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Objective: Although recent statistical and computational developments allow for the empirical testing of
psychological theories in ways not previously possible, one particularly vexing challenge remains: how
to optimally model the prospective, reciprocal relations between 2 constructs as they developmentally
unfold over time. Several analytic methods currently exist that attempt to model these types of relations,
and each approach is successful to varying degrees. However, none provide the unambiguous separation
over time of between-person and within-person components of stability and change, components that are
often hypothesized to exist in the psychological sciences. Our goal in this article is to propose and
demonstrate a novel extension of the multivariate latent curve model to allow for the disaggregation of
these effects. Method: We begin with a review of the standard latent curve models and describe how
these primarily capture between-person differences in change. We then extend this model to allow for
regression structures among the time-specific residuals to capture within-person differences in change.
Results: We demonstrate this model using an artificial data set generated to mimic the developmental
relation between alcohol use and depressive symptomatology spanning 5 repeated measures. Conclu-
sions: We obtain a specificity of results from the proposed analytic strategy that is not available from
other existing methodologies. We conclude with potential limitations of our approach and directions for
future research.
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The past decade has given rise to remarkable developments in
both the substantive theories that underlie the evaluation and
treatment of psychopathology and the rigorous statistical analysis
of repeated measures data. Indeed, there is a broad class of re-
search hypotheses that can be empirically evaluated in ways not
possible even a few years ago. Despite the myriad of recent
advances, one particularly salient challenge remains: the ability to
model the complex dynamic relations that link two or more con-
structs together over time. Within the clinical sciences it is often of

key interest to evaluate precisely how a set of behaviors jointly
unfolds over time and how these relations vary dynamically both
within and across individuals. This is of particular interest when
evaluating prevention or intervention programs that are designed
to causally induce behavioral change over time. Despite the im-
portance of these theoretical questions, many existing analytic
methods are not well suited for providing comprehensive empirical
tests of the research hypotheses under study.

As we explore in greater detail below, many statistical modeling
approaches commonly used to study repeated measures data over
time focus on between-person differences in stability and change.
However, virtually all theories in the psychological sciences posit
either strictly within-person processes or joint within- and
between-person processes (e.g., Curran & Bauer, 2011; Curran,
Lee, Howard, Lane, & MacCallum, 2012). Omitting either of these
two components from a statistical model of individual change
results in a disjunction between theoretical models and statistical
models, and this in turn undermines the validity of empirically
based inferences (e.g., Baltes, Reese, & Nesselroade, 1977; Curran
& Willoughby, 2003; Wohlwill, 1991). We believe that there
currently exists such a disjunction between many theories that
guide the clinical sciences and the statistical models used to
empirically evaluate these theories. Our goal in this article is
to explore both the theoretical and the statistical issues that relate
to the disaggregation of within- and between-person processes in
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stability and change over time, particularly as they relate to the
study of the determinants and sequelae of psychopathological
behavior.

We begin with an exploration of psychological theories of
individual change. We then review several existing analytic meth-
ods that are widely used for modeling two or more constructs over
time, particularly as applied within the clinical sciences. Next, we
propose a novel method for simultaneously estimating within- and
between-person reciprocal processes within a single integrated
analytic framework and highlight potential advantages of this
approach in psychopathology-related research settings. Finally, we
demonstrate this model using artificial data that reflect a real-
world developmental process, and we conclude with recommen-
dations for practice and directions for future research.

Psychological Theories of Change

Nearly all theories within the psychological sciences posit either
strictly within-person processes or joint within- and between-
person processes underlying stability and change in behavior over
time (e.g., Curran & Bauer, 2011). Consider the complex relation
among stress, negative affect, and substance use (e.g., Hussong,
Jones, Stein, Baucom, & Boeding, 2011). Negative reinforcement
models of alcohol use theorize in part that an individual consumes
alcohol in order to reduce depression and anxiety that result from
the presence of uncontrollable, life-stressful events in the environ-
ment. However, there are two key components of this dynamic
relation that must simultaneously be considered.

