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Despite the recent surge in the development of powerful modeling strategies to test questions about
individual differences in stability and change over time, these methods are not currently widely used in
psychopathology research. In an attempt to further the dissemination of these new methods, the authors
present a pedagogical introduction to the structural equation modeling based latent trajectory model, or
LTM. They review several different types of LTMs, discuss matching an optimal LTM to a given
question of interest, and highlight several issues that might be particularly salient for research in
psychopathology. The authors augment each section with a review of published applications of these
methods in psychopathology-related research to demonstrate the implementation and interpretation of
LTMs in practice.

As described in the masthead, the Journal of Abnormal Psy-
chology is dedicated to the publication of articles that explore the
correlates and determinants of abnormal behavior. Among other
aspects of study, it is stated that “Each article should represent an
addition to knowledge and understanding of abnormal behavior in
its etiology, description, or change.” One powerful method that can
be used to pursue this important goal is the collection and evalu-
ation of longitudinal data. Longitudinal methods permit the sys-
tematic study of stability and change over time and thus can
provide critically needed empirical evaluations of the course,
causes, and consequences of abnormal behavior. Because of this,
longitudinal design and data analysis play a critical role in many
empirical studies of psychopathology.

The incorporation of longitudinal data into empirical research
brings with it many advantages but also invites a host of new
challenges. One challenge is the selection of an appropriate statis-
tical method given the many options that exist for analyzing
repeated measures data. Although the history of longitudinal data
analysis in the social sciences can be traced back a century or
more, the past decade has witnessed a particularly rapid rise in the
development of new and powerful longitudinal methods. This
explosion in analytical development is partly attributable to key
breakthroughs in mathematical statistics and to the recent advances
in high-speed computing. Taken together, there are now a wide
variety of new and exciting statistical methods that are available to
evaluate research questions in ways that were not previously
possible. However, despite many potential advantages, there is

only limited evidence that these new techniques are being widely
used within the field of psychopathology.

We reviewed the past 5 years of the Journal of Abnormal
Psychology and found that the majority of published articles did
not incorporate longitudinal data. Of those that did, the majority
primarily used more traditional analytic techniques such as fixed-
effects regression and repeated measures analysis of variance
(ANOVA) and multivariate analysis of variance (MANOVA).
Although there were several published applications of more re-
cently developed analytical methods, these were clearly in the
minority. Often, our theoretical models do not closely correspond
to more traditional statistical models, and this may limit the
strength of inferences that can be drawn back to theory (Curran,
2000; Raudenbush, 2001). Furthermore, many of the new analytic
techniques can be applied to exactly the same data as were used
with more traditional models, thus making these methods a viable
alternative strategy for existing measures and data.

Although a variety of impediments may account for the slow
integration of this new generation of analytic methods into psy-
chopathology research, one factor might be that there are not many
pedagogically focused papers that explore these new methods with
the explicit link to real theoretical questions evaluated with real
empirical data (though we highlight several applications of these
methods later). Because the study of psychopathology introduces
unique data analytic challenges, pedagogical tools that are tied to
the use of such methods in the study of psychopathology might be
of interest to many readers of the journal and facilitate their use.
Our hope is to provide such a pedagogical introduction here.

Because our motivating goal is to present an introduction to
recently developed analytic methods for longitudinal data, we do
not present new quantitative developments here; our article is
intended to serve as a review and demonstration accompanied with
recommendations for applied researchers. Further, to maintain a
reasonable scope of our article, we focus only on one specific
data-analytic approach, namely the structural equation modeling
(SEM)-based latent trajectory model (LTM). Finally, instead of
presenting a fully worked empirical example throughout the arti-
cle, we have chosen to review previously published applications of
LTMs in psychopathology-related research to demonstrate these
various models. We chose this strategy so that interested readers
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may obtain more comprehensive discussions of model estima-
tion and interpretation than would otherwise be possible. Al-
though we highlight much of our own work for ease of presen-
tation and reanalysis of data when needed, we reference
applications of these techniques by other researchers as well.
Finally, extensive empirical examples including raw data,
computer code for a variety of software packages, and re-
sulting computer output can be downloaded directly from
www.unc.edu/�curran/example.html.

We open our article with a brief review of more traditional
longitudinal data analytic techniques and then introduce the basic
LTM. We start with the unconditional trajectory model, and we
extend this to consider alternative nonlinear functional forms of
growth. We then include one or more predictors of the trajectories,
and we explore ways of evaluating both mediating and moderating
relations. Next we present multivariate trajectory models for both
single-change processes and multiple-change processes. Finally,
we conclude with a discussion of several topics of particular
importance to psychopathology research and finish with a sum-
mary of potential limitations and future directions.

Latent Trajectory Modeling (LTM)

There is a long and rich history in the development and appli-
cation of statistical methods for analyzing repeated measures data
taken over time. It is beyond the scope of our article to provide a
full review of these methods, but see Menard (2002), Dwyer
(1983), and Crowder and Hand (1996) for further details. The
majority of these techniques are related to applications of the
general linear model (GLM) to continuously distributed repeated
measures (although well-developed techniques can be applied to
discrete data as well; see Long, 1997). These GLMs can take the
form of repeated measures t tests, ANOVA, analysis of covariance
(ANCOVA), MANOVA, multivariate analysis of covariance
(MANCOVA), and multiple regression. A commonality among all
of these GLMs is that they tend to be considered fixed-effects
models; that is, systematic relations are evaluated pooling across
individuals, and the only source of random variation is in the
residual. For example, we might use a two-timepoint regression to
study positive symptoms in schizophrenia, and we might find that
emotional expressiveness at Time 1 uniquely predicts symptom-
atology at Time 2 beyond symptomatology at Time 1. This unique
prediction of Time 2 symptoms from Time 1 expressiveness rep-
resents this relation pooling over all individuals in the sample.
Further, theory may posit an underlying trajectory of symptom-
atology that unfolds over time, but empirically we are only exam-
ining a two-timepoint “snapshot” of this process. Because of these
limitations, and many others not described here (see, e.g., Rogosa
& Willett, 1985, for further details), we turn our interests to the
empirical estimation of developmental trajectories that vary over
individuals.

Although there are several statistical methods available for
analyzing individual trajectories and related processes of change
over time, an often noted distinction is between models estimated
within an SEM framework (e.g., Bollen, 1989) and models esti-
mated within a hierarchical linear modeling (HLM) framework
(e.g., Raudenbush & Bryk, 2002). HLM was originally designed to
properly account for nested data structures, such as children nested
within classrooms or patients nested within therapist. However,

Bryk and Raudenbush (1987) demonstrated that this nesting could
take the form of repeated measures nested within individual, and
thus the HLM framework could be applied to study individual
trajectories. Several authors have recently compared these two
techniques and have demonstrated that under certain conditions the
HLM and the SEM provide equivalent results whereas in other
conditions they do not (see, e.g., MacCallum, Kim, Malarkey, &
Kiecolt-Glaser, 1997; Raudenbush, 2001; Willett & Sayer, 1994).
A full exploration of these issues is beyond the scope of our article.
However, it is important to understand that despite much overlap,
the SEM approach may be better suited for tests of some types of
research questions under some types of experimental designs,
whereas the HLM approach may be better suited for other types of
questions under other types of designs. To retain focus in the
current article we will consider only the SEM-based LTM. (See
Bryk & Raudenbush, 1987; Raudenbush, 2001; Raudenbush &
Bryk, 2002; Willett & Sayer, 1994, for excellent discussions of the
HLM approach to trajectory modeling.)

To confuse matters further, even the SEM approach to longitu-
dinal data analysis is denoted in the literature by a number of
alternative terms including growth models, latent growth models,
LTMs, and latent curve analysis, among others. Here, we adopt the
term latent trajectory model to underscore the emphasis on indi-
vidual patterns of trajectories of behavior over time while avoiding
the implication that such trajectories must include systematic in-
creases or decreases (i.e., growth) to be estimated within this
framework. As we discuss later, these techniques can often be
applied to great advantage even in situations where the repeated
measures show no evidence of systematic positive or monotonic
growth whatsoever.

