time. We then draw on 
existing methods to extend this two-level model to 
include two or more outcomes at once. We take a 
step back and review the univariate three-level 
growth model, and we again consider predictors that 
do and do not change over time. We then generalize 
the multivariate methods for the two-level model for 
data characterized by three levels of nesting. Once 
defined, we demonstrate these methods using real 
empirical data drawn from the longitudinal study of 

leadership and trust in a sample of cadets enrolled at 
the USMA at West Point. We conclude with poten-
tial limitations of our approach, and we offer recom-
mendations for the use of these methods in practice.

Two-Level Growth Models

We begin our exploration of the unconditional 
growth model using a slightly modified version of 
notation used by Raudenbush and Bryk (2002, 
Equations 6.1 and 6.2). This notational scheme will 
allow us to easily expand the univariate two-level 
model to the more complex multivariate and three-
level models that we present later.

Unconditional Two-Level Univariate 
Growth Model.
We can define the Level-1 equation for a two-level 
linear growth model as

y time eti i i ti ti= + +� �0 1 ,� (1)

where yti is the measure of outcome y at time t (t = 1, 
2, . . . , T) for individual i (i = 1, 2, . . . , N); π0i and π1i 
are the intercept and slope that define the linear trajec-
tory unique to individual i; timeti is the numerical mea-
sure of time at assessment t for individual i; finally, eti 
is the time- and individual-specific residual. Time is 
often coded as timeti = t − 1, so the intercept of the tra-
jectory represents the initial assessment, although 
many other coding schemes are possible (e.g., Biesanz, 
Deeb-Sossa, Papadakis, Bollen, & Curran, 2004). Here 
we focus on a linear trajectory, but our developments 
directly expand to any functional form.

An important aspect of this model is that it is 
assumed that the individually varying parameters 
that define the growth trajectory (e.g., the intercept 
and slope) are themselves random variables. We can 
thus define Level-2 equations for these terms as

� �

� �

0 00 0

1 10 1

i i

i i

r

r

= +
= + ,

� (2)

where β00 and β10 are the mean intercept and slope 
pooling over all individuals, and r0i and r1i are the 
deviation of each individual’s trajectory parameters 
from their respective means.

The Level-1 and Level-2 expressions are primar-
ily for pedagogical purposes, and the actual model of 
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interest is the reduced form expression that results 
from the substitution of the Level-2 equations into 
the Level-1 equation. Substituting Equation 2 into 
Equation 1 results in

y time r r time eti ti i i ti ti= +( )+ + +( )� �00 10 0 1 ,� (3)

defined as in Equations 1 and 2. The first parentheti-
cal term contains the fixed effects; these represent 
the mean intercept and mean linear slope pooling 
over all individuals. The second parenthetical term 
contains the individual deviations that constitute the 
random effects; the variance of these deviations rep-
resent the individual variability at both the Level-1 
and Level-2 parts of the model. These random 
effects are an important component of any growth 
modeling application, but they are of particular 
interest to the models that we work to develop here. 
We will thus consider both the Level-1 and Level-2 
deviations a bit more closely.

The Level-1 residuals (i.e., eti) are assumed to be 
multivariate normally distributed with a mean of 
zero and covariance matrix R; more formally, this is 
expressed as eti ∼ MVN (0, R) where R is the T × T 
covariance matrix and T is the total number of 
repeated observations. For example, for four 
repeated measures (i.e., T = 4) the Level-1 residual 
matrix is given as

R =























�

�

�

�

1
2

2
2

3
2

4
2

0

0 0

0 0 0

,� (4)

where a different residual variance is allowed at each 
time-point. The zeros in the off-diagonal elements 
reflect that there are no between-time residual covari-
ances estimated. A number of alternative error struc-
tures are possible (e.g., the commonly used structure 
of equal variance over all time-points, or the allow-
ance for correlated time-adjacent residuals, and so 
on), but we will primarily consider the heteroskedas-
tic error structure for the models we examine here.

The Level-2 residuals are also assumed to be 
multivariate normally distributed with zero means 
and covariance matrix T; more formally, this is 
given as [u0i, u1i] ∼ MVN (0, T) where T is a P × P 
covariance matrix for which P is the total number of 

random effects at Level 2. For example, for a linear 
growth model with a random intercept and slope 
(i.e., P = 2), the Level-2 covariance matrix is given as

T =












�

� �

00

10 11

,
�

(5)

where τ00 is the variance of the intercepts, τ11 is the 
variance of the slopes, and τ10 is the covariance 
between the intercepts and slopes. Larger Level-2 vari-
ance components imply greater individual variability 
in the starting point and rate of change over time. 
Recall that we are interested in the initial level and 
subsequent rate of change in self-reported trust of 
cadets at West Point. Significant variance components 
at Level 2 would imply that some cadets start higher 
versus lower in their initial reports of trust, and some 
cadets increase more rapidly versus less rapidly in the 
development of trust over time. In contrast, as these 
Level-2 random effects approach zero, this implies 
that cadets are becoming more and more similar to 
one another in terms of the values of the parameters 
that define their trajectories. At the extreme, if the 
variance components are equal to zero, then all cadets 
follow precisely the same trajectory; that is, each indi-
vidual is characterized by the same initial level of trust 
and increase in trust at the same rate over time.

Importantly, larger random effects at Level 2 also 
suggest that one or more predictors could poten-
tially be included to partially or wholly explain the 
individual variability in trajectory parameters (e.g., 
the intercepts and linear slopes). For example, say 
that the random effects suggested that cadets vary 
meaningfully in both their initial levels of trust and 
in their rates of change in trust over time. Then one 
or more time-specific or cadet-specific predictors 
could be included in the model to differentiate 
cadet-to-cadet variability in starting point and rate 
of change over time. This would allow us to build a 
more comprehensive model of possible determi-
nants of developmental trajectories of trust, and it is 
to these conditional models we turn next.

Conditional Two-Level Univariate Growth 
Model: Time-Invariant Covariates
The prior models are sometimes called unconditional 
because there are no measured covariates used to 
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predict the random parameters that define the 
growth trajectory.2 We can easily expand the uncon-
ditional growth model to include one or more pre-
dictors at either Level 1, Level 2, or both. Predictors 
that are characteristics of the individual and thus do 
not change as a function of time are called time-in-
variant covariates (or TICs), and these are entered 
into the Level-2 equations. Examples of TICs might 
be biological sex, country of origin, ethnicity, or cer-
tain genetic characteristics. In some applications, 
the TIC might in principle change over time, but for 
empirical or substantive reasons, only the initial 
assessment is considered (e.g., Curran, Stice & Chas-
sin, 1997). Because TICs only enter at Level 2, the 
Level-1 equation remains as defined in Equation 1. 
However, the Level-2 equation is expanded to 
include one or more person-specific measures that 
are constant over time.

For example, assuming a linear growth model 
defined at Level 1, a single person-specific TIC, 
denoted wi, is included as

� � �

� � �

0 00 01 0

1 10 11 1

i i i

i i i

w r

w r

= + +
= + + ,

� (6)

where β01 and β11 capture the expected shift in the 
conditional means of the intercept and slope compo-
nents associated with a one-unit shift in the TIC. 
For example, positive coefficients would reflect that 
higher values on the TIC are associated with higher 
initial values and steeper rates of change over time. 
Importantly, these shifts in the conditional means 
are independent of the passage of time, highlighted 
by the fact that the TICs are not subscripted by t to 
represent time. Thus, one might find that the devel-
opmental trajectories of trust in male cadets are 
defined by a different starting point and different 
rate of change relative to female cadets. These TICs 
could even be allowed to interact with one another— 
for example, the difference in trajectories of trust 
between male and female cadets could depend in 
part on the gender of the squad leader.

The inclusion of TICs is a powerful component 
of the MLM growth model. However, there may be 
important covariates we want to consider that are 

not constant over time. Instead, one or more covari-
ates might take on a unique value at any given time-
point, and treating these as invariant over time 
would be inappropriate (Curran & Bauer, 2011). 
This type of predictor can be included within the 
MLM as a time-varying covariate.

Conditional Two-Level Univariate Growth 
Model: Time-Varying Covariates
In contrast to the TICs that are assumed to be con-
stant over time, time-varying covariates (or TVCs) 
can take on a unique value at any given point in 
time. For example, covariates such as peer influence, 
anxiety, delinquency, or substance use would be 
expected to change from time-point to time-point, 
and it is critical that these temporal fluctuations be 
incorporated into the model (e.g., Curran & Bauer, 
2011; Curran, Lee, MacCallum, & Lane, in press). 
Because the value of the TVC is unique to a given 
individual and a given time-point, these covariates 
enter directly into the Level-1 equations.