First, we might hypothesize that, on average, individuals who
experience higher levels of negative affect tend to consume greater
quantities of alcohol to reduce the unpleasant feelings of depres-
sion and anxiety. Similarly, individuals who report systematic
increases in negative affect over time are more likely to also report
systematic increases in substance use. These are between-person
effects: Overall levels and smoothed rates of change over time in
depression and alcohol use are characteristics of the individual,
and these individually varying characteristics are thought to covary
in potentially meaningful ways.

However, at the same time there is a more subtle component of
change that is unique both to the individual and to specific points
in time. Thus, in addition to the hypothesized between-person
relations, it might be predicted that if an individual experiences
higher levels of depression relative to her underlying level of
depression at one point in time, she is more likely to consume
greater quantities of alcohol relative to her underlying level of
alcohol use at a subsequent point in time. These are within-person
effects: Time-anchored elevations relative to an underlying
person-specific level at one time point may be meaningfully re-
lated to time-anchored elevations relative to an underlying person-
specific level at a later time point. These time-specific relations are
distinctly different from the between-person effects hypothesized
at the level of the individual.

Further, implicit in the theoretical motivation to disaggregate the
levels of influence over time is the potential existence of reciprocal
effects between two constructs such that earlier changes in one
influences later changes in the other and vice versa. Indeed,
developmental theories commonly posit reciprocal effects between
two or more constructs. For example, Patterson’s coercion model
posits bidirectional relations between children’s externalizing be-

havior problems and parenting behavior (Patterson, Reid, & Dish-
ion, 1992; Patterson & Yoerger, 2002), and negative reinforcement
models of substance use describe reciprocal relations between
earlier negative affect predicting later substance use and earlier
substance use predicting later negative affect (e.g., Hussong,
Hicks, Levy, & Curran, 2001). An added complication is that
theoretical models may also suggest that the magnitude of these
reciprocal relations systematically varies as a function of time
(Hartup, 1978; Scarr & McCartney, 1983). In other words, the
within-person reciprocal relations between two constructs may
become systematically stronger or weaker with the passage of time
or with exposure to treatment.

In sum, many contemporary theories in the clinical sciences
posit complex reciprocal relations between multiple constructs at
both within-person and between-person levels of influence, and
these relations may vary in magnitude or form across time or over
group. However, many traditional statistical models commonly
used in practice are restricted to the estimation of between-person
relations (e.g., Curran & Bauer, 2011; Curran et al., 2012) and thus
may at times provide less than optimal empirical tests of theoret-
ically derived research hypotheses. We must have the tools avail-
able to rigorously evaluate the hypothesized across-construct re-
ciprocal relations both at the level of the individual and at specific
points in time in order to minimize the disjunction between theo-
retical and statistical models. Developing such a model is our goal
here.

Traditional Latent Curve Models of
Stability and Change

Our proposed analytic approach is based on an extension of the
latent curve model (LCM). The LCM draws on the strength of the
structural equation model (SEM) to estimate individual variability
in stability and change over time. Although many important his-
torical lines of development ultimately led to the LCM (see Bollen,
2007, for a review), this model was first formally proposed by
Meredith and Tisak (1984, 1990) and was expanded on by many
others (e.g., Browne, 1993; Browne & du Toit, 1991; McArdle,
1988, 1989; McArdle & Epstein, 1987; Muthén, 2001, 2002;
Muthén & Curran, 1997).

The LCM incorporates the repeated measures of a construct as
multiple indicators on one or more underlying latent curve (or
growth) factors. The conceptual premise is elegant: We are inter-
ested in using the observed time-specific measures to infer the
existence of an underlying and continuous but unobserved latent
growth process. The latent factors capture interindividual differ-
ences in intraindividual stability and change over time. These
might be of interest in their own right, or more typically they are
regressed on one or more predictors in an attempt to model the
individual variability in the trajectories. There are a large number
of alternative specifications that the LCM can take; see Bollen and
Curran (2006) and McArdle (2009) for general discussions of the
LCM and Curran and Hussong (2003) for a review of the use of
LCMs within psychopathology research.