The idea of estimating and predicting individual trajectories
dates back many years (Gompertz, 1825; Palmer, Kawakami, &
Reed, 1937; Wishart, 1938). However, it was not until the seminal
work of Meredith and Tisak (1984, 1990), drawing on the earlier
developments of Tucker (1958) and Rao (1958), that the analysis
of trajectories was embedded within the latent variable framework.
The LTM is based on the premise that a set of observed repeated
measures taken on a given individual over time can be used to
estimate an unobserved underlying trajectory that gives rise to the
repeated measures. When thought of in this way, the estimation of
individual trajectories falls nicely into the framework of confirma-
tory factor analysis (CFA). In CFA, the interest is not so much in
the characteristics of the set of observed measures but instead in
the underlying unobserved latent constructs that explain the rela-
tions among the observed measures. This is precisely the approach
of the LTM. We begin by first describing the basic within- and
between-person trajectory equations and then describe how these
equations can be estimated within the SEM framework.

Linear LTMs

The basic LTM begins with the premise that a set of repeated
measures are functionally related to the passage of time. This can
more formally be expressed as

yit � f��t� � εit , (1)
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where yit is measure y for individual i at time t, �t is the value of
time1 at t, f(�t) reflects the functional relation between time and the
outcome of interest, and εit is the residual for individual i at time
t. As we explore further in a moment, the function that relates the
repeated measures of our outcome and time can be linear, qua-
dratic, or exponential or take on a variety of other forms. A
common trajectory function is linear. Here, f(�t) is defined as

yit � �i � �i�t � εit , (2)

where yit, �t, and εit are defined as above; �i is the intercept of the
underlying trajectory for individual i; �i is the linear slope of the
underlying trajectory for individual i; and εit is the residual for
individual i at time t.

Of key importance is that the intercepts and slopes are allowed
to vary over individual; that is, some individuals may report higher
initial levels of the outcome relative to other individuals, and some
individuals may report greater changes in the outcome over time
relative to other individuals. This is highlighted in Figure 1, in
which the left panel shows a fitted trajectory for four repeated
observations of reading ability for a single child and the right panel
shows fitted trajectories for 75 children. (We describe these em-
pirical data in more detail later.) As can be seen in the right panel,
there appears to be individual variability in both starting point and
rate of change over time.

To express this individual variability in statistical terms, we treat
the parameters of the trajectories as random variables, which
permits us to write equations for the trajectories such that

�i � �� � ��i
(3a)

� i � �� � ��i
, (3b)

where �� and �� are the mean intercept and slope pooling over all
individuals, and ��i

and ��i
are the deviations of each individual

from the group mean. For this linear model, we would like to
estimate several key parameters from our sample data. These
include the mean starting point and mean rate of change over time,
the variance in the starting point and the variance in the rate of
change, the covariance between starting point and rate of change,
and the time-specific residual variances.

Drawing on the work of Meredith and Tisak (1984, 1990), along
with important contributions by McArdle (1988, 1989, 1991),
Muthén (1991, 2001a, 2001b), and others, we can estimate these
parameters using the standard SEM framework. Specifically, for
our linear trajectory example, the repeated measures are used as
multiple indicators on two correlated latent factors. The first factor
represents the intercept of the trajectory, and the second factor
represents the linear slope of the trajectory. Whereas the standard
HLM trajectory model considers time as a predictor variable (e.g.,
Bryk & Raudenbush, 1987), in the LTM framework the passage of
time is parameterized via the factor loadings that relate the re-
peated measures to the latent factors (Meredith & Tisak, 1990). It
is through varying the fixed and freely estimated factor loadings
that we may define different functional forms of growth.

For example, say that we had collected four equally spaced
repeated measures2 of our construct over time so that T 	 4. We
would then define the LTM by setting the four factor loadings on
the intercept factor equal to 1.0 and the four factor loadings on the
slope factor equal to �t 	 t 
 1, where t 	 1, 2, 3, 4. This model
is presented in Figure 2. Because we have coded time to begin with
zero, the intercept reflects the model-implied value of the outcome
measure at the initial period of measure; however, alternative
codings of time can be used to define other meanings of the
intercept term (see, e.g., Biesanz, Deeb-Sosa, Aubrecht, Bollen, &
Curran, 2003).

For the sample case of T 	 4 repeated measures and a linear
trajectory, the standard LTM will result in nine parameters to be
estimated from the data. For the linear trajectory model, the two
fixed effects are the means of each latent factor (i.e., �� and ��);
these values represent the mean intercept and the mean slope of the

1 Note that it is possible to incorporate individually varying measures of
time denoted as �it indicating that the value of time can vary over indi-
vidual. We do not explore this in detail here given space constraints, but
see Mehta and West (2000) and Raudenbush (2001) for further details.

2 Note that equal spacing of assessments is not a requirement, and
differential spacing of assessments can easily be incorporated (e.g., factor
loadings set to 0, 1, 3, and 6 represent 1-month, 2-month and 3-month
observation lags).

Figure 1. Fitted trajectories discussed in Curran and Hussong (2001) for four repeated measures of reading
ability assessed on a single child (left panel) and on 75 children (right panel).
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trajectory pooling over all cases in the sample. The random effects
are represented by four parameters: a variance for each latent
factor reflecting the degree of individual variability in intercepts
and in slopes across all cases in the sample (i.e., �� and ��), a
covariance3 between the two latent factors that reflects the degree
of association between the individually varying intercepts and
individually varying slopes (i.e., ���), and a residual variance for
each repeated measure that reflects the unexplained variance in the
measure net of that associated with the underlying factor (i.e., �t

2).
Taken together, these parameters capture the mean trajectory for
the overall group, the degree of variability across individual tra-
jectories around these mean values, and the amount of time-
specific variance in the repeated measures not explained by the
underlying trajectory process.

Nonlinear LTMs

Thus far, we have assumed that the repeated measures are
linearly related to the passage of time. That is, a one-unit change
in time is associated with a �-unit change in the outcome, and the
magnitude of this relation is constant over all points in time.
Although this may be a reasonable function to describe stability
and change in a behavior over time, there may be either theoretical
or empirical reasons to believe that the repeated measures are
related to time in some nonlinear fashion where change in y is not
constant between equally spaced assessments. Although there are
many alternative ways to test for such relations within the LTM,
here we discuss three specific techniques: the quadratic function,
the exponential function, and functions that are estimated based on
the characteristics of the sample data.

The quadratic function. One way that the LTM can be ex-
tended to capture nonlinear relations over time is through the
quadratic model. Whereas the linear model is defined by an inter-
cept factor and a slope factor, the quadratic model includes a third

latent factor to capture any curvature that might be present in the
individual trajectories (see Duncan, Duncan, Strycker, Li, & Al-
pert, 1999, and McArdle, 1991, for further details). The individual
trajectory equation for a quadratic model is

yit � �i � �Li�t � �Qi�t
2 � εit , (4)

where �i remains the intercept of the trajectory, �Li is the linear
component of the trajectory, and �Qi is the quadratic component of
the trajectory. To define the third latent factor, factor loadings
reflecting the relations between the latent quadratic factor and the
repeated measures are set to the squared values of those on the
linear factor. This model is presented in Figure 3.

Whereas the linear model implied constant change in y between
equally spaced time assessments, the quadratic model implies
differential change in y between equally spaced time assessments.
For example, there may be large positive changes early in the
trajectory that begin to diminish with the passage of time. Simi-
larly, there might be small initial changes that accelerate with the
passage of time. One important aspect of the quadratic model is
that the trajectory is considered to be unbounded with respect to
time. That is, just like the linear model, the quadratic model tends
toward plus and minus infinity. In many (if not most) empirical
applications, we may not theoretically believe that our measure y
tends toward infinity, although a linear or quadratic model might
be sufficient to characterize the dependent measure within our
window of observation. An alternative trajectory that is bounded,
and thus does not tend toward positive or negative infinity, is the
exponential function.

The exponential function. It has long been known that expo-
nential functions can be used to model growth or decay that tends

3 Technically the covariance term is itself not considered a random effect
but a covariance between two random effects (i.e., ��i

and ��i
).