For example, the Level-1 model with a single 
TVC, denoted zti, is given as

y time z eti i i ti i ti ti= + + +� � �0 1 2 .� (7)

Although π0i and π1i continue to represent the 
individual-specific intercept and slope components 
of the growth trajectory, these are now net the influ-
ence of the TVC (and vice versa). In other words, 
these are the parameters of the trajectory of the out-
come controlling for the effects of the TVC. The 
impact of the TVC on the outcome is captured in π2i 
which represents the shift in the mean of the out-
come y at time t per one-unit shift in the TVC at the 
same time t. Importantly, whereas the TICs shift the 
conditional means of the trajectory parameters, the 
TVCs shift the conditional means of the outcome 
above and beyond the influence of the underlying 
growth trajectory. For example, the outcome of 
interest might be a cadet’s trust, and the TVC is a 
measure of perceived integrity in that same individ-
ual; the TVC model would allow for the estimation 
of a developmental trajectory of trust, while simulta-
neously including the time-specific influence of  

2This is a bit of a misnomer given that time is a predictor at Level 1, yet the term unconditional commonly implies no predictors in addition to the mea-
sure of time.
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perceived integrity. Allowing integrity to vary in 
value over time is a marked improvement over using 
just the initial measure of integrity as a TIC because 
much additional time-specific information is incor-
porated into the model.

A particularly interesting aspect of the TVC 
model is that the magnitude of the effect of the TVC 
on the outcome can vary randomly across individu-
als. The inclusion of this random effect is not 
required and would be determined on the basis of 
substantive theory or empirical necessity. This can 
most clearly be seen in the Level-2 equations that 
correspond to the TVC model defined in Equation 7:

� �

� �

� �

0 00 0

1 10 1

2 20 2

i i

i i

i i

r

r

r

= +
= +
= + ,

� (8)

where β00, β10, and β20 represent the mean of each 
random term, and the corresponding residuals rep-
resent the individually varying deviations around 
these means. Including the term r2i allows for the 
magnitude of the relation between the TVC and the 
outcome to vary randomly over individuals; omit-
ting this term implies that the magnitude of the TVC 
effects is constant for all individuals. These level-2 
equations could easily be expanded to include one 
or more TICs to examine predictors of each random 
Level-1 effect, but we do not explore this further 
here (for further details, see Raudenbush & Bryk, 
2002; Singer & Willett, 2003).

The TVC model offers a powerful and flexible 
method for examining individual variability in 
change over time as a function of one or more pre-
dictors that also vary as a function of time. One 
aspect of the TVC model that must be appreciated is 
that whereas an explicit growth process is estimated 
with respect to the outcome (i.e., yti), no such 
growth process is estimated with respect to the TVC 
(i.e., zti). In other words, although the TVC can take 
on unique values at any given time-point, it is not 
systematically related to the passage of time (e.g., 
Curran & Bauer, 2011). In many applications of the 
TVC model, this restriction is completely appropri-
ate. One might be interested in examining trajecto-
ries of reading ability having controlled for the 
time-specific effects of days of instruction missed 

(Raudenbush & Bryk, 2002, p. 179) or in examining 
trajectories of heavy alcohol use having controlled 
for the time-specific effects of a new marriage (Cur-
ran, Muthén, & Harford, 1998) or in a large variety 
of applications of daily diary studies (e.g., Bolger, 
Davis, & Rafaeli, 2003). In all of these examples, the 
TVC would not even be theoretically expected to 
change systematically over time. There are a variety 
of other examples in which the TVC is uniquely well 
suited to test the important questions of substantive 
interest.

Yet there are other situations in which substan-
tive theory would not only predict that the TVC 
might take on different values over time, but that the 
TVC is itself developing systematically as a function 
of time. That is, the TVC may be expected to be 
characterized by a smoothed underlying trajectory 
that is defined by both fixed and random effects 
(Curran & Bauer, 2011). Our earlier hypothetical 
example considered the development of trust as the 
outcome and perceived integrity as the TVC. How-
ever, this strongly assumes that integrity is not devel-
oping systematically over time. Yet theory predicts 
that both trust and integrity codevelop systematically 
over time, and arbitrarily treating one of these con-
structs as a criterion and the other as a TVC would 
not correspond to our substantive theory. Further-
more, the core theoretical question of interest may 
not be related to how the time-specific value of the 
TVC is related to the time-specific value of the out-
come (as is tested in the TVC model); instead, it may 
be how the parameters of the trajectory of the TVC 
relate to the parameters of the trajectory of the out-
come. This is sometimes described as examining 
how two or more constructs “travel together” 
through time (e.g., McArdle, 1989). To test ques-
tions such as these, we must move to a multivariate 
growth model that allows for the simultaneous esti-
mation of growth in both the outcome and the TVC.

Two-Level Multivariate Growth Model
Our goal is to define a model that allows for the esti-
mation of growth processes in two or more con-
structs simultaneously. This is a distinct challenge 
given that the standard multilevel model is inher-
ently univariate in that it is limited to a single crite-
rion measure (e.g., Raudenbush & Bryk, 2002, 
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Equation 14.1). These univariate models have been 
expanded to the multivariate setting by Goldstein 
(1995), Goldstein et al. (1993), and MacCallum  
et al. (1997), among others; we draw on this  
collected body of work here.

The key to approaching this problem is to stack 
our multiple criterion variables into a newly created 
variable that is nominally univariate (i.e., there is 
just one variable), but this variable actually contains 
repeated assessments on two or more outcomes over 
time. This is sometimes called a synthesized variable 
(e.g., MacCallum et al., 1997). We will then incor-
porate a series of dummy variables as exogenous 
predictors that will give us full control of which spe-
cific outcomes we are referencing within different 
parts of the model. This will ultimately allow us to 
use our standard univariate multilevel modeling 
framework to fit what is in actuality a rather com-
plex multivariate structure.

We begin by defining a simple linear growth 
model at Level 1, but we will add superscripts to all 
of the terms to identify to which outcome the term 
is associated. We use a linear trajectory here, but a 
variety of alternative functional forms could be used 
instead. Furthermore, a different form of growth 
could be used for each of the individual outcomes 
(e.g., linear in one outcome and quadratic in 
another). The general expression for k = 1, 2, . . . , K 
multivariate outcomes is

y time eti

k

i

k

i

k

ti

k

ti

k( ) ( ) ( ) ( ) ( )= + +� �0 1 .� (9)

So yti

1( ) would represent the outcome for the first 
construct (where k = 1; e.g., trust) and yti

2( ) would 
represent the outcome for the second construct 
(where k = 2; e.g., integrity), and so on. The level-2 
equations are also modified to denote whether the 
term is associated with the first criterion measure  
(k = 1) or the second (k = 2):

� �

� �

0 00 0

1 10 1

i

k k

i

k

i

k k

i

k

r

r

( ) ( ) ( )

( ) ( ) ( )
= +

= + .
� (10)

Compare this with Equation 2 to see the direct 
parallel between the Level-2 univariate and multi-
variate expressions. Finally, the reduced form 
expression is given as

y time r r titi

k k k

ti

k

i

k

i

k( ) ( ) ( ) ( ) ( ) ( )= +( ) + +� �00 10 0 1 mme eti

k

ti

k( ) ( )+( ).� (11)

We can combine these equations into a single 
multivariate expression in which there is a single 
synthesized criterion variable that we arbitrarily 
denote dvti to represent the dependent variable dv 
at time t for individual i. In other words, we manu-
ally create a new variable in the data set that stacks 
the multiple outcome variables into a single- 
column vector. Because multiple outcomes are  
now contained in a single variable, we must 
include additional information to distinguish 
which specific element belongs to which specific 
outcome. To do this, we create two or more new 
variables (denoted δk) that are simple binary 
dummy variables that represent which specific out-
come is under consideration. There are K dummy 
variables, one each for k = 1,2, . . . K outcomes. 
The dummy variable is δk = 1 for construct k, and 
is equal to zero otherwise. (We will show a specific 
example of this in a moment.)

Finally, we can fit a single model to this new data 
structure in which a separate growth process is 
simultaneously fitted to each outcome k, the specific 
outcome of which is toggled in or out of the equa-
tion using an overall summation weighted by the 
dummy variables (e.g., MacCallum et al., 1997). 
More specifically, the general expression for the 
reduced-form model is

dv time

r r

ti k

k k

ti

k

k

K

i

k

= +( )


+ +

( ) ( ) ( )

=

( )

∑� � �00 10
1

0 11i

k

ti

k

ti

ktime e( ) ( ) ( )+( ).� (12)

In words, Equation 12 defines the growth trajectory 
for each outcome of interest, and the dummy codes 
include or exclude the relevant values in the synthe-
sized dependent variable through the overall 
summation.

To further explicate this, we can consider just 
the bivariate case in which K = 2. We define k = 1 to 
represent yti and k = 2 to represent zti, and we super-
script with y and z to identify to which outcome 
each term belongs. For example, y might represent 
trust and z might represent integrity. In this case, 
Equation 12 simplifies to

dv time r r titi y

y y

ti

y

i

y

i

y= +( ) + +( ) ( ) ( ) ( ) ( )� � �00 10 0 1 mme e

time

ti

y

ti

y

z

z z

ti

z

( ) ( )

( ) ( ) ( )

+( )





+ +(� � �00 10 )) + + +( )





( ) ( ) ( ) ( )r r time ei

z

i

z

ti

z

ti

z

0 1 .