The Unconditional Univariate LCM

The most basic LCM is fitted to a single construct and includes no
exogenous predictor variables; it is called a univariate unconditional
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LCM. Say we were interested in studying developmental trajectories
of adolescent alcohol use. We define our repeatedly measured out-
come alcohol use as yit to represent the sample realization of construct
y for individual i (where i � 1, 2, . . . , N) at time point t (where t �
1, 2, . . . , T). We can link our set of repeated measures to the passage
of time through the definition of some form of trajectory. A linear
trajectory for yit is given as

yit � �yi
� �t�yi

� εyit
, (1)

where �yi and �yi represent the intercept and linear slope unique to
individual i, respectively; �t is the numerical measure of time at
assessment t (where t � 0, 1, . . . , T � 1)1; and εyit represents the
individual- and time-specific deviation that is typically assumed, εyit�
N(0, �yt

2 ), indicating that the residuals are normally distributed and
obtain a unique variance at each time point t.

An important characteristic of the LCM is that the individu-
ally varying intercept and slope values are defined as random
variables, which can be expressed as

�yi
� �y�

� �y�i

�yi
� �y�

� �y�i,
, (2)

where 	y� and 	y� are the mean intercept and slope, respectively,
and 
y�i and 
y�i are individual deviations around these mean
values. This model is presented in Figure 1 for T � 5. Equation 1
is sometimes called the measurement equation and Equation 2 the
structural equation; the latter can be substituted into the former to
define the reduced-form expression of the model, but we do not
show this here (see Bollen & Curran, 2006, Equation 3.19).

We can examine two types of effects in this model: the fixed
effects and the random effects. The fixed effects are the means of
the intercept and slope factor. They are defined as

E��yi

�yi

�� ��y�

�y�

� (3)

and represent the overall starting point and rate of change for the
entire sample. The random effects are the variances of the devia-
tion terms; more specifically,

var��y�i

�y�i

�� �	y�y�

	y�y�
	y�y�

�, (4)

where �y�y� represents the variance of the intercepts, �y�y� the

variance of the slopes, and �y�y� the covariance between intercepts
and slopes. Larger values of these random effects indicate greater
between-person variability in the growth parameters such that
some individuals may start higher versus lower and some may
increase more steeply versus less steeply.

We can also consider the covariance structure of the individual-
and time-specific residuals. In virtually all applications of the
LCM in practice, the covariance structure among these residuals is
assumed to be a diagonal matrix with values of zero on the
off-diagonal. This assumption reflects that the residual from each
assessment period is defined by some variance, but the residuals
are independent across time.

An example of the covariance matrix among residuals for T �
3 is given as

var�
εyi1

εyi2

εyi3

���

y1

2

0 
y2

2

0 0 
y3

2 �, (5)

where the diagonal elements represent the time-specific residual
variance. This matrix can be further restricted by fixing the diag-
onal elements to be equal such that �yt

2 � �y
2 for all t, but this is just

a simplifying condition of homoscedasticity with respect to time.
The reason that we are able to assume that the residuals are

uncorrelated over time is that observed covariation among the
repeated measures is modeled via the underlying latent curve
factors. In other words, the covariance structure of the random
effects shown in Equation 4 imposes a correlational structure
among the repeated measures (see, e.g., Bollen & Curran, 2006,
Equation 2.41). The veracity of this assumption is in large part a
function of the temporal distance between the repeated measures.
The longer the elapsed time between assessment periods, the less
likely that the residuals will covary over time, given that these
relations decay toward zero.

Although not commonly a part of LCMs applied in panel data,
some remaining correlation among time-adjacent residuals net the
underlying latent factors may be possible, particularly if the as-
sessment periods are closely spaced in time. For example, we can
expand Equation 5 to allow for time-adjacent correlations such that

var�
εyi1

εyi2

εyi3

�� �

y

2


y 
y
2

0 
y 
y
2�, (6)

where �y
2 represents the variance and �y represents the time-

adjacent covariance. This is just one type of residual covariance
matrix, and many other options exist (e.g., Grimm & Widaman,
2010; Kwok, West, & Green, 2007; Rovine & Molenaar, 2000).
We will return to the structure of these residual covariance matri-
ces momentarily.