Figure 2. Unconditional linear trajectory model for four repeated measures assessed at equal intervals.
Y 	 year.
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toward some asymptote. These models are based on the general
premise that future gains (or losses) are proportional to prior gains
(or losses). A common exponential function is

yit � �i � �i�1 � e
�t� � εit , (5)

where yit is our usual outcome measure, �i is again the intercept of
the trajectory, �i represents the total amount of change at the final
observation relative to the initial level, e represents the well-known
constant, and  is the rate of change in y over time. Thanks to the
work of Browne and du Toit (1991) and du Toit and Cudeck
(2000), methods have been developed for estimating this function
within the LTM framework (although certain restrictions on the
random components are necessary for estimation). Given space
constraints, we do not explore this model in greater detail here, but
see Browne and du Toit (1991) and du Toit and Cudeck (2000) for
further technical details and applied examples.

The completely latent function. The linear, quadratic, and ex-
ponential trajectories define known functional forms that relate the
repeated measures to the passage of time. That is, a specific
functional form is defined and then fit to the observed data. In
some situations these trajectory functions might be excessively
restrictive or might not optimally capture the pattern of change
observed in the data over time. An alternative approach is to
estimate the functional form directly from the data. This requires
the estimation of an intercept factor and a single latent change
factor where a subset of the loadings on the latent slope (or shape)
factor are freely estimated from the data instead of being fixed to
predetermined values. This approach was first proposed by
Meredith and Tisak (1990) and further elaborated by McArdle
(1989, 1991).

Consider our hypothetical linear trajectory model from above
(i.e., Equation 2). Instead of fixing the factor loadings to 0, 1, 2,
and 3, we could instead set the first loading on the linear factor to
0, set the second to 1 (to set the metric of the latent variable), and

then freely estimate the third and fourth loading. Alternatively, we
could set the first loading to 0 and the last loading to 1, and
estimate the second and third loadings. Both of these parameter-
izations would result in the same overall model fit, but the factor
loadings would have a different interpretation (see Aber &
McArdle, 1991, for an excellent discussion of these distinctions).
The key characteristic of this model is that instead of fixing the
factor loadings to values that define a known functional form, one
or more factor loadings are freely estimated from the data. This is
analogous to fitting a nonlinear spline that best fits the observed
data. Freely estimating the loadings has the effect of “stretching”
or “shrinking” time to best characterize the pattern of the observed
data over time (e.g., Aber & McArdle, 1991). Now instead of
having three factors (e.g., intercept, linear, and quadratic), we have
two factors where the first remains the intercept but the second is
a shape factor that captures the nonlinear propensity to change
over time.

Selection of Functional Form: Sample Applications of
Unconditional LTMs

It is critically important that the proper functional form of the
trajectory be identified prior to analyzing more complicated mod-
els. Because several alternative models defining these functional
forms are formally nested (e.g., the linear is nested within the
completely latent, and the linear is nested within the quadratic),
chi-square difference tests can be calculated to estimate the degree
of improvement in the fit of one model relative to another. Other
functional forms are not formally nested (e.g., the exponential is
not nested within the quadratic), but less formal methods may still
be used to evaluate the relative fit of these models (e.g., AIC or
BIC; Tanaka, 1993).

Often the process of defining the functional forms of latent
trajectories requires examining the data graphically as well as

Figure 3. Unconditional quadratic trajectory model for four repeated measures assessed at equal intervals.
Y 	 year.
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analytically through fitting a series of models. We used such an
approach to define individual trajectories in reading ability over
time (see Curran & Hussong, 2001, for further details). Using a
sample of 405 children from the National Longitudinal Study of
Youth, we modeled individual trajectories of reading scores on the
basis of four annual assessments using the Peabody Individual
Achievement Test.4 A linear model was first estimated and dem-
onstrated extremely poor fit to the data, �2(5, N 	 405) 	 175.04,
p � .001; root-mean-square error of approximation (RMSEA) 	
.29, confidence interval (CI)90 	 .25, .33. Inspection of mean
scores on reading achievement showed that although children
seemed to increase in their skills over time, the increment of
increase was not equal across all intervals (e.g., the means for
times 1, 2, 3, and 4 were 25.2, 40.8, 50.1, and 57.7, respectively).
To capture this nonlinearity, we contrasted the linear unconditional
model with a quadratic unconditional model. Although a chi-
square difference test of these two nested models indicated that the
quadratic model was a better fit to the data than the linear model,
��

2 (4, N 	 405) 	 164.39, p � .001, the quadratic model still
provided a poor overall fit to the data, �2(1, N 	 405) 	 10.65,
p � .001; RMSEA 	 .15, CI90 	 .08, .17.

In an attempt to better capture this nonlinearity over time, we
next utilized the less restrictive completely latent function in which
we set the first two loadings on the slope factor to be 0 and 1 and
freely estimated the third and fourth loadings. This model fit the
observed data well, �2(3, N 	 405) 	 4.4, p 	 .22; RMSEA 	 .03,
CI90 	 0, .10. The linear model is nested within the completely
latent model with the two differing only by the freeing of factor
loadings to define a completely latent function. The chi-square
difference test demonstrated the superior fit of the completely
latent model relative to the linear model, ��

2 (2, N 	 405) 	
170.64. The first two loadings on the shape factor were set to 0 and
1 to define the metric of the latent variable, but the third and fourth
factor loadings were estimated to be 1.6 and 2.1, respectively.
Taken together, the results suggest that reading achievement in this
sample was characterized by positive changes over time that
diminished in magnitude as a function of time, with significant
variability across individual children in initial reading skills and in
rates of change over time. Other published examples of modeling
nonlinearity include Andrews and Duncan’s (1998) study of atti-
tudes and cigarette use, Stoolmiller’s (1994) study of boys’ anti-
social behavior, and Windle and Windle’s (2001) study of depres-
sion symptoms and smoking.

In sum, we cannot emphasize strongly enough that a properly
fitting functional form be identified prior to moving on to more
complex models. The unconditional LTM allows for an examina-
tion of the fixed and random effects that might underlie a set of
repeated measures over time. In many applications, it is then of
key interest to predict individual differences in these trajectories
over time, and this is the focus of the conditional LTM.

Conditional LTM

Although unconditional LTMs permit us to chart the course of
psychopathology over time, many core questions in this field
concern the factors that contribute to the development and growth
of abnormal behavior. Building on the unconditional LTM, the
conditional LTM addresses many such questions (e.g., Tisak &
Meredith, 1990; Willett & Sayer, 1994). Recall that in the uncon-

ditional LTM the random intercepts and random slopes are char-
acterized by an overall mean and an individual deviation from this
mean (see Equations 3a and 3b). However, these equations can be
extended to incorporate one or more correlated predictors to better
understand the conditional distributions of the random trajectories,
much like how we consider predictors in a typical regression
model.

For example, say that we had estimated a latent trajectory
process for a repeated measure of depressive symptoms over time,
and we had also assessed two correlated predictor variables at the
initial time of measurement denoted z1 and z2 (say, e.g., gender and
diagnostic status). We would expand our trajectory equations such
that

�i � �� � 1z1i � 2z2i � ��i
(6a)

�i � �� � 3z1i � 4z2i � ��i
, (6b)

where the four gammas (i.e., s) represent the fixed effect predic-
tion of the random intercepts and slopes as a function of the two
correlated predictors z. Given the presence of the predictors, ��

and �� now represent regression intercepts and ��i
and ��i

repre-
sents regression disturbances. This model is thus evaluating
whether individual variability in intercepts and slopes can be
predicted by our set of explanatory variables. For example, a
one-unit increase on z1 would be associated with a 1-unit increase
on the intercept of the trajectory.

One example of a conditional model appears in Chassin, Curran,
Hussong, and Colder (1996) and is presented in Figure 4. Using an
unconditional LTM, we first defined the functional form of change
in substance use to be characterized by a linear trajectory over the
three annual assessments completed by 316 adolescents and their
parents. To better understand the impact of parent alcoholism on
adolescent substance use over time, we next examined whether
parent alcoholism uniquely predicted higher initial levels of ado-
lescent substance use and steeper accelerations in adolescent sub-
stance use over time above and beyond the effects of comorbid
parent disorder (i.e., affective and antisocial personality disorders).
The corresponding conditional model included child age, child
gender, and parental diagnoses (father’s alcoholism, mother’s al-
coholism, either parent’s affective disorder, and either parent’s
antisocial personality disorder) as predictors of the latent factors
representing the intercept and the slope of the trajectories for
adolescent substance use. All predictor variables were correlated
with one another (parallel to the conditions of multiple regression
necessary for testing unique effects).