� (13)
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This expression highlights that this requires an atyp-
ical definition of the model relative to the standard 
two-level TVC growth model. To see this, we will 
first distribute the two binary variables and gather 
up our terms:

dv time

r r

ti

y

y

y

y ti

y

i

y

y i

= +( )
+ +

( ) ( ) ( )

( )

� � � �

�

00 10

0 1

yy

y ti

y

ti

y

y

z

z

z

z

time e

ti

( ) ( ) ( )

( ) ( )

+( )
+ +

� �

� � � �00 10 mme

r r time e

ti

z

i

z

z i

z

z ti

z

ti

z

z

( )

( ) ( ) ( ) ( )

( )
+ + +0 1� � �(( ).� (14)

There are two somewhat-odd things about this 
expression relative to the usual univariate growth 
model. First, there is no overall intercept term for 
this reduced-form model. Instead, the intercept for 
the first outcome (i.e., yti) is captured in the main 
effect of the first dummy variable (i.e., � �00

y

y
( ) ); simi-

larly, the intercept for the second outcome (i.e., zti) 
is captured in the main effect of the second dummy 
variable (i.e., � �00

z

z
( ) ). Second, the linear slope for 

each outcome is captured in the interaction between 
each dummy variable and time. Specifically, the lin-
ear slope for the first outcome (i.e., yti) is captured 
in the interaction of the first dummy variable and 
time (i.e., � �10

y

y ti

ytime( ) ( )); the linear slope for the 
second outcome (i.e., zti) is captured in the interac-
tion of the second dummy variable and time (i.e., 
� �10

z

z ti

ztime( ) ( )). Thus, the main effects of the dummy 
variables represent the outcome-specific intercepts, 
and the interactions between the dummy variables 
and time represent the outcome-specific slopes.  
See MacCallum et al. (1997) for an excellent 
description and demonstration of this model with 
three outcomes.

There are a number of advantages to this model 
expression, a key one of which is the inclusion of 
more complex error structures at both level 1 and 
level 2 than is possible within the univariate TVC 
growth model. The reason is that the covariance 
structure not only holds within each construct sepa-
rately (e.g., within yti and within zti), but it also 
holds across construct. For example, a univariate 
growth model of trust examines covariance struc-
tures only within trust; and a univariate growth 
model of integrity examines covariance structures 
only within integrity. But a multivariate growth 

model of trust and integrity allows for the examina-
tion of covariance structures between trust and integ-
rity both at the time-specific (i.e., Level-1) and 
trajectory-specific (i.e., Level-2) parts of the model. 
This can be critically important information to 
include, not only in terms of properly modeling the 
joint structure of the observed data but also in terms 
of fully evaluating the substantive research question 
of interest.

For example, consider the Level-1 covariance 
structure for the bivariate model of yti and zti 
(i.e., the model defined in Equation 14). The  
corresponding Level-1 covariance structure is 
e e e e e e ei
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i
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z

i

z
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(15)

The upper left quadrant represents the Level-1 
residual covariance structure among the four 
repeated assessments of yti; this is equivalent to 
those of the univariate model shown in Equation 4. 
Similarly, the lower-right quadrant represents the 
Level-1 residual covariance structure among the 
four repeated assessments of zti. However, critically 
important information is contained in the lower left 
quadrant in the form of the within-time but across-
construct residual covariance structure. For exam-
ple, the element �11

z y,( ) represents the covariance 
between the Level-1 residuals of yti and zti at the first 
time-point (i.e., t = 1). This captures the part of trust 
at Time 1 that is unexplained by the trajectory of 
trust that covaries with the part of integrity at Time 
1 that is unexplained by the trajectory of integrity. 
This provides a way to include potentially important 
covariances among the time-specific Level-1 residu-
als across the two or more multivariate outcomes, 
the omission of which could artificially inflate the 
variance components at Level 2.

The multivariate model also allows us to examine 
across-construct covariances among the Level-2  
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random effects. Again consider just two outcomes yti 
and zti where each is defined by a linear trajectory. 
The corresponding Level-2 covariance structure is

r r r r MVNi

y

i

y

i

z

i

z

0 1 0 1 0( ) ( ) ( ) ( )  ( ), , , ~ ,T  with matrix elements
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


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


� � �11 10 11

,

.� (16)

The upper left and lower right quadrants repre-
sent the covariance structure of the growth parame-
ters within outcome yti and outcome zti, respectively 
(as corresponds to the same elements for the univar-
iate model presented in Equation 5). However, the 
lower left quadrant represents the covariance struc-
ture of the growth parameters across the two out-
comes. More specifically, the covariance between 
the two random intercepts is �00

z y,( ), between the two 
random slopes is �11

z y,( ), between the intercept of zti 
and the slope of yti is �01

z y,( ), and between the slope of 
zti and the intercept of yti is �10

z y,( ).
These covariances (and their standardized cor-

relation counterparts) can be extremely interest-
ing. For example, a positive value for �11

z y,( ) would 
imply that steeper rates of change on trust are 
associated with steeper rates of change on integ-
rity (and vice versa), and this would be consistent 
with the notion that development in the two con-
structs is systematically related over time. Further-
more, a negative value for �01

z y,( ) would imply that 
larger initial values of integrity are associated with 
less steep rates of change of trust over time (and 
vice versa), and this would be consistent with the 
notion that the initial values of integrity are sys-
tematically associated with the rates of change on 
trust. These across-construct covariances are often 
of key interest when attempting to understand 
how growth in one construct is related to growth 
in another construct. Furthermore, these covari-
ances are only available via the multivariate 
growth model given that the standard multilevel 
model is limited to the estimation of trajectory 
parameters for one outcome at a time (e.g., as 
defined in Equation 7).

The Inclusion of One or More Predictors
Just as with the univariate model, the multivariate 
model can contain one or more predictors at either 
Level 1, Level 2, or both. Furthermore, interactions 
can be estimated within or across levels of analysis. 
In expectation of our later models, we focus on the 
inclusion of a single TIC, denoted wi, entered at Level 
2. For example, we are interested in the relation 
between the extent to which cadets view their fellow 
squad members as benevolent at the initial time 
period and how their trajectories of trust and integ-
rity change over time. We will thus include a cadet-
specific measure of perceived benevolence in fellow 
squad members at the initial time period with the 
goal of examining how initial perceived benevolence 
impacts the simultaneous unfolding of trust and 
integrity over time. The Level-1 equation remains as 
before (i.e., Equation 9), but the Level-2 equation is 
expanded to include the TIC:

� � �

� � �

0 00 01 0

1 10 11

i

k k k

i i

k

i

k k k

w r( ) ( ) ( ) ( )

( ) ( )
= + +

= + (( ) ( )+w ri i

k

1 .
� (17)

All of these terms are defined as before, but now the 
regression parameters linking the TIC to the random 
intercept and slope are unique to outcome k (e.g., 
�01

k( ) and �11

k( )).
The Level-2 equation is again substituted into the 

Level-1 equation to result in the reduced-form 
expression for the model. For example, for two out-
comes denoted y and z, this expression is

dv time wti y

y y

ti

y y

i= + +(
+
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11
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time w00 10 01 11 ww time

r r time e

i ti
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z

( )

( ) ( ) ( ) (

( )


+ + +0 1
))( ).�

(18)

Each bracketed term is multiplied by the dummy vari-
able associated with that particular outcome (e.g., δy 
and δz). As such, the regression of the random inter-
cept on the TIC is captured in the interaction between 
the dummy variable and the TIC (i.e., � �01

y

y iw( )  and 
� �01

z

z iw( ) ). Similarly, the regression of the random 
slope on the TIC is captured in the interaction 
between the dummy variable, time, and the TIC (i.e., 
� �11

y

y i tiw time( )  and � �11

z

z i tiw time( ) ). As with the univariate 
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two-level model, the TIC shifts the conditional means 
of the random intercepts and slopes per unit shift in 
the TIC. In the multivariate model, however, these 
mean shifts affect all outcomes simultaneously.

Now that we have laid out the model equations, 
we find that a key practical challenge in fitting these 
models to real data is the need to restructure the data 
in a way that is not necessarily intuitive but that is 
needed to allow for proper model estimation. Despite 
the nonintuitiveness, a bit of careful thought shows 
that this can be accomplished in a straightforward 
manner; we demonstrate this in the next section.

Data Structure for the Two-Level 
Multivariate Growth Model
An example of the data structure for the standard 
organization for the univariate TVC model is  

presented in the left panel of Figure 17.1. A sample 
data structure is given for four individuals where col-
umn i denotes the identification number of each per-
son, column t denotes time-point, column yti denotes 
the criterion (e.g., trust), column zti denotes the TVC 
(e.g., integrity), and column wi denotes a Level-2 
TIC (e.g., benevolence). This is precisely how the 
data would be structured in the standard univariate 
growth model with one TVC and one TIC.