1 The selection of the time period where time is set equal to zero impacts
the interpretation of the fixed and random effects of the intercept of the
trajectory (Biesanz, Deeb-Sossa, Aubrecht, Bollen, & Curran, 2004). The
choice of zero-point plays precisely the same role in all of our proposed
models as it does in the standard LCM.

Figure 1. Univariate unconditional linear latent curve model for five
repeated measures. �y is the intercept factor with all factor loadings set to
1.0; �y is the linear slope factor with factor loadings set to 0, 1, 2, 3, 4.
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The Conditional Univariate LCM

The model defined above is sometimes called unconditional
because there are no predictors of growth; we are only building a
model of fixed and random effects for the set of repeated measures
as a function of time. However, this unconditional LCM can easily
be extended to include one or more predictors of growth. Because
the predictors of growth are between-person characteristics (e.g.,
gender, ethnicity, treatment group membership), we refer to these
as time-invariant covariates (TICs). For example, the intercept and
and linear slope equations from the univariate LCM could be
expanded to include two TICs denoted x1i and x2i such that

�yi
� �y�

� �y�1x1i � �y�2x2i � �y�i

�yi
� �y�

� �y�1x1i � �y�2x2i � �y�i
,
, (7)

where the four � parameters serve to shift the conditional means of
the latent factors per one-unit shift in the exogenous covariates.
This model is presented in Figure 2.

Continuing with our hypothetical example, these predictors
might represent binary measures of gender and treatment group
membership, and our goal is to test for systematic differences in
the trajectories of alcohol use as a function of these two subject
characteristics. Important to our discussion here, these predictions
are strictly between-person influences. That is, both the exogenous
covariates and the trajectory scores are unique to the individual
and are not linked to a specific point in time; this can most clearly
be seen by the lack of subscript t denoting time in Equation 7.
Thus, the LCM with TICs is only considering covariates that are
invariant with respect to time. However, there are many situations
in which we would want to include a predictor that itself varies
with time; these are called time-varying covariates (TVCs).

The LCM With Time-Varying Covariates

Just as we were able to model the random effects of the growth
trajectories as a function of one or more TICs, it is possible to model
the time-specific residuals as a function of one or more TVCs. To
define this model we can expand Equation 1 to include a TVC
denoted zit such that

yit � �yi
� �t�yi

� �ytzit � εyit
, (8)

where �yt represents the shift in the conditional mean of yit at time
point t per one-unit change in zit above and beyond the influence

of the underlying latent trajectories; an example of this model is
presented in Figure 3. Here we show a contemporaneous relation
between the TVC and the outcome, but this can easily be lagged in
a variety of interesting ways (see, e.g., Curran, Muthén, & Harford,
1998).

Continuing with our hypothetical example, the TVC might be
depressive symptomatology, and we are evaluating the time-
specific influence of depression on alcohol use net the impact of
the underlying trajectories of alcohol use. This can be better seen
with a simple rearrangement of Equation 8 such that

yit � (�yi
� �t�yi

) � �ytzit � εyit
, (9)

where the repeated measures are being deviated relative to the
underlying latent trajectory (sometimes called de-trending) and are
then regressed on the TVC. Estimation is not actually done in this
two-step process, but this equation highlights the prediction of the
outcome from the TVC above and beyond the influence of the
underlying trajectory.

The regression of the outcome on the TVC provides a direct
estimate of the time-specific, within-person component of the
relation between yit and zit (Curran et al., 2012). Yet, this estimate
comes at the (often significant) cost of omitting the between-
person latent growth process that underlies the TVC. This is
because we are not estimating a random trajectory process for the
TVCs themselves; we are only allowing the numerical values of
the TVC to vary with time and are not formally structuring the
TVCs as a function of the passage of time. However, we can
reparameterize the LCM-TVC model to allow for the simultaneous
estimation of latent growth curves for yit and zit. This model is
called the multivariate LCM.