The final model provided an excellent fit to the data, �2(13, N 	
316) 	 24.5, p 	 .03, Tucker–Lewis index (TLI) 	 .95, compar-
ative fit index (CFI) 	 .98. Significant parameter estimates indi-
cated that adolescents who were older or who had an alcoholic
biological mother or father reported greater initial levels of sub-
stance use than did their peers. Moreover, boys and adolescents of
alcoholic fathers also increased more sharply in their substance use
over time than did girls or adolescents of nonalcoholic parents.

These results demonstrate the power of the conditional LTM to
evaluate prospective hypotheses about predictors of change over

4 These are the same data from which the sample trajectories were drawn
in Figure 1.
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time in psychopathology or problem behavior. Other examples of
similar types of LTMs in studies of psychopathology include
Andrews and Duncan’s (1998) study of cigarette use, Kraatz-
Keiley, Bates, Dodge, and Pettit’s (2000) study of internalizing
and externalizing symptoms in children, Muthén and Muthén’s
(2000) study of adult alcohol use, and Windle and Windle’s (2001)
study of depression and smoking. In such conditional LTMs,
exogenous predictors serve the same purpose as those that might
be used in a standard regression model, although the specific
interpretations are often more complex (Curran, Bauer, & Wil-
loughby, 2003). The predictors may be any mix of categorical or
continuous measures given that no assumptions are made about the
distributions of the predictor variables, and multinomial predictors
can similarly be included using effect or dummy coding. The
motivating goal of these conditional LTMs is to better understand
what factors might predict the individual developmental trajecto-
ries over time.

Extensions of the Basic LTMs

The unconditional and conditional LTMs provide the basic
building blocks from which more complex models may be esti-
mated. Although certainly not exhaustive, the five modeling ex-
tensions we focus on are particularly salient with regard to the
types of questions that are typically of interest in psychopathology
research. These five extensions allow for testing hypotheses about
(a) the mechanisms that explain why certain factors predict change

in psychopathology over time (i.e., mediation), (b) the conditions
under which a given factor predicts change in psychopathology
over time (i.e., moderation), (c) whether time-specific fluctuations
in a trajectory of psychopathology are related to intervening fac-
tors (i.e., time-varying covariate models), (d) whether change in
one measure of psychopathology is systematically related to
change in a second measure of psychopathology (i.e., multivariate
LTMs), and (e) whether time-specific associations within two
growth processes or trajectories are related to one another (i.e.,
autoregressive latent trajectory models).

Mediation in LTMs

In psychopathology research, we are often interested in media-
tional processes that predict change over time indexed by our
latent trajectory factors in which the distal predictor and potential
mediator are both time-invariant variables. Earlier we summarized
results from Chassin et al. (1996) indicating that children with an
alcoholic parent were more likely to show higher initial levels and
steeper accelerations in substance use over time compared with
children without an alcoholic parent. We would next like to extend
this model to test whether certain factors underlie or account for
these effects. Fortunately, when both the predictors and the medi-
ators are time invariant, standard methods for testing indirect
effects in SEM can be used for this purpose. It is less straightfor-
ward to test predictors and mediators that themselves are changing

Figure 4. Conditional linear trajectory model adapted from Chassin et al. (1996). Factor loadings are fixed to
predefined values. Only significant effects are shown in the diagram, and all coefficients are standardized and
significant ( p � .05). dx 	 disorders.
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over time (i.e., time-varying variables), and we consider this topic
later in the article.

In the standard SEM, methods for decomposing total effects are
used to calculate point estimates and standard errors for direct
effects and total indirect effects (Bollen, 1987; Sobel, 1982). Total
indirect effects characterize the impact of a predictor variable on
an outcome as mediated through all estimated pathways linking the
two variables. In other words, these tests evaluate whether there is
a significant effect of the predictor on the outcome as mediated by
all possible mediating pathways. However, total indirect effects do
not reflect the significance of each individual pathway linking the
predictor and outcome variable in cases in which two or more
pathways are estimated; each of these individual pathways is
referred to as a specific indirect effect. Bollen (1987) provides
methods for specifying and testing both total indirect effects and
specific indirect effects, and his methods can be directly extended
to the LTM with one or more mediators.

For an example of tests of total indirect effects, we return to
Chassin et al. (1996). After establishing that a significant relation
existed between paternal alcoholism and individual differences in
starting point and rate of change in adolescent substance use over
time, we next examined whether three potential etiological mech-
anisms explained why children of alcoholic parents started higher
and accelerated faster in their substance use than did children
without an alcoholic parent. Specifically, we tested whether par-
enting factors (e.g., mother’s and father’s monitoring of the child’s
behavior), the adolescent’s temperament (e.g., emotionality and
sociability), and elevated rates of stress and deviant peer associa-
tions each accounted for risk of accelerated substance use among
children of alcoholic fathers. An excellent fit of this model to the
data was found, �2(62, N 	 316) 	 88.6, p � .01; TLI 	 .95;
CFI 	 .98. The total indirect effects were tested, and it was found
that together these mediators significantly explained part of the
variance in the relation between paternal alcoholism and initial
levels of adolescent substance use (z 	 2.17, p 	 .03). These
pathways were also marginally significant mediators of the rela-
tion between paternal alcoholism and change in adolescents’ sub-
stance use over time (z 	 1.85, p 	 .06).

To summarize, we estimated a series of LTMs to demonstrate
that (a) there were significant fixed and random components
underlying the developmental trajectories of substance use over
time, (b) individual differences in both starting point of substance
use and rate of change of substance use were reliably associated
with parental alcoholism status, and (c) the parental alcoholism
effect was partially explained by the three posited mediating
mechanisms. Additional examples of LTMs that test mediation
hypotheses include Barnes, Reifman, Farrell, and Dintcheff’s
(2000) study of parenting and substance use, Colder, Chassin,
Stice, and Curran’s (1997) study of expectancies and alcohol use,
and Lorentz, Simons, Conger, and Elder’s (1997) study of distress
in divorced mothers.

Moderation in LTMs

Whereas tests of mediation consider why a relation between a
predictor and an outcome might exist, tests of moderation consider
under what conditions such a relation might exist (Baron & Kenny,
1986). There are two ways in which moderation might be consid-

ered in LTMs. The first is whether two or more exogenous pre-
dictors (that are discrete or continuous) interact with one another in
the prediction of the latent trajectory factors. The second is
whether one or more parameters that define a trajectory model
vary as a function of an observed discrete group membership (e.g.,
males vs. females, diagnosed vs. nondiagnosed, treatment vs.
control). We begin with a brief discussion of interactions among
exogenous predictors and extend this to the multiple groups
framework.

Recall that the conditional LTM evaluates the relation between
one or more predictors of the underlying trajectories (e.g., see
Equations 6a and 6b). This model allowed for the evaluation of the
unique main-effect prediction of the trajectory factors by each
exogenous predictor above and beyond all other predictors. How-
ever, this framework is easily extended to consider higher order
interactions such that

�i � �� � 1z1i � 2z2i � 3z1iz2i � ��i
(7a)

�i � �� � 4z1i � 5z2i � 6z1iz2i � ��i
, (7b)

where we model the intercepts and slopes of the trajectory as a
function of the main effect of z1, the main effect of z2, and the
interaction between z1 and z2. Whereas the prior conditional LTM
assessed whether there is a significant relation between z1 and the
trajectory factors, the conditional LTM that includes interaction
terms assesses whether the magnitude of the relation between z1

and the trajectory factors varies across levels of z2. For example,
instead of testing whether there is a difference in slopes as a
function of symptom severity, the inclusion of the interaction tests
whether the relation between slopes and symptom severity varies
as a function of gender. (See Aiken & West, 1991, and Baron &
Kenny, 1986, for more details about moderation in general and
Curran, Bauer, & Willoughby, 2003, in press, for moderation in
growth models.)