Compare this standard structure to that pre-
sented in the right panel of Figure 17.1 that is refor-
matted for the bivariate model. Note that these are 
precisely the same data as are shown in the left panel 
except for two key differences. First, the values on yti 
and zti are now strung out in a single column labeled 
dvti; this represents the newly synthesized criterion 
variable that we manually created and will be the 

i t yti zti wi i t dvti wi δy δz

1 1 y11 z11 w1 1 1 y11 w1 1 0
1 2 y21 z21 w1 1 1 z11 w1 0 1
1 3 y31 z31 w1 1 2 y21 w1 1 0
1 4 y41 z41 w1 1 2 z21 w1 0 1
2 1 y12 z12 w2 1 3 y31 w1 1 0
2 2 y22 z22 w2 1 3 z31 w1 0 1
2 3 y32 z32 w2 1 4 y41 w1 1 0
2 4 y42 z42 w2 1 4 z41 w1 0 1
3 1 y13 z13 w3 2 1 y12 w2 1 0
3 2 y23 z23 w3 2 1 z12 w2 0 1
3 3 y33 z33 w3 2 2 y22 w2 1 0
3 4 y43 z43 w3 2 2 z22 w2 0 1
4 1 y14 z14 w4 2 3 y32 w2 1 0
4 2 y24 z24 w4 2 3 z32 w2 0 1
4 3 y34 z34 w4 2 4 y42 w2 1 0
4 4 y44 z44 w4 2 4 z42 w2 0 1

3 1 y13 w3 1 0
3 1 z13 w3 0 1
3 2 y23 w3 1 0
3 2 z23 w3 0 1
3 3 y33 w3 1 0
3 3 z33 w3 0 1
3 4 y43 w3 1 0
3 4 z43 w3 0 1
4 1 y14 w4 1 0
4 1 z14 w4 0 1
4 2 y24 w4 1 0
4 2 z24 w4 0 1
4 3 y34 w4 1 0
4 3 z34 w4 0 1
4 4 y44 w4 1 0
4 4 z44 w4 0 1

Figure 17.1.  Standard data structure for a four-time-point two-level univariate growth model with one time-varying 
covariate (left panel) and the modified data structure for a four-time-point two-level bivariate growth model (right panel).
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unit of analysis for the multivariate model. Second, 
the TIC remains constant across individuals but is 
now repeated for each outcome. Third, there are two 
new dummy variables, denoted δy and δz, each of 
which is equal to one when the corresponding ele-
ment in dvti is from that construct, and zero other-
wise. For example, in the first row of data δy = 1 and 
δz = 0 because the element of dvti is from outcome yti; 
similarly, in the second row of data δy = 0 and δz = 1 
because the element of dvti is from outcome zti. This 
pattern repeats throughout the entire data matrix. 
The multivariate growth model can now be fitted 
directly to these newly structured data.3

Three-Level Growth Models

All of the models that we have explored thus far 
assume that the data structure is nested. That is, 
repeated measures are nested within individual, and 
this necessitates the two-level model. Importantly, 
this structure in turn implies that the individual 
subjects in the sample are mutually independent. In 
other words, it is strongly assumed that no two indi-
viduals are any more or less similar than any other 
two. This assumption is commonly met in practice, 
especially when subjects are obtained using some 
form of simple random sampling procedure, and 
subjects are not themselves nested in some higher 
structure (e.g., Raudenbush & Bryk, 2002).

However, there are many situations in which not 
only are the repeated measures nested within indi-
viduals but also individuals are in turn nested within 
groups. A common example is when repeated mea-
sures are nested within children, and children are in 
turn nested within classroom. In our case, we have 
repeated measures nested within cadet, and cadets 
are in turn nested within squads. Such a data struc-
ture would violate the assumptions of the two-level 
model because two cadets who are members of the 
same squad are likely to be more similar to one 
another than two cadets from different squads. A 
major strength of the multilevel model is the natural 
way that it may be expanded to many complex sam-
pling designs, including three levels of nesting. But 
these models are understandably more complex, and 

we must closely consider how the necessary expan-
sions are possible in the multivariate case.

Three-Level Unconditional Univariate 
Growth Model
We will begin by moving back to the two-level uni-
variate model and then extending it to allow for 
three levels of nesting. Our motivating example is 
time nested within cadet, and cadet is nested within 
squad. The Level-1 model becomes

y time etij ij ij tij tij= + +� �0 1 ,� (19)

where t and i continue to represent time and individ-
ual, respectively, but now j denotes group member-
ship at level 3 (j = 1, 2, . . . , J). More specifically, ytij 
is the obtained measure on outcome y at time t for 
individual i nested in group j; π0ij and π1ij are the 
intercept and slope for individual i in group j; timetij 
is the numerical measure of time at time t for indi-
vidual i in group j, and etij is the time-, individual-, 
and group-specific residual where etij ∼ MVN (0, R).

The Level-2 equations are

� �

� �

0 00 0

1 10 1

ij j ij

ij j ij

r

r

= +

= + ,
� (20)

where β00j and β10j are the group-specific intercept 
and slope of the linear trajectory. These terms are 
sometimes a bit tricky to think about at first. The 
group-specific intercept and slope (i.e., β00j and β10j) 
represent the mean of the intercepts and the mean of 
the slopes of the growth trajectories for all of the 
individuals nested within group j. For example, these 
might represent the mean initial value and mean rate 
of change in trust for all of the cadets who are nested 
within a given squad j. As such, the residuals r0ij and 
r1ij represent the deviation of each individual’s inter-
cept and slope around their group-specific mean val-
ues. That is, the residuals capture the variability of 
each cadet’s trajectory of trust around their own 
squad-specific means trajectory of trust. More for-
mally, this is given as [r0ij, r1ij] ∼ MVN (0, Tπ); we will 
explore the Tπ covariance matrix of random effects 
more closely in a moment.

3A detailed example of this restructuring is available from Patrick J. Curran or from http://www.unc.edu/∼curran
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Finally, given the three-level structure of the 
data, the group-specific intercepts and slopes (e.g., 
β00j and β10j) themselves vary randomly across 
groups. The Level-3 equations are thus

� �

� �

00 000 00

10 100 10

j j

j j

u

u

= +

= + ,
� (21)

where γ000 and γ100 represent the grand mean inter-
cept and slope pooling over all individuals and all 
groups, and the residual terms u00j and u10j capture 
the deviation of each group-specific value from the 
grand means, and [u00j, u10j] ∼ MVN (0, Tβ). The 
reduced form expression for the three-level univari-
ate growth model is

y time

u r u time

tij tij

j ij j tij

= +( )
+ + + +

� �000 100

00 0 10 rr time eij tij tij1 +( ).� (22)

See Raudenbush and Bryk (2002, Chapter 8) for an 
excellent description of the general three-level 
model as well as a discussion of studying individual 
change within groups.

A key characteristic of this model is the estimation 
of random components at both levels two and three, 
and the covariance structures of these random effects 
will be of specific interest in the models described in 
the section Three-Level Multivariate Growth Model. 
In the two-level model, the Level-2 covariance matrix 
was denoted T. In the three-level model, however, 
there is a T matrix at Level 2 and at Level 3. This is 
why we must distinguish these T matrixes with the 
use of an additional subscript: Tπ for Level 2 and Tβ 
for Level 3. Let us first consider the covariance struc-
ture of the residuals at Level 2 captured in Tπ.

For a linear model defined at Level 1, the Level-2 
covariance matrix takes the form

T
�

�

� �

�

� �
=















00

01 11

,� (23)

where τπ00 represents the Level-2 variance of the 
intercepts, τπ11 the variance of the slopes, and τπ01 
the covariance between the intercepts and slopes. 
These are sometimes challenging estimates to inter-
pret given that they reside at the middle level of 
nesting. Specifically, these estimates represent the 
amount of variability among the individual-specific 

trajectories within group (e.g., variability among tra-
jectories of trust for each cadet sharing the same 
squad). Thus, larger values reflect greater person-to-
person variability in the trajectories within group; 
similarly, smaller values reflect greater person-to-
person similarity in the trajectories within group. At 
the extreme, if these variance components equal 
zero, then each person within the group is charac-
terized by the same trajectory. For example, a larger 
value of τπ11 would imply greater variability in rates 
of change in trust among cadets within the same 
squad. If τπ11 = 0 then every cadet within each squad 
is characterized by precisely the same developmen-
tal trajectory of trust over time. Although this 
implies that there is no cadet-to-cadet variability in 
the development of trust within squad, this does not 
imply that there is no meaningful squad-to-squad 
variability in the development of trust over time. To 
assess this, we must turn to the Level-3 covariance 
matrix of random effects.

The covariance matrix of random effects at the 
third level of analysis is denoted Tβ. For the linear 
model with full random effects defined in Equation 22), 
the elements of this matrix are

T
�

�

� �

�

� �
=















00

01 11

,� (24)

where τβ00 represents the Level-3 variance of the 
intercepts, τβ11 the variance of the slopes, and τβ01 
the covariance between the intercepts and slopes. In 
contrast to the Level-2 variance components that 
capture individual-level variability of the trajectory 
parameters within group (e.g., squad), Tβ captures 
the group-to-group level variability of the trajectory 
parameters between group. For example, larger val-
ues of τβ00 and τβ11 would indicate greater squad-to-
squad variability in intercepts and slopes; that is, 
some squads are characterized by higher versus 
lower starting points on the outcome variables and 
larger versus smaller rates of change over time. 
Alternatively, smaller values indicate less variability 
in the trajectory parameters across squad. For exam-
ple, larger variance components would imply that 
there are potentially meaningful differences in the 
squad-level trajectories of trust over time across the 
set of squads; some squads might be defined by 
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higher starting points and steeper rates of change, 
whereas others are not. At the extreme, values of 
zero reflect that all squads are governed by the same 
trajectory parameters; for example, all squads are 
defined by the same starting point of trust and same 
rate of change in trust over time. Indeed, in this 
extreme case, the three-level model simplifies to the 
two-level structure defined earlier given that there is 
no meaningful squad-to-squad variability.