The Multivariate LCM

The multivariate (or parallel process) LCM incorporates a growth
component for two or more repeated measures at the same time (e.g.,
McArdle, 1988, 1989); an example of this is presented in Figure 4.
We do not present the equations for this model given the logical
symmetry with those presented above (see Bollen & Curran, 2006,
Chapter 7, for details). We continue to denote the repeated measures
on the second construct as zit to represent the assessment of construct
z for individual i at time point t. For example, our first set of repeated
measures might assess alcohol use and our second set might assess

Figure 2. Univariate conditional linear latent curve model for five repeated measures with two exogenous
predictors. The single-headed arrows for each growth factor reflect that the factor variances are disturbances,
given the joint influence of the two exogenous predictors.
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depressive symptomatology. The multivariate LCM would include
both a measurement equation (Equation 1) and a structural equation
(Equation 2) for the set of repeated measures on z. We simply change
the subscripts to z in the prior equations to denote that these relate to
a second construct.

Of key interest in this multivariate model is the covariance structure
among the set of latent factors. For example, the covariance structure
for linear trajectories defined for both yit and zit is

var�
�y�i

�y�i

�z�i

�z�i

�� �
	y�y�

	y�y�
	y�y�

	z�y�
	z�y�

	z�z�

	z�y�
	z�y�

	z�z�
	z�z�

�, (10)

where the diagonal elements represent the variances of the latent factors
and the off-diagonal elements represent the covariances among latent
factors.2 Time-invariant covariates can be included just as they were
before (e.g., Equation 7), so we do not show these again here.

The covariance structure among the residuals is naturally more
complicated within the multivariate LCM. Typically, residuals are
not allowed to covary across time, within construct (as shown in
Equation 5), but they are allowed to covary within time, across
construct. This implies that the unexplained part of y at t � 1 is
linearly related to the unexplained part of z at t � 1, and so on.
More specifically,

var�
εyi1

εyi2

εyi3

εzi1

εzi2

εzi3

���

y

2

0 
y
2

0 0 
y
2


zy 0 0 
z
2

0 
zy 0 0 
z
2

0 0 
zy 0 0 
z
2

�, (11)

where �y
2 and �z

2 represent the residual variance for yit and zit,
respectively, and �zy represents the covariance between the resid-
uals within each assessment period; these within-time covariances

are represented by the curved two-headed arrows in Figure 4. Here
we define these to be equal over time, but this restriction can be
relaxed and tested (assuming the model remains identified; e.g.,
Bollen, 1989).

The multivariate LCM is a powerful analytic method for
simultaneously examining the relation between two constructs
over time, and it has been used extensively in psychopathology-
related work appearing in this very journal (e.g., Curran, Stice,
& Chassin, 1997; Stice, Marti, Rohde, & Shaw, 2011; Teach-
man, Marker, & Smith-Janik, 2008). However, there is an
important characteristic of this model of which we must be
cognizant. As with the univariate LCM, the multivariate LCM
is focused solely on between-person inferences when assessing
stability and change over time. This can best be seen in the
covariance structure among the latent factors shown in Equation
10. The diagonal elements (i.e., the variances of the factors)
reflect between-person variability in the intercepts and slopes of
the latent trajectories; the off-diagonal elements (i.e., the cova-
riances among the factors) reflect the between-person linear
relations among the factors. In other words, the intercepts and
slopes of each construct are unique to the individual and are not
a function of a specific point in time. More colloquially, each
individual might be characterized by his or her gender, ethnic-
ity, age, and starting point and rate of change in depression and
alcohol use.

2 It is possible to rescale some of these covariances as regressions (e.g.,
we could regress the slope factor for y on the intercept factor for z and vice
versa), and this can provide an interesting insight into the between-person
structural influence of the starting point of one construct on the rate of
change of another construct (e.g., Bollen & Curran, 2006, Section 7.4.2).

Figure 3. Linear latent curve model for five repeated measures with
unidirectional contemporaneous influences from a time-varying covariate.