The testing of higher order interaction terms in LTM is rela-
tively straightforward and follows the same strategy as that used in
a standard regression model (e.g., Aiken & West, 1991). Specifi-
cally, an interaction term is computed as the product of the two
predictors, and this product term is then entered as an additional
predictor variable within the conditional LTM. The test of the
regression coefficients for the product terms (e.g., 3 and 6 in
Equations 7a and 7b) is a direct test of the moderating relation
between the two predictors. Probing and plotting of the moderated
relations requires us to recall the role of time as a predictor of the
repeated measures within the LTM framework. The net result is
that if we are testing an interaction between two predictors, this
interaction itself interacts with time and must thus be treated as a
three-way interaction. We describe this in detail for both HLM and
LTM growth models in Curran et al. (2003) and Curran et al. (in
press).

An example of testing and probing higher order interactions
among exogenous predictors in a conditional LTM was presented
in Curran et al. (2003). Data were drawn from a sample of 405
children of the National Longitudinal Study of Youth (see Curran,
1997, for complete details of sample and measures). Children
ranged in age from 6 years to 8 years at Time 1 and were
interviewed every other year for up to four assessments. All
children were interviewed at Time 1, 374 were interviewed at
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Time 2, 297 were interviewed at Time 3, 294 were interviewed at
Time 4, and 221 were interviewed at all four time periods. A
cohort–sequential design with missing data was used that resulted
in nine assessments ranging in age from 6 years to 14 years (in
which each child was evaluated from one to four times). A linear
trajectory model was fitted to the nine repeated assessments of
child aggressive behavior, and residual moment structures and
LaGrange multipliers indicated a good fit to the data (traditional fit
indexes are not available given the missing data estimation). A
quadratic factor was added to evaluate the presence of any non-
linearity, but this did not significantly improve model fit and was
not retained. Significant effects were found for both fixed effects
and random effects in the intercept and slope, indicating that on
average, the sample was increasing in aggressive behavior over
time but that there was substantial individual variability around
both starting point and rate of change.

We then regressed the intercept and slope on a dichotomous
measure of gender, a continuous measure of parental emotional
support of the child at Time 1, and the multiplicative interaction
between gender and support. The two-way interaction between
gender and support was found to be significant ( p � .05). Using
the methods described in Curran et al. (2003), we probed this
interaction to better understand the nature of the effect. We found
that within boys, although simple trajectories of aggressive behav-
ior evaluated at low, medium, and high levels of support were all
increasing over time, the magnitude of this increase was signifi-
cantly greater at lower levels of emotional support in the home. In
contrast, whereas the simple trajectories were diverging for males
over time, they were converging for girls. That is, the ranking of
the simple trajectories of aggressive behavior taken across differ-
ent levels of support was similar over gender (e.g., low emotional
support is associated with the greatest antisocial behavior over
time); however, the simple trajectories are significantly increasing
for girls at medium and high levels of support but are not signif-
icantly different from zero at low levels of support. See Curran et
al. (2003) for further details.

The methods described above allow for powerful and insightful
tests of the magnitude of the relation between one predictor and the
trajectory factors as a function of one or more other predictors.
However, an important assumption that we are making here is that
all parameters that define the trajectory model are invariant across
levels of the predictors. Consider the example above in which the
relation between emotional support and trajectories of aggressive
behavior varies as a function of gender. In this model we are
implicitly assuming that all of the other model parameters are
equal for boys and girls. This is often a reasonable assumption, but
we can use the strength of the multiple groups framework in SEM
to empirically evaluate this in LTMs. Using such an approach, we
could estimate either an unconditional or a conditional LTM
simultaneously for boys and girls and specifically test the extent to
which one or more model parameters are equal across gender (e.g.,
factor loadings, factor variances, residual variances, etc). Given
space constraints, we do not explore multiple group LTMs in detail
here. See Curran and Muthén (1999), McArdle (1991), and Mu-
thén and Curran (1997) for further details and Ge, Lorenz, Conger,
Elder, and Simons (1994) and Hussong, Curran, and Chassin
(1998) for applied examples.

Multivariate LTMs

Up to this point we have focused solely on the situation in which
we have repeated measures taken on a single construct over time;
this model is often referred to as a univariate LTM. Although it is
multivariate in the sense that multiple repeated measures were
assessed, it is univariate in that there is only one repeated measures
construct under study. Further, we have considered main effects,
mediated effects, and moderated effects among predictors of the
latent trajectory factors, but these predictors were time-invariant
given that they were assessed at a single point in time. However,
there are many instances in which we might be interested in
trajectories of two related constructs over time. This is often
referred to as a multivariate LTM, and these models have many
potential applications in studies of psychopathology. We explore
three variations of these here. The first incorporates the repeated
measures of a second construct as time-varying covariates (TVCs)
without estimating a trajectory process for the TVCs. The second
model estimates a trajectory process for both constructs over time
and relates the two processes solely at the level of the latent
trajectories. The third model combines features of the first two
approaches and allows for the simultaneous estimation of the
trajectories that underlie each construct and the relations among
time-specific measures.

TVC LTM. An implicit but critically important assumption
that we have made with the LTMs thus far is that the repeated
measures on our constructs of interest are completely governed by
the underlying trajectory process and any deviations of the re-
peated measures from this trajectory are treated as error. This
assumption allows us to logically move to the conditional LTMs,
in which we attempt to predict individual variability in the various
trajectory parameters. That is, we used the repeated measures to
estimate the trajectory parameters, and these parameters then be-
come the sole outcomes of interest. However, there are situations
in which we do not necessarily anticipate that the repeated mea-
sures are completely governed by the underlying trajectory pro-
cess. Instead, we might hypothesize that the repeated measures are
in part related to the trajectory process but are also influenced by
other time-specific or time-lagged constructs. We can extend the
LTM to allow for these types of influences.

Recall that our initial trajectory equation for the linear model
was expressed as

yit � �i � �i�t � εit . (8)

Note that the only predictor of the repeated measures in this
equation is time (which is parameterized in the LTM via the factor
loading matrix). In the TVC model, we allow for the direct
prediction of the repeated measures from other measures above
and beyond the underlying trajectory process. To accomplish this,
we extend the above equation such that

yit � �i � �i�t � tzit � εit , (9)

where zit represents our measure of covariate z for individual i at
time t, and t is the fixed regression parameter relating y to z at
time t.

It is important to note that although the intercept and slope
parameters continue to vary randomly over individual, the regres-
sion parameter t does not. This represents the relation between y
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and z at time t pooled over all individuals net the influence of the
underlying trajectory process. These relations can also be time
lagged if so desired (see, e.g., Curran, Muthén, & Harford, 1998).
This approach implies that we are not modeling a random trajec-
tory process for the TVCs z, but we are explicitly estimating the
simultaneous effects of the TVCs and the underlying random
trajectory components for y in the prediction of the time-specific
repeated measures outcome yit .

An application of this technique appears in Hussong, Curran,
Moffitt, Caspi, and Carrig (2003), in which repeated measures of
alcohol abuse in males at ages 18, 21, and 26 were examined as
predictors of time-specific deviations from expected individual
trajectories in antisocial behavior over time. This model is pre-
sented in Figure 5. Testing what Moffitt (1993) has termed a
snares hypothesis, the proposed model examined whether the
commonly supported pattern of desistance in individual trajecto-
ries of antisocial behavior over young adulthood would fail to
account for time-specific elevations in antisocial behavior during
time periods when these men were involved more heavily in
alcohol use. The sample consisted of participants in the Dunedin
Multidisciplinary Health and Development Study, a longitudinal
investigation of health and behavior in a complete birth cohort
(Silva & Stanton, 1996). For the Hussong et al. study, data from
461 male participants were analyzed, though not all participants
provided complete data at every assessment period. (The ability of
the LTM procedures to incorporate participants with missing data
into model estimation is a strength of the technique that we return
to later.)