To briefly summarize, the Level-1 variance compo-
nents reflect the time-specific variations in trust 
around each cadet’s trajectory of trust; the Level-2 vari-
ance components reflect the cadet-specific variations in 
the trajectories of trust around the mean trajectory of 
trust within each squad; and the Level-3 variance com-
ponents reflect the squad-specific variations in the tra-
jectories of trust around the grand mean trajectory of 
trust pooling over all cadets and all squads. This break-
down of the random effects is one of the most elegant 
aspects of the three-level model: The total variability 
observed in trust can be broken down into time- 
specific, cadet-specific, and squad-specific effects. And 
if meaningful random effects are identified at any level 
of analysis, one or more predictors can be included to 
attempt to explain these variations.

Three-Level Conditional Univariate 
Growth Model
Just as with the two-level model, covariates can be 
included at any level of analysis. In the three-level 
model, however, predictors can be time specific (i.e., 
Level-1 model), person specific (i.e., Level-2 
model), or group specific (i.e., Level-3 model). 
Using our previous terminology, TVCs would thus 
appear at Level 1, and individual- and group-specific 
TICs would appear at Levels 2 and 3, respectively. 
Given our primary interest in change in two or more 
constructs over time, here we will focus just on the 
TVCs at Level 1; inclusion of TICs is a natural 
extension of the two-level model described earlier 
(e.g., Raudenbush & Bryk, 2002, pp. 241–245).

The Level-1 equation for a simple linear growth 
model with one TVC is defined as

y time z etij ij ij tij ij tij tij= + + +� � �0 1 2 ,� (25)

where ztij is the time-, person-, and group-specific 
TVC, and π2ij captures the relation between the TVC 

and the outcome at time-point t. The magnitude of 
the relation between the TVC and the outcome can 
vary randomly over individual with corresponding 
Level-2 equations

� �

� �

� �

0 00 0

1 10 1

2 20 2

ij j ij

ij j ij

ij j ij

r

r

r

= +

= +

= + ,

� (26)

where β20j represents the mean relation between the 
TVC and the outcome pooling over all individuals 
within group j. Finally, the magnitude of these 
within-group specific effects can itself vary over 
group, and this is captured in the Level-3 equations

� �

� �

� �

00 000 00

10 100 10

20 200 20

j j

j j

j j

u

u

u

= +

= +

= + .

� (27)

The reduced form results from the substitution 
of Equation 27 into 26, and Equation 26 subse-
quently into Equation 25. Although tedious, it is 
interesting to see the full set of collected terms:

y time z u r

tim

tij tij tij j ij= + +( ) + +( )� � �000 100 200 10 0

ee u r z u r etij ij tij tij j ij tij+ +( ) + + +( )2 00 0 .� (28)

This model is in the same form as its two-level 
counterpart with the key exception that an additional 
covariance matrix is allowed to capture between-
group variability at the third level of nesting. We 
again assume, however, that although the TVC can 
take on a different numerical value at each time-point 
t, the TVC itself is assumed to not change systemati-
cally over time. Whether by theoretical rationale or 
empirical necessity, there are many situations in 
which we would like to expand the univariate three-
level model to simultaneously capture growth in two 
or more constructs over time. Whereas the two-level 
multivariate model is well established in the literature 
(e.g., MacCallum et al., 1997), we are unaware of any 
prior presentation of the expansion of this model to 
three levels of nesting. It is to this that we now turn.

Three-Level Multivariate Growth Model
The expansion of the multivariate growth model 
from two to three levels of nesting is both intuitive 
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and straightforward. Just as we expanded the uni-
variate growth model to allow for individuals to be 
nested within group, we will expand the multivari-
ate model in precisely the same way. Indeed, we will 
use the same dummy variable approach to combine 
the multiple outcomes into a single three-level 
model. The only difference here is that the reduced 
form expression is more complex because of the 
nesting of time within individual within group.

The general expression is

dv time utij k

k k

tij

k

k

K

j= +( )
 +( ) ( ) ( )

=
∑� � �000 100

1
00

kk

ij

k

j

k

tij

k

ij

k

tij

r

u time r time

( ) ( )
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for k = 1, 2, . . . , K outcomes. There is no need to 
modify the notation for the dummy variables to 
include information about group membership 
because the dummy variables only demarcate to 
which outcome variable the numerical value 
belongs; this is not unique to time, person, or group. 
For the bivariate case, this simplifies to
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where the first bracketed term captures the three-
level growth process for outcome ytij (e.g., trust) and 
the second bracketed term captures the three-level 
growth process for outcome ztij (e.g., integrity). As 
before, these two growth processes need not be the 
same (e.g., the first could be linear and the second 
quadratic, and so on). As with the two-level multivar-
iate expression, the definition of the model is atypical 
relative to the standard three-level growth model. 
The main effects of the two dummy codes are again 
the intercept of each construct, respectively, and the 
interaction between each dummy code and time are 
again the slope of each construct, respectively.

The key benefit stemming from this rather com-
plex (yet intuitively appealing) model is the ability 
to explicitly incorporate various covariance struc-
tures among the residual terms at all three levels 

both within and across constructs. The Level-1 
covariance structure for this model is the same as 
that defined in Equation 15 for the two-level model. 
However, the covariance structures at Levels 2 and 3 
can become quite interesting. Given space con-
straints and the similarity in the types of inferences 
that can be drawn, here we will focus primarily on 
the level-2 covariance structure as estimated both 
within and across the multivariate outcomes  
(i.e., Tπ). However, all of our descriptions would 
generalize naturally to the Level-3 covariance struc-
ture (i.e., Tβ). Furthermore, these generalizations 
offer unique insights into the relations among 
growth trajectories at the level of the group. Thus  
Tπ estimates the random components of individual-
level trajectories nested within groups, and Tβ esti-
mates the random components of group-level 
trajectories across groups. Only the three-level 
model provides this joint estimation of within- and 
between-group effects (the specific parameterization 
of which would depend on substantive theory and 
empirical necessity).

To remain concrete, we will continue to consider 
the three-level bivariate growth model defined in 
Equation 30. There is thus a linear trajectory esti-
mated for both outcomes, and all trajectory parame-
ters are allowed to vary both at Level 2 and Level 3. 
The joint covariance structure for the two growth 
processes at Level 2 is contained in the matrix Tπ. 
The specific elements of this matrix are
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Note the substantial similarity to the Level-2 
covariance matrix from the two-level bivariate 
growth model defined in Equation 16. The critical 
difference between the Level-2 covariance matrix T 
from the two-level model and the Level-2 covariance 
matrix Tπ from the three-level model is that the lat-
ter explicitly accounts for the clustering of individu-
als within groups at the highest level of nesting. If 
we were to fix the Level-3 covariance matrix to zero 
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(e.g., Tβ = 0), then the three-level model would 
reduce to the two-level model and the Level-2 cova-
riance matrices defined in Equations 16 and 31 
would be equal (e.g., T = Tπ).

The same pattern as was observed in the T 
matrix defined in Equation 16 holds here. Namely, 
the upper left and lower right quadrants represent 
the variance components of the trajectory parame-
ters of the individuals nested within each group for 
outcome y and outcome z, respectively. Further-
more, the lower left quadrant represents the vari-
ance components across the two outcomes. For 
example, the element �

�00

z y,( ) captures the covariance 
between the random intercepts on outcome z with 
the random intercepts on outcome y; this element 
assesses the extent of similarity in the starting points 
of the trajectories of z and y of individuals nested 
within group. Similarly, the element �

�11

z y,( ) captures 
the covariance between the random slopes on out-
come z with the random slopes on outcome y; this 
assesses the extent of similarity in the rates of 
change of the trajectories of z and y. Finally, the ele-
ment �

�10

z y,( ) captures the covariance between the ran-
dom slopes on z and the random intercepts on y, 
and �

�01

z y,( ) the covariance between the random inter-
cepts on z with the random slopes on y. As with the 
two-level models, these covariances can be standard-
ized into correlations for interpretation and effect 
size estimation.

These covariance estimates are often of key sub-
stantive interest when testing hypotheses regarding 
stability and change over time. As in the two-level 
bivariate growth model, the lower-left quadrant of 
the Tπ matrix captures the similarity or dissimilarity 
in patterns of growth in the two outcomes over time. 
This can provide insight into a variety of interesting 
questions. For example, to what extent are the start-
ing points of the trajectories of trust and integrity 
related? Is the rate of change in trust systematically 
related to the rate of change in integrity? Do individ-
uals who report higher initial levels of trust also 
report steeper rates of change in integrity (and vice 
versa)? The key advantage of the three-level model 
is that these relations are estimated while properly 
allowing for the nesting of individuals within 
groups. Furthermore, similarly intriguing insights 
can be gained about group-level characteristics of 

growth through the Level-3 variance components 
(i.e., Tβ) that would not otherwise be accessible via 
the two-level model. For example, on average, do 
squads that are characterized by higher initial levels 
of trust tend to increase more steeply in integrity 
over time? These are just a few of the many advan-
tages of the multivariate–multilevel growth models.