Figure 4. Bivariate unconditional linear latent curve model for five
repeated measures.
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Thus, the multivariate LCM provides a direct estimate of the
between-person component of the relation between y and z (i.e.,
the relation assessed at the level of the trajectories), and the
LCM-TVC provides a direct estimate of the within-person com-
ponent of the unidirectional relation between y and z (i.e., the
relation assessed net the trajectories), yet neither model contains
simultaneous and reciprocal estimates for both. As such, the mul-
tivariate LCM and the LCM-TVC will not provide a full empirical
test of a substantive theory that would posit both person-specific
and time-specific developmental links between two constructs
over time. We thus aspire to consider ways to simultaneously
estimate both within-person (time-specific) relations and between-
person (person-specific) relations for both constructs within a
single model. We briefly describe one specific method that is most
closely linked to our developments here: the autoregressive latent
trajectory model.3

The Autoregressive Latent Trajectory Model

The autoregressive latent trajectory (ALT) model was proposed
by Curran and Bollen (2001) and more formally defined in Bollen
and Curran (2004). The primary motivation for developing the
ALT model was to combine elements of the latent curve portion of
the multivariate LCM with the time-specific relations of the TVC
model. The motivating focus was more on the combination of the
growth process with time-specific components as opposed to the
disentanglement within-person and between-person effects. One
example of a bivariate ALT model is presented in Figure 5.
Exogenous time-invariant covariates (e.g., treatment condition,
gender) can be included as predictors of both the initial measures
of each construct and the latent curve factors, although we do not
show this in a path diagram here. The equations that define the
ALT model are numerous and are detailed elsewhere (Bollen &
Curran, 2004; Bollen & Zimmer, 2010; Curran & Bollen, 2001).

The ALT model is a flexible analytic framework that has been
applied in many types of research settings (e.g., Hussong et al.,
2001; Morin, Maïano, Marsh, Janosz, & Nagengast, 2011; Rode-
baugh, Curran, & Chambless, 2002; Zyphur, Chaturvedi, & Arvey,
2008). However, as with any modeling strategy, the ALT model is
not without its limitations (e.g., Delsing & Oud, 2008; Hamaker,
2005; Jongerling & Hamaker, 2011; Voelkle, 2008). Most impor-
tant to our discussion here, the time-specific relations among the
observed repeated measures are modeled at the level of the man-
ifest variable itself. In other words, just as in the TVC model, the
repeated measure of alcohol use is regressed directly on the re-
peated measure of depression and vice versa. This can be seen in
the path diagram in Figure 5 in which the single-headed arrows
both begin and end with an observed measure, thus reflecting the
direct regression of one repeated measure on another. There are
several specific consequences that result from the estimation of
structural regressions among the observed repeated measures that
might impact the utility of this model in practice.

Most important, the inclusion of the time-specific regressions
among the repeated measures in both the ALT and LCM-TVC
models will directly influence both the mean and the covariance
structure of the latent growth factors. For example, one would
obtain a particular mean and covariance structure for the growth
factors in an unconditional LCM and would obtain a different
mean and covariance structure for the growth factors in an LCM
with TVCs; this is a natural consequence of the model parameter-
ization and is the intended point of these models. Both the ALT
and the LCM-TVC are positing that the set of repeated measures
are a function of the joint contribution of the underlying latent
growth factor and the time-specific influences of the TVCs.
Thought of another way, in the ALT model the repeated measures
of one construct serve as mediators for the influence of the latent
curves of that construct on the indicators of the other construct.
Because of these mediated influences, the ALT model does not
provide a pure disaggregation of the between- and within-person
relations over time.

If theory posits that the time-specific measures are structurally
related over time (i.e., if an earlier measure of one construct is
believed to causally influence a later measure of another con-
struct), the ALT model or the LCM-TVC model is appropriate.
However, if theory posits that the over-time relation between the
two constructs consists of a unique between-person component
and a unique within-person component, an alternative model pa-
rameterization to the ALT and LCM-TVC is needed. It is admit-
tedly asking much from a substantive theory to make a supposition
at this level of detail, but it is an important distinction to