To first establish the pattern of change over time in the measures
of antisocial behavior from ages 18 to 26, a linear, unconditional
growth model was estimated. The resulting model provided a good
fit to the data, �2(1, N 	 461) 	 9.31, p 	 .002, incremental fit

index (IFI) 	 .98, CFI 	 .98. The parameter estimates reflected a
significant amount of antisocial behavior at Time 1 and a signif-
icant decrement in antisocial behavior over time. Further, there
was evidence of significant individual variability in both the start-
ing point and the rate of change. Repeated measures of alcohol
abuse were added to this unconditional LTM of antisocial behavior
to test whether time-specific measures of antisocial behavior were
related to time-specific measures of alcohol abuse above and
beyond the influence of the trajectory process underlying antiso-
cial behavior.

In accordance with this hypothesis, we added to the basic
unconditional LTM for antisocial behavior the three repeated
measures of alcohol abuse as exogenous predictors of the time-
specific indicators of antisocial behavior.5 The resulting model fit
the data well, �2(1, N 	 461) 	 10.59, p 	 .001, IFI 	 .99, CFI 	
1.0. At age 18, men with greater alcohol abuse showed elevated
antisocial behavior compared with expected behavior based on
their individual trajectories alone. A similar pattern was found for
these men at age 21, but alcohol abuse was only a marginal
predictor of antisocial behavior at age 26. These results suggest
that during the periods when these young men experience more
symptoms of alcohol abuse, they do not decline in their antisocial
behavior to the extent that we would expect on the basis of their
antisocial behavior throughout young adulthood. Rather, alcohol
abuse appears to ensnare these young men within elevated patterns
of antisocial behavior, and this effect becomes weaker as men age
through this period of desistance. Other examples of TVC models

5 Our presentation here is a slight simplification of the model presented
in Hussong et al. (2003), in which marijuana use was also included as a
time-varying covariate.

Figure 5. Unconditional linear latent trajectory model with time-varying covariates from Hussong et al. (2003).
See Hussong et al. (2003) for results from more complex models of this type.
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that also address the issue of substance use include Curran et al.
(1998) and Harford and Muthén (2001).

In sum, a key characteristic of the TVC trajectory model was
that although repeated measures on a second construct are consid-
ered, a trajectory process is not estimated for these measures.
However, there are situations in which we would like to evaluate
whether there is a latent trajectory process that underlies the TVCs
as well. To incorporate this second process, we move to the fully
multivariate LTM.

Fully multivariate LTM. To include the repeated measures of
our time-varying covariates in the univariate LTM, we expanded
the individual trajectory equation to include the time-specific
measures of z. In contrast, we will now simultaneously estimate a
trajectory equation for the repeated measures of y and another
trajectory equation for the repeated measures of z. This is ex-
pressed as

yit � �yi
� �yi

�t � εyit
(10a)

zit � �zi � �zi
�t � εzit

, (10b)

indicating that we now have an individually varying intercept and
slope for our repeated measures of y, but we also have an individ-
ually varying intercept and slope for our repeated measures of z.
This is in contrast to our TVC model, in which we incorporated our
repeated measures of z as direct predictors of y, whereas here we
are estimating trajectory parameters for both of our constructs, y
and z.

As before, we can write an equation for both sets of trajectory
parameters such that

�yi
� ��y

� ��yi
(11a)

�yi
� ��y

� ��yi
(11b)

and

�zi
� ��z

� ��zi
(12a)

�zi
� ��z

� ��zi
, (12b)

where each trajectory process is again characterized by a mean
intercept and slope, and by variances and covariances among the
intercepts and slopes both within construct and across construct.
Thus, the covariance structure among the random trajectory factors
reflects the extent to which two constructs “travel together”
through time; that is, the covariance between two slope factors
represents the correspondence between rates of change in the two
constructs over time. Also of interest in these models are the
predictions of rates of change in one construct as a function of
initial levels of the second construct; this reflects the degree to
which change in one construct is in part propelled by the initial
level of the other construct. (See Aber & McArdle, 1991, and
McArdle, 1989, 1991, for further details on model parameteriza-
tion and estimation.)

An example of a multivariate LTM was used to test the pro-
spective relations between adolescent alcohol use and that of their
peers (Curran, Stice, & Chassin, 1997), and this model is presented
in Figure 6. Three annual assessments were taken on a sample of
363 adolescents who ranged in age from 11 to 15 at Time 1. A
linear unconditional LTM was found to represent change over time

within each construct. For the multivariate LTM, these two un-
conditional LTMs were combined such that covariances were
added among all latent factors (both within constructs and across
constructs) and between the residuals of repeated measures (within
time and between construct). Cross-lagged predictions were also
added from the intercept factor for adolescent alcohol use to the
slope factor for peer alcohol use as well as from the intercept factor
for peer alcohol use to the slope factor for adolescent alcohol use.
Three predictor variables, indexing the adolescent’s age, gender,
and parent’s alcoholism status, were related to all latent trajectory
variables in the model.

The final model fit the data well, �2(14, N 	 363) 	 25.4, p 	
.03, TLI 	 .98, CFI 	 .99. Significant covariances among the
latent factors indicated that greater initial rates of alcohol use were
associated with greater accelerations in peer alcohol use. Within
construct, however, higher initial rates of alcohol use (whether
among adolescents or peers) were associated with slower acceler-
ations in alcohol use over time (potentially indicating a realistic
ceiling effect in drinking behavior over time). Plotting of the
model-implied trajectories showed that growth in adolescent alco-
hol use was positive and accelerating as a function of peer alcohol
use whereas growth in peer alcohol use was positive but deceler-
ating as a function of adolescent alcohol use. Thus, the initial
status of both peer alcohol use and adolescent alcohol use was
predictive of later changes in the other construct, but the magni-
tude of the rate of positive change differed within each construct.
Other published examples of these types of LTMs in
psychopathology-related research include Curran, Harford, and
Muthén’s (1996) study of adult drinking, Ge et al.’s (1994) study
of adolescent depression, Stoolmiller’s (1994) study of antisocial
behavior in boys, Wickrama, Lorenz, Conger, and Elder’s (1997)
study of marital quality and physical illness, and Wills, Sandy,
Yaeger, Cleary, and Shinar’s (2001) study of family influences on
substance use.

The fully multivariate LTM allows for an evaluation of the
relation between two or more constructs over time at the level of
the random trajectories. One limitation of this model is that,
similar to the univariate LTM, an implicit assumption is made that
the set of repeated measures is completely governed by the under-
lying trajectory process. This focus solely at the level of the
trajectories might overlook important time-specific relations
among the repeated measures, either within construct or across
construct, such as those reflected in the time-varying covariate
LTM. To address this issue, we can incorporate aspects of the TVC
model with those of the fully multivariate model to create a hybrid
model sometimes called the autoregressive latent trajectory, or
ALT, model.

ALT model. Several methodologists have recognized the need
to model dynamic systems that involve interrelations among
change processes that occur simultaneously at both the random
trajectory and the time-specific levels of analysis. Examples of
these alternative approaches include the latent state–trait model
(Schmitt & Steyer, 1993; Sher & Wood, 1997; Windle, 1997), the
state–trait–error model (Kenny & Zautra, 1995), and the latent
difference score model (McArdle, 2001; McArdle & Hamagami,
2001). Here, we focus on a related model, termed the ALT model,
that utilizes the strengths of LTM and traditional autoregressive
cross-lagged analyses within the SEM framework to address sim-
ilar questions (Bollen & Curran, 2003; Curran & Bollen, 2001).
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The equations for the ALT model become rather complex and
are not presented here (see Bollen & Curran, 2003, and Curran &
Bollen, 2001, for more details). Like the fully multivariate LTM,
the ALT model estimates latent trajectory factors for two sets of
repeated measures. Like the TVC model, the ALT model also
estimates time-specific bidirectional relations between each of two
constructs at the level of the repeated measure indicators. This
simultaneous estimation of relations between the two constructs at
the level of the latent trajectories and at the level of the time-
specific repeated measures appropriately tests theories for which
both processes are important in understanding the relation between
the two constructs over time.