The Inclusion of One or More Predictors
One or more predictors can be included at any of 
the three levels of analyses. Furthermore, interac-
tions can be estimated within one level, across two 
levels, or even across all three levels. Because the 
equations are direct extensions of those already 
defined, we do not repeat these here. For example, 
the inclusion of a single TIC at Level 2 follows the 
same structure as was defined in Equation 18 but 
with the addition of the necessary Level-3 error 
terms (for full details, see Raudenbush & Bryk, 
2002, Chapter 8).

Data Structure for the Three-Level 
Multivariate Growth Model
The data structure required to fit the three-level 
bivariate growth model is a direct extension of that 
used for the two-level model. For example, the left 
panel in Figure 17.2 presents the standard data struc-
ture used to fit the three-level TVC model defined in 
Equation 22 to four individuals with the inclusion of 
a Level-2 TIC. There is more information here than 
was required for the two-level model given the need 
to simultaneously track group membership. Thus, 
column j denotes group, column i denotes individual, 
and column t denotes time. Subjects 1 and 2 are 
members of Group 1, and Subjects 3 and 4 are mem-
bers of Group 2. Finally, ytij is the observed outcome 
variable, ztij is the TVC, and wij is the person-specific 
TIC. To combine the outcome and the TVC into a 
bivariate model, these must be restructured under a 
single column as the newly constructed (or synthe-
sized) dependent variable.

These restructured data are shown in the right 
panel of Figure 17.2. Columns j, i, and t all remain 
as before, but there is a newly created column 
labeled dvtij; this is the newly synthesized variable 
that is a stacked vector of ytij and ztij. The TIC wij is 
again repeated over both the outcome variables. 
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Finally, the binary variables denoted δy and δz again 
identify to which construct each element of the syn-
thesized variable belongs. Note the significant simi-
larities between the data structures presented in 
Figure 17.1 and Figure 17.2. The only meaningful 
difference is that Figure 17.1 implies that the four 
individuals are independent, whereas Figure 17.2 
explicitly captures information about the group to 
which each individual belongs.4

We have now fully explicated the multivariate 
growth model for three levels of nesting, and we 
have described the data structure needed for estima-
tion. We now turn to the application of these mod-
els to evaluate several research hypotheses about the 

development of trust and integrity over time using 
real empirical data drawn from a longitudinal study 
of military cadets.

Empirical Example: The 
Longitudinal Development of 
Trust in Military Cadets

The core constructs of trust, influence, and leader-
ship have long been a critically important focus of 
past and ongoing military research. Despite the 
wealth of knowledge that has been gathered, little is 
known about how trust and influence codevelop 
over time (e.g., Sweeney, 2007; Sweeney, Dirks, 

4Examples of how to reorder univariate data to a multivariate structure are available from Patrick J. Curran or from http://www.unc.edu/∼curran

j i t ytij ztij wij j i t dvtij wij δy δz

1 1 1 y111 z111 w11 1 1 1 y111 w11 1 0
1 1 2 y211 z211 w11 1 1 1 z111 w11 0 1
1 1 3 y311 z311 w11 1 1 2 y211 w11 1 0
1 1 4 y411 z411 w11 1 1 2 z211 w11 0 1
1 2 1 y121 z121 w21 1 1 3 y311 w11 1 0
1 2 2 y221 z221 w21 1 1 3 z311 w11 0 1
1 2 3 y321 z321 w21 1 1 4 y411 w11 1 0
1 2 4 y421 z421 w21 1 1 4 z411 w11 0 1
2 3 1 y132 z132 w32 1 2 1 y121 w21 1 0
2 3 2 y232 z232 w32 1 2 1 z121 w21 0 1
2 3 3 y332 z332 w32 1 2 2 y221 w21 1 0
2 3 4 y432 z432 w32 1 2 2 z221 w21 0 1
2 4 1 y142 z142 w42 1 2 3 y321 w21 1 0
2 4 2 y242 z242 w42 1 2 3 z321 w21 0 1
2 4 3 y342 z342 w42 1 2 4 y421 w21 1 0
2 4 4 y442 z442 w42 1 2 4 z421 w21 0 1

2 3 1 y132 w32 1 0
2 3 1 z132 w32 0 1
2 3 2 y232 w32 1 0
2 3 2 z232 w32 0 1
2 3 3 y332 w32 1 0
2 3 3 z332 w32 0 1
2 3 4 y432 w32 1 0
2 3 4 z432 w32 0 1
2 4 1 y142 w42 1 0
2 4 1 y142 w42 0 1
2 4 2 y242 w42 1 0
2 4 2 y242 w42 0 1
2 4 3 y342 w42 1 0
2 4 3 y342 w42 0 1
2 4 4 y442 w42 1 0
2 4 4 z442 w42 0 1

Figure 17.2.  Standard data structure for a four-time-point three-level univariate growth model with one time-varying 
covariate (left panel) and the modified data structure for a four-time-point three-level bivariate growth model (right panel).
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Curran, & Lester, 2010; Sweeney, Thompson, & 
Blanton, 2009). Gaining a better understanding of 
the etiological process that underlies the develop-
ment of the determinants of trust and how trust  
subsequently affects influence is critical both from  
a theoretical and practical standpoint. Theoretically, 
a more rigorous study of these etiological processes 
would provide a greater and more nuanced under-
standing of the underlying developmental model; 
practically, understanding how leadership, trust, 
and influence develop, are maintained, and are 
potentially lost can directly inform how these 
important characteristics might be fostered and sup-
ported, particularly in a military training environ-
ment such as the USMA.

We focus on three specific dimensions that are 
related to trust and influence (Mayer & Davis, 
1999): trustworthiness, integrity, and benevolence. All 
three constructs were assessed as each cadet’s per-
ception of their fellow squad members; there were 
542 individual cadets, each nested within one of 131 
squads. Trustworthiness represents the confidence or 
faithfulness a cadet holds in their fellow squad 
members; integrity represents the cadet’s perception 
that fellow squad members adhere to ethical or 
moral principles; and benevolence represents the 
cadet’s perception that fellow squad members care 
about the cadet’s well-being. Our ultimate interest is 
in how these characteristics relate to influence (e.g., 
the ability of one individual to affect the behavior of 
another), but here we will specifically examine how 
trustworthiness and integrity codevelop over time 
and how initial levels of benevolence impact this 
developmental process.

Design
Data were obtained from 542 male and female cadets 
who attended the USMA at West Point. Cadets were 
assessed between one and four times throughout a 
single academic year (144 cadets were assessed 
once, 124 twice, 131 three times, and 136 four 
times) resulting in a total of 1,329 Person × Time 
observations. Although there was some subject attri-
tion over time, these rates were modest and were 
addressed in the estimation of the multilevel models 

under the assumption that the data were missing at 
random (e.g., Allison, 2002). Although the structure 
of these data constitutes five levels of hierarchical 
nesting (repeated assessments nested within cadets; 
cadets nested within squads; squads nested within 
platoons; and platoons nested within companies) for 
purposes of demonstration, we focus here on the 
first three levels of nesting: time, cadet, and squad. 
More specifically, the 542 cadets were nested in 131 
squads, which were nested in 39 platoons, which 
were nested in 10 companies. The mean number of 
cadets per squad was 4.08 with a range of 1 to 22. 
Although we are ignoring the nesting of squads in 
platoon, and platoons in company, preliminary analy-
sis indicated that these fourth and fifth levels of nest-
ing introduced only trivial dependence into the data 
(e.g., all intraclass correlations were less than .01).

Measures
We drew three measures from a much larger assess-
ment battery given to each cadet at each time-point. 
We are interested in the cadets’ report of trust, integ-
rity, and benevolence of all of the other cadets that 
belong to their own squad5 using items drawn from 
Mayer and Davis (1999). All three measures were 
assessed at all four time points; we considered the 
four repeated measures of trust and integrity and the 
initial assessment of benevolence that we used as a 
TIC. Further analysis might consider also growth in 
benevolence (e.g., a multivariate growth model with 
three outcomes), although we do not pursue these 
models here.

Trust was computed as the mean of four items, 
and integrity and benevolence as the mean of three 
items. All items were rated on a 7-point ordinal scale 
ranging from 1 (strongly disagree) to 7 (strongly 
agree). Reliability coefficients ranged from .89 to .92 
across the four time-points for trust, from .89 to .93 
for integrity, and was equal to .88 for the initial 
assessment of benevolence. Sample items for trust 
include “I feel secure in having my members of squad 
make decisions that critically affect me as a cadet” 
and “I would be willing to rely on my members of 
squad in a critical situation, such as combat.” Sample 
items for integrity include “I like my members of 

5That is, cadets reported on all of their fellow squad members as a group and not on each squad member individually.
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squads’ values” and “Sound principles seem to guide 
my members of squads’ behavior.” Finally, sample 
items for benevolence include “My members of squad 
are very concerned about my welfare” and “My mem-
bers of squad will go out of their way to help me.”