This model was applied to the study of relations among emo-
tional affect and heavy alcohol use by Hussong, Hicks, Levy, and
Curran (2001) and is presented in Figure 7. Illustrating dynamic
relations between two changing processes over time, we presented
a model in which six repeated measures of alcohol use and hos-
tility were examined simultaneously.6 The motivating question
was whether time-specific elevations in hostility (above and be-
yond an individual’s average level of hostility) predicted subse-
quent time-specific elevations in drinking (above and beyond an

individual’s average level of drinking), and vice versa. This pro-
spective cyclical relation between hostility and drinking behavior
was tested over alternating weekends and weekdays (e.g., weekend
hostility predicting subsequent weekday drinking and weekday
drinking predicting subsequent weekend hostility).

Data for these analyses were drawn from 74 college freshman
and sophomores who completed up to 21 daily reports of alcohol
use and mood, which were subsequently collapsed to form indexes
of average alcohol use and mood within each of three weekends
and two series of weekdays assessed. Preliminary unconditional
LTMs indicated that no systematic growth was evident in the
repeated assessments of either alcohol use or hostility. However,
systematic fluctuations in drinking behavior were associated with
time such that heavier drinking was evident over weekends than
during weekdays. To accommodate this systematic trend within
the drinking trajectories, a second latent factor was added to the
unconditional LTM for drinking behavior. Trajectories for hostility

6 For sake of clarity, this is a simplification of the model in Hussong et
al. (2001).

Figure 6. Fully multivariate unconditional latent trajectory model from Curran et al. (1997). Factor loadings
are fixed to predefined values. Only significant effects are shown in the diagram, and all coefficients are
standardized and significant ( p � .05).
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showed no systematic rise related to weekends, so the resulting
unconditional LTM included only an overall intercept factor. The
ALT model then included both the general intercept factor and the
weekend intercept factor from the unconditional LTM for drinking
as well as the general intercept-only factor from the unconditional
LTM for hostility. Cross-lagged relations between time-specific
measures of drinking and hostility were then added to this model,
and this final model provided an excellent fit to the data, �2(6, N 	
74) 	 72.71, p 	 .13, IFI 	 .94, CFI 	 .93.

Significant covariances were found between the latent factors
defining the alcohol trajectories (such that those who drank more
overall also elevated their drinking the most on weekends) and
between the weekend latent factor on the drinking trajectory and
the intercept factor for the hostility trajectory (such that greater
changes associated with weekend drinking were negatively related
to overall hostility). Perhaps of greatest interest for us in learning
about the time-specific associations between hostility and drinking
were the cross-lagged pathways reflecting a true prospective pre-
diction above and beyond the underlying trajectory factors. Sig-
nificant pathways indicate that hostility during the weekend pre-
dicted more drinking during the subsequent week, and weekday
drinking predicted subsequent weekend hostility. These results
highlight the ability of the ALT model to simultaneously consider
relations both at the level of the trajectories and at the level of the
time-specific repeated observations. The ALT model was used in
Rodebaugh, Curran, and Chambless’s (2002) study of day-to-day
variation between fear of having a panic attack and the experience
of an actual panic attack and in Curran and Bollen’s (2001) study
of the relation between child depression and aggressive behavior.

Summary. The TVC model, the fully multivariate model, and
the ALT model are three examples of available strategies that
might be considered when examining two or more constructs that
are both assessed repeatedly over time. As with all LTMs, the
optimal modeling strategy must be identified in large part by the
underlying substantive theory and associated research hypothesis
as well as by the constraints of the available data. Given primary
interest in how time-varying events predict time-specific measures
of an outcome net of the change process underlying this outcome,
the TVC model might be optimal. If the association between the
underlying random change process in two constructs is the central
question of interest, then the fully multivariate model might be
ideal. Finally, if the motivating question concerns both of these
levels of analysis simultaneously, then the ALT model might be
the best option. In short, the selection of a modeling strategy, as
always, depends on theory, but in the case of LTM more refined
hypotheses about how change occurs are needed to guide appro-
priate model selection.

Special Topics in LTM

We have presented a sampling of available modeling strategies
that might be of interest to applied researchers studying individual
differences in trajectories of psychopathology and abnormal be-
havior over time. However, the actual estimation of a particular
model often presents a number of additional challenges that are
common to both LTMs and other analytic methods when applied
to empirical data in psychopathology research. We would like to
conclude with a brief review of several issues that are particularly
salient in these types of studies. These challenges include the role

of missing data, assumptions about the distributions of the repeated
measures, and the evaluation of model fit. As with other sections
of our article, we present only a summary of these issues and
recommend more detailed resources for the interested reader.

Missing data. The presence of missing data is a ubiquitous
problem in all areas of longitudinal research, but this can be
particularly vexing in studies of abnormal behavior over time. Up
to even a few years ago, the primary tool for handling missing data
was to use listwise deletion and to consider only complete case
analysis. It has long been known that this is a highly restrictive
approach that can result in multiple sources of bias (see Allison,
2001, and 2003 [this issue], for an excellent review on missing
data analysis). Fortunately, several powerful approaches are now
available that permit the inclusion of partially missing cases in
many types of LTM applications. Although these methods also
make important assumptions about the mechanism of missingness,
evidence suggests that there is far less risk of bias with the
retention of partially missing cases using these new methods
compared with the use of listwise deletion with complete case
analysis.

The two primary methods for incorporating missing data within
the LTM framework are multiple imputation (MI) and full infor-
mation maximum likelihood (FIML). Again, a detailed exploration
of these two methods is beyond the scope of this article. However,
Allison (2001) provides an excellent review of recent develop-
ments in missing data analysis; FIML is described in greater detail
in Allison (1987, 2000) and Arbuckle (1996), and MI is described
in Rubin (1976, 1987) and Schafer (1997, 1999). Although MI and
FIML approaches to missing data analysis are characterized by
similar goals, the actual execution of these methods is quite dif-
ferent. MI generates a complete data set using a model to impute
missing cases based on information drawn from present cases. To
account for sampling variability in these imputed cases, this pro-
cess is repeated multiple times (typically from 5 to 10), and the
LTM is fit to each of these imputed data sets. Finally, the
parameter estimates are pooled across all of the models, and
standard errors and fit statistics are bootstrapped to allow for
inference testing. In contrast, the FIML approach fits a likeli-
hood to each individual case in the sample using whatever data
that case has to offer. These likelihoods are then weighted and
summed over all cases to result in a final likelihood, parameter
estimates, and standard errors. Regardless of which approach is
adopted, we strongly recommend that one of these methods be
closely considered when using LTMs in the presence of missing
data.

Distributional assumptions. Normal theory maximum likeli-
hood is by far the most common method of estimation used in
practice, and this explicitly assumes that the residuals (or distur-
bances) of the endogenous (or dependent) measures are multi-
variately normally distributed. In many empirical studies of psy-
chopathology, this is an extremely difficult assumption to meet.
That is, we are often interested in behavior that is dichotomous
(e.g., diagnostic status, hospital admission, suicide attempt), ordi-
nal (e.g., a symptom is definitely absent, may be present, or is
definitely present), or continuous but not normally distributed
(e.g., number of alcohol use dependency symptoms, frequency of
obsessive–compulsive disorder checking behaviors). However, as
with the analysis of missing data, great strides have recently been
made in methods of estimation that do not assume that the resid-
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uals of the endogenous measures are multivariately normally dis-
tributed. (See West, Finch, & Curran, 1995, for a general review.)

Although several options are available for modeling categorical
dependent measures, a frequently used approach is weighted least
squares estimation, which is based on a polychoric–polyserial
correlation matrix and appropriate asymptotic weight matrix.
There is a broad literature in this area, and we will not detail this
here. (See Muthén, 1979, 1983, 1984, 1993; Olsson, 1979; and
Olsson, Drasgow, & Dorans, 1982, for further details.) Briefly,
these approaches to categorical data analysis assume that the
observed variables are discrete categorizations of truly continuous
underlying counterparts. For example, it might be hypothesized
that a dichotomous measure of the presence or absence of a
particular psychiatric symptom is due to an underlying continu-
ously distributed propensity to express the symptom in which the
symptom is observed given the crossing of some threshold on the
propensity continuum. The analytic goal is thus to estimate the
relations among a set of dichotomous measures at the level of this
underlying continuum. Procedurally, the correlational structure
among the underlying continuous measures is estimated from the
observed categorical measures, and the hypothesized model is then
fit to this estimated correlational structure. An example of this
technique applied within the LTM framework is presented in
Muthén’s (1996) study of the relation between neuroticism and
depression.

The second distributional challenge that arises in psychopathol-
ogy research is nonnormality in continuous repeated measures.
These measures cannot be used as dependent variables under
normal theory maximum-likelihood estimation, and alternative
methods are needed. Fortunately, several viable alternatives exist,
such as Browne’s (1984) asymptotic distribution free estimator,
that do not assume multivariate normality. Although ADF is
asymptotically elegant, it is optimal with large sample sizes and
may be analytically challenging when used in the small to mod-
erate sample sizes often encountered in psychopathology research.
Muthén, du Toit, and Spisic (in press) recently proposed a robust
version of ADF that is designed to perform better in small sample
sizes. This is a promising method, and initial simulation results are
optimistic (Flora & Curran, 2003). Finally, Satorra (1990), Satorra
and Bentler (1988) and others have proposed a robust maximum-
likelihood and scaled chi-square test statistic. These robust meth-
ods use the normal theory maximum-likelihood parameter esti-
mates (which are unbiased) but adjust the associated standard
errors and test statistic for the presence of nonnormality. Simula-
tion studies suggest that these robust methods are well behaved in
small to moderate sample sizes (e.g., Curran, West, & Finch, 1996;
West et al., 1995), and these methods should be closely considered
whenever studying repeated measures that do not meet the as-
sumptions of multivariate normality imposed by standard maxi-
mum likelihood estimation.

Model evaluation. How to best evaluate overall model fit is a
matter of some ongoing controversy, especially in the use of LTM.
In a standard SEM, the goal of the analysis is to parameterize the
hypothesized model so that the covariance matrix that is implied
by the model closely approximates the covariance matrix that was
observed in the sample. The omnibus chi-square test evaluates the
null hypothesis that the model-implied covariance matrix is equal
to the population covariance matrix. However, because the LTM
evaluates both the covariance matrix and the mean vector of all of

the variables in the model, the omnibus chi-square test simulta-
neously evaluates the equality of the model imposed and popula-
tion covariance and mean structures. It can be argued that because
the LTM is evaluating both covariance and mean structures and is
imposing a highly restrictive factor loading matrix, standard cri-
teria for evaluating model fit should be loosened (e.g., less strin-
gent chi-square values and fit indexes should indicate adequate
model fit).

This is an area in much need of further research, so we only
offer our informed opinion on this matter here. Given this, we
feel that a conservative approach to model evaluation is opti-
mal. Thus, even though the LTM is indeed imposing a restric-
tive parameterization on the model structure and is also con-
sidering both covariance and mean structures, it is important
that the adequacy of model fit be evaluated in precisely the
same way as we would any other SEM. This is because we must
gain confidence in the degree to which our hypothesized model
adequately reproduces the characteristics of the data observed
in our sample. The extent to which the hypothesized model fails
to correspond to the sample data implies some model misspeci-
fication that likely results in parameter bias in some or all parts
of the model. The LTM is a restrictive parameterization, but this
restrictive structure is precisely what we want to test. If we pass
this test, then we have confidence in the underlying process that
gave rise to our set of repeated observations; if we fail, then
some alternative process is likely responsible and we must
consider ways of optimally capturing this prior to substantively
interpreting the model results.

Because of space constraints, we do not provide a detailed
review of current strategies for evaluating the adequacy of model
fit in SEM. (See Bollen & Long, 1993; Hu & Bentler, 1995, 1999;
MacCallum, Roznowski, & Necowitz, 1992; and Tanaka, 1993, for
further details.) These various resources draw on information
based on statistical theory, simulation studies, and applied expe-
rience. In general, it is recommended that model evaluation in-
clude the model chi-square test statistic, degrees of freedom, and
probability value; one or more incremental fit indexes (e.g., CFI,
IFI, or TLI); one or more stand-alone indexes (e.g., RMSEA with
associated confidence intervals and standardized root mean
residuals); evaluation of significant modification indexes or
LaGrange multipliers; and examination of residuals between the
observed and model-implied covariance and mean structure.
Taken together, it is critical that all available evidence support
an acceptable fit of the hypothesized model to the observed data
prior to interpreting the resulting parameters with regard to
substantive theory.

Additional topics to consider. There are a variety of interesting
topics relating to the use of LTMs in psychopathology research
that we did not explore, given space constraints. First, all of the
models we have discussed assume that the sample is drawn from
a homogeneous population. However, there may be situations in
which subjects were drawn from a heterogeneous population in
which group membership is not observed. Statistical methods are
available for estimating growth mixture models that attempt to
recover these unobserved classes and estimate models within each
discrete class. (See Arminger, Stein, & Wittenberg, 1999; Bauer &
Curran, 2003; Jedidi, Jagpal, & DeSarbo, 1997; Muthén, 2001a,
2001b; and Nagin, 1999, for further details on this.) Second, it
might be of interest to researchers to obtain point estimates for
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individual trajectories in the sample to be used for model checking
or graphical techniques (like those presented in Figure 1). Biesanz,
Curran, and Bollen (2003) explore various approaches for estimat-
ing individual trajectories for the SEM trajectory model, Rauden-
bush and Bryk (2002) describe methods for the HLM trajectory
model, and Carrig, Wirth, and Curran (in press) present a computer
program for graphing trajectories in practice.7 A third topic that is
of great importance to applied researchers is how to optimally code
and interpret the measure of time. Throughout this article we have
used a time-coding strategy that begins with zero so that the
intercept is defined as the model-implied value at the initial time
period. However, there are other methods for coding time that
should be fully understood when using these in practice. (See
Biesanz et al., 2003, for further details.) Finally, we considered
only manifest measures for all of our LTMs discussed here. How-
ever, the full strength of the SEM framework could be invoked to
allow for the use of multiple indicator latent factors for exogenous
variables, mediators, or even repeated measures. (See McArdle,
1988, 1989, and Sayer & Cumsille, 2001, for further details.)

Potential Limitations

As with any data analytic technique, there are conditions under
which the LTM may not be optimal for testing a set of questions
of interest. First, a minimum of three repeated measures are needed
to overidentify a linear trajectory model, and a minimum of four
are needed for a quadratic model. In our own experience we have
found that although three-time-point models can be quite useful, at
least four time points provide much greater flexibility in model
fitting and testing. Second, currently the LTM is primarily re-
stricted to multiple time points nested within individual, and it is
difficult to extend this to a higher order of nesting, such as multiple
children nested within classroom. Approaches for these types of
models have been explored in LTM (e.g., Khoo & Muthén, 2000;
McArdle & Hamagami, 1996; Muthén, 1997a, 1997b), but the
HLM framework may be currently best suited for these higher
order nested structures. Third, both the LTM and HLM approaches
implicitly assume that the same measure is used to assess the
construct of interest over time. Although there are methods for
handling changes in instruments over time (e.g., Burchinal et al.,
2000), it is ideal if the same instrument can be retained over all
time points (see Curran & Willoughby, 2003, for further discus-
sion of this issue). Finally, we have found in our own work that
great care must be taken to not move too far beyond one’s data
when estimating more complex models. We recommend that data
be carefully screened and that graphical and numerical diagnostics
be used to identify potential outlying observations to decrease the
probability of drawing erroneous conclusions from complex tra-
jectory models.

Conclusions

Our goal here was to provide an introduction to the statistical
underpinnings of the LTM combined with a discussion of how
these models might optimally be used in psychopathology re-
search. We have only touched on the many fascinating and com-
plex issues associated with these models, and we encourage the
interested reader to consult additional resources in this area for
more detailed information. Taken together, the variety of models

we have discussed allow for a myriad of theoretical questions to be
empirically examined in ways not previously possible. We have
found in our own work that the application of these new analytic
strategies has pushed us to more carefully consider our hypotheses
about stability and change over time and has given us a language
for defining longitudinal processes more concretely. As always,
the true strength of these techniques rests on the wisdom of
researchers to select appropriate models to optimally test their
theories of interest.

7 The SAS program and associated documentation can be freely down-
loaded from www.unc.edu/�curran/olstraj.htm.
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