Summary Statistics
The mean reported levels of trust and integrity were 
both high at the first time-point and were generally 
increasing over time. On a scale ranging from one  
to seven, the sample means and standard deviations 
(SD) are as follows: for trust, Time 1 = 5.14 (SD = 
1.22), Time 2 = 5.25 (SD = 1.13), Time 3 = 5.33 
(SD = 1.14), and Time 4 = 5.54 (SD = 1.12); for 
integrity, Time 1 = 5.65 (SD = 0.87), Time 2 = 5.68 
(SD = 0.88), Time 3 = 5.67 (SD = 0.98), and Time 4 = 
5.85 (SD = 0.83); and for benevolence, at Time 1 = 
5.40 (SD = 1.02). The within- and across-construct 
correlations between trust and integrity over time 
showed a general autoregressive pattern in which 
there were stronger correlations among observations 
taken closer in time compared with observations 
taken further apart in time. For example, the corre-
lation between trust at Time 1 and trust at Time 2 
was .51, at Times 1 and 3 was .46, and at Times 1 
and 4 was .33. Trust and integrity also showed 
strong correlations both within and across time. For 
example, the correlation between trust at time 1 and 
integrity at Time 1 was .61, at Time 2 was .70, at 
Time 3 was .75, and at Time 4 was .76. Finally, the 
correlation between trust at Time 1 and integrity at 
Time 2 was .61, at Time 1 and Time 3 was .35, and 
at Time 1 and Time 4 was .31.

Results
We followed an analytic strategy that might be com-
monly used in practice: We estimated a total of four 
multilevel models: two univariate unconditional 
three-level growth models of trust and integrity 
independently, one unconditional three-level bivari-
ate growth model of trust and integrity jointly, and 
one conditional three-level bivariate growth model 
of trust and integrity with benevolence as a TIC. We 
present each of these models in turn.

Univariate three-level growth model: Trust.  We 
began by fitting a series of alternative functional 

forms to the repeated measures of trust (e.g., inter-
cept only, linear, quadratic), and standard likelihood 
ratio tests (LRTs) indicated that a linear trajectory 
was optimal. Furthermore, additional LRTs indi-
cated that the optimal structure for the random 
effects was defined by homoskedastic residuals at 
Level 1, a random intercept and random slope at 
Level 2, and a random intercept at Level 3. This 
covariance structure allowed for variability among 
the repeated measures within each cadet (Level 1), 
variability in starting point and rate of change in 
trust across cadets within squad (Level 2), and vari-
ability in starting point across squads (Level 3). The 
grand mean intercept was 5.16 and mean slope was 
.11, and both were significantly different from zero 
(p < .001). This result indicated that there was a 
rather high initial level of cadet trust in their fellow 
squad members (5.16 on a 1-to-7 scale) and that 
trust increased linearly over the four time-points. 
Furthermore, there were significant variance compo-
nents at all three levels of analysis, indicating poten-
tially meaningful variability in time-specific levels 
of trust around each cadet’s trajectory, cadet-specific 
trajectories around squad-specific mean trajectories, 
and squad-specific intercepts around the grand 
intercept. There was also a significant negative cova-
riance between the intercept and slope, indicating 
that higher initial levels of trust were associated with 
less steep increases over time. All point estimates 
and standard errors for these random effects are  
presented in Table 17.1.

Univariate three-level growth model: Integrity. 
We followed the same model building strategy for 
the four repeated measures of integrity as we used 
for trust. The final model for integrity was defined 
and evaluated using the same structure as we used 
for trust. The optimal fitting model was defined by a 
linear trajectory with homoskedastic errors at Level 
1, a random intercept and random slope at Level 2, 
and just a random intercept at Level 3. The mean 
intercept was 5.65 (p < .0001), and mean slope was 
.04 (p = .028) indicating that, as we saw with the 
trust outcome, there was a rather high initial level 
of perceived integrity among fellow squad members 
(5.65 on a 1-to-7 scale) and that integrity increased 
linearly over the four time points. Furthermore, 
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the Level-1 residual variance significantly differed 
from zero, as did the Level-2 random intercept and 
slope; however, the covariance between the intercept 
and slope was not significantly different from zero. 
Finally, the Level-3 random intercept was marginally 
significant (p = .072). The point estimates and stan-
dard errors for these random effects are presented in 
Table 17.2.

Bivariate three-level growth model: Trust and 
integrity.  There were significant fixed effects defin-
ing a linear trajectory for both trust and integrity, 
and there were significant (and one marginally sig-
nificant) random effects at all three levels of analy-
sis. Each of the univariate models was estimated in 
isolation, however, and we do not yet know how 
trust and integrity are related over time. One option 
would be to use one measure as the outcome and 

one as the TVC. Not only would the choice of which 
measure would be the outcome and which the TVC 
be arbitrary (because we are equally interested 
in both), but the standard TVC model would be 
inappropriate given the systematic growth in both 
constructs (e.g., Curran & Bauer, 2011).6 We will 
thus use the multivariate techniques defined earlier 
to estimate a single bivariate model linking trust 
and integrity at the level of the trajectories while 
accounting for the nesting of cadet within squad 
(i.e., Equation 30).

The bivariate model was estimated consistent 
with Equation 30. Linear trajectories were estimated 
for both trust and integrity. Homoskedastic errors 
were estimated for both constructs at Level 1, and 
these residuals were allowed to covary within time 
and across construct (e.g., the residuals for trust and 
integrity covaried within Times 1, 2, 3, and 4, but 

Table 17.2

Estimates, Standard Errors, and z Ratios for All Random Effects From the Three-Level Univariate Growth 
Model of Perceived Integrity

Covariance parameter Estimate SE z ratio p value

Level 1 residual (�̂2) 0.397 0.026 15.43 < .001

Level 2 intercept (�̂
�00

) 0.393 0.059 6.61 < .001

Level 2 intercept-slope covariance (�̂
�01

)/correlation −0.292/−.30 0.021 −1.42 .16

Level 2 slope (�̂
�11

) 0.025 0.011 2.19 .014

Level 3 intercept (�̂
�00

) 0.037 0.026 1.46 .072

6It may seem equally arbitrary for us to then include the initial assessment of benevolence as a TIC and not consider systematic growth in this con-
struct as well. However, our initial theoretical question relates to the initial status of benevolence on trajectories of trust and integrity, and this model 
would be logically extended to include the estimation of growth in all three constructs simultaneously in subsequent analysis.

Table 17.1

Estimates, Standard Errors, and z Ratios for All Random Effects From the Three-Level Univariate Growth 
Model of Perceived Trust

Covariance parameter Estimate SE z ratio p value

Level 1 residual (�̂2) 0.526 0.034 15.44 < .001

Level 2 intercept (�̂
�00

) 0.870 0.103 8.47 < .001

Level 2 intercept-slope covariance (�̂
�01

) / correlation −0.151 / −.54 0.038 −4.00 < .001

Level 2 slope (�̂
�11

) 0.089 0.019 4.59 < .001

Level 3 intercept (�̂
�00

) 0.078 0.042 1.86 .031
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they did not covary across time). Random intercepts 
and slopes were estimated at Level 2, and these were 
allowed to covary across construct (e.g., the inter-
cepts and slopes for both trust and integrity freely 
covaried with one another). Finally, random inter-
cepts were estimated at Level 3, and these two 
effects were allowed to covary across construct.

As expected, fixed effects and within-construct 
random effects estimates were similar to those 
obtained through the previous univariate growth 
models, and we do not report these again here. 
However, of primary interest in this model were the 
cross-construct correlations among the random 
effects. For cadets nested within squads (i.e., Level 
2), the initial level of trust was significantly and pos-
itively correlated with the initial level of integrity  
(r = .74, p < .001); thus cadets reporting higher ini-
tial values on one construct tended to report higher 
initial values on the other. The slope of trust was 
significantly and positively correlated with the slope 
of integrity (r = .78; p < .001). This suggests that 
steeper increases in one construct were associated 
with steeper increases in the other construct, indi-
cating that trust and integrity codevelop over time. 
Interestingly, there were nonsignificant covariances 
between the initial value of trust and change in 

integrity and between the initial value of integrity 
and change in trust. This indicates that the starting 
point on one construct did not inform the subse-
quent rate of change in the other construct. Finally, 
the covariance between the initial status of trust and 
the initial status of integrity was nonsignificant at 
the level of the squad (i.e., Level 3), indicating that 
squad-specific means of the initial values of trust 
and integrity were not systematically related.

Bivariate three-level growth model: Benevolence  
as a TIC.  Given that both trust and integrity show 
significant cadet-to-cadet variability in initial status 
and rate of change, we next introduced benevolence 
as a Level-2 TIC to help explain this variability.7 As 
we described, the substantive question is whether 
initial levels of perceived benevolence predict later 
changes in both trust and integrity. Table 17.3 pres-
ents the fixed effects from this conditional three-
level bivariate growth model. Benevolence was 
significantly and positively predictive of initial levels 
of both trust and integrity. This finding indicates 
that higher values of perceived benevolence at the 
initial time period were systematically related to 
higher values of both perceived trust and integrity. 
Interestingly, benevolence was significantly and 

7The unconditional models were both based on a sample of N = 542 cadets. However, only n = 344 cadets reported on benevolence at the initial time 
period. The conditional model is thus based on the subsample of n = 344. To examine the potential impact of this reduction in sample size, we rees-
timated the conditional model using multiple imputation methods with 10 imputed data sets so that all 542 cadets were retained. The results for the 
pooled imputed analysis were nearly identical to that of the restricted sample.

Table 17.3

Fixed-Effects Estimates for Three-Level Bivariate Growth Model of Trust and Integrity With Benevolence 
as a Level-2 Time-Invariant Covariate

Coefficient Estimate SE z ratio p value

Trust intercept 5.124 0.041 126.09 < .001
Trust slope 0.096 0.026 3.69 .0002
Integrity intercept 5.660 0.037 151.42 < .001
Integrity slope 0.026 0.021 1.28 .199
Benevolence → trust intercept 0.894 0.039 22.88 < .001
Benevolence → trust slope −0.195 0.025 −7.81 < .001
Benevolence → integrity intercept 0.523 0.036 14.66 < .001
Benevolence → integrity slope −0.090 0.020 −4.56 < .001

Note. The first four rows represent the conditional means of the intercept and slope for trust and integrity, respectively; 
the second four rows represent the regression of the intercept and slope of trust and integrity on the Level-2 measure of 
benevolence.
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negatively predictive of changes in both trust and 
integrity over time. This indicates that higher values 
of perceived benevolence at the initial time period 
were systematically related to less steep increases 
in both trust and integrity over time. Although this 
may initially seem like a paradoxical finding because 
of the negative relation, we must graphically probe 
this cross-level interaction to better understand the 
nature of this relation.

Following the strategies described in Curran, 
Bauer, and Willoughby (2006) and Preacher, Cur-
ran, and Bauer (2006), we probed the interaction 
between benevolence and change over time in trust 
and integrity and calculated the model-implied tra-
jectories at plus and minus one standard deviation 
around the mean; these results are presented in Fig-
ures 17.3 and 17.4. Figure 17.3 shows that trust is 
significantly increasing over time, but only for those 
cadets who reported lower levels of initial benevo-
lence; for those reporting higher benevolence, trust 
remains stably high (or slightly decreasing) across 
all four time-points. Figure 17.4 reports a similar 
pattern for integrity such that lower values of initial 
benevolence are associated with steeper increases in 
integrity over time. However, the magnitude of the 

relation between benevolence and change in integ-
rity is smaller than is the relation between benevo-
lence and change in trust. Further research is 
needed to better understand the nature of these 
rather complex relations.

Summary.  Pooling over our set of results, we 
can draw several initial conclusions about the rela-
tions between cadet ratings of trust, integrity, and 
benevolence both within and across time. First, 
both trust and integrity were characterized by posi-
tive linear trajectories spanning the academic year 
at West Point. Second, there was significant vari-
ability in both the intercepts and the slopes of these 
trajectories among cadets nested within squad. This 
suggests that, within squads, some cadets are report-
ing higher versus lower initial levels of trust and 
integrity, and some are reporting steeper versus less 
steep changes over time. Third, the initial levels of 
both trust and integrity vary across squad as well. 
This finding indicates that the mean squad-level 
initial reports of each of these constructs varies from 
squad to squad. Thus some squads are characterized 
by higher overall initial levels of trust and integrity, 
whereas some squads are not.

Figure 17.3.  Model-implied trajectories of trust at high, medium, and low 
levels of perceived benevolence.
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Importantly, the bivariate model indicated  
that the trajectories of trust and integrity are  
systematically related to one another within and 
across time. In fact, the results showed strong cor-
relations between both the initial levels and the 
rates of change over time between trust and integ-
rity. This pattern of findings suggests that these 
two constructs codevelop across the span of the 
academic year. These across-construct relations 
could only be identified in the bivariate model in 
which change in each construct is estimated 
simultaneously. Interestingly, however, the initial 
level on one construct was not systematically 
related to the rate of change on the other. Finally, 
we considered benevolence as a Level-2 TIC and 
these results indicated significant relations 
between initial levels and rates of change for both 
trust and integrity. Probing of the cross-level 
interactions indicated that trust and integrity 
increased significantly more steeply for cadets 
who reported lower initial levels of perceived 
benevolence; for cadets reporting higher initial 
levels of benevolence, both trust and integrity 
remained high and stable, if not showing some 
slight decrease over time.

Again, we did not intend these analyses to be a 
rigorous test of our underlying theoretical model 
about the development of trust over time and the 
impact of this developmental process on later influ-
ence. Instead, we examined a specific subquestion 
relating to the unfolding of trust and integrity over 
time and the impact of initial benevolence on this 
process primarily to highlight the potential advan-
tages and disadvantages of our proposed model. 
Ongoing work in our group is examining the 
broader theoretical questions of interest as well as 
potential further extensions of this modeling 
framework.

Conclusion

Our motivating substantive questions focused on 
the development of trust in cadets attending the 
USMA at West Point, and this analysis involved 
three levels of nesting: repeated measure nested 
within cadet, and cadet nested within squad. The 
multilevel growth-modeling framework was thus an  
ideal analytic method for testing our proposed 
hypotheses. Although prior work has proposed a 
multivariate–multilevel growth model for two levels 

Figure 17.4.  Model-implied trajectories of integrity at high, medium, and 
low levels of perceived benevolence.
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of nesting, we are unaware of any prior attempts  
to extend this model to account for three levels  
of nesting. Explicating and demonstrating this 
three-level multivariate growth model has been  
our goal.

Although the equations necessary to define the 
multivariate three-level growth model are many, the 
underlying conceptual framework is both straightfor-
ward and elegant. Our goals were (a) to design a 
model to examine individual variability in trajecto-
ries of trust and integrity within each cadet, (b) to 
determine how these trajectories varied both within 
and between squads, (c) to estimate the degree of 
correspondence between the two trajectories over 
time, and (d) to test the extent to which benevolence 
influenced the parameters that defined the develop-
mental trajectory within each cadet. Although a stan-
dard multilevel TVC model could be estimated to 
examine trust as the outcome and integrity as the 
TVC (or vice versa), whatever measure was defined 
as the TVC is assumed to not systematically vary 
with the passage of time. Yet there was clear evidence 
that both measures were increasing systematically 
over time, and thus arbitrarily treating one as the 
TVC would result in a misspecified model that did 
not evaluate the specific research hypotheses at hand.

More important, only the multivariate growth 
model allowed for the simultaneous estimation of 
growth in both trust and integrity, which in turn 
provides an explicit estimate of the covariance struc-
ture among the set of parameters that defines each of 
the trajectories. This analytic approach means that 
we can obtain estimates of the degree to which the 
initial levels of trust are related to changes in integ-
rity, or the initial levels of integrity are related to 
changes in trust, or even the degree to which 
changes in trust are related to changes in integrity. 
The relation between changes in trust and changes 
in integrity was of primary substantive interest, and 
the multivariate growth model provides a means 
with which to directly and rigorously test our 
hypotheses.

The models we describe here could be extended 
in a number of interesting ways. We considered 
measures that were continuously and normally dis-
tributed, but these models can be estimated with 
such discrete outcomes as binary, ordinal, or count 

outcomes. We only considered simultaneous growth 
in two constructs, but this model could be extended 
to include three or even more outcomes (as was 
done by MacCallum et al., 1997, in the two-level 
framework). Although we used linear functions for 
both of our outcomes, these functional forms need 
not be the same; the functions can be mixes of lin-
ear, piecewise linear, or curvilinear trajectories over 
time. Finally, we only considered a single Level-2 
time-invariant predictor; it is straightforward to 
include one or more predictors at any of the three 
levels of analysis as well as the inclusion of interac-
tions within or across levels. Taken together, this 
approach offers a variety of significant strengths.

Despite these many strengths, there are of course 
associated limitations. First, although partially 
missing data can be included for each of the out-
come measures, complete case data are required for 
the exogenous covariates (although multiple impu-
tation methods can be used to circumvent this 
problem). Second, as with the traditional fixed 
effects regression model, all measured variables are 
assumed to be error free; any measurement error 
that exists attenuates the estimated regression coef-
ficients relative to their population values. Third, 
the examination of the two outcome measures at 
the level of the trajectories is strictly a between-per-
son comparison. In other words, the model-implied 
relations between trust and integrity are evaluated 
at the level of the cadet-specific trajectories. Addi-
tional analytic work would be needed to simultane-
ously obtain both between-person (i.e., at the level 
of the trajectory) and within-person (i.e., at the 
level of specific time assessments) components of 
the relation between the two outcomes (for further 
discussion, see Curran & Bauer, 2011; Curran  
et al., in press).

We have drawn on existing developments within 
the two-level multivariate–multilevel model and the 
three-level univariate–multilevel model to describe  
a general three-level growth model for two or more 
correlated outcomes. Because this model is embed-
ded within the standard multilevel analytic frame-
work, we can draw on all the strengths of this 
modeling tradition to provide a powerful and flexi-
ble method for testing a broad range of proposed 
hypotheses within the behavioral sciences. We have 
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found these techniques to be highly applicable in 
our own work, and we hope that our discussion 
might be of some use to you in your own.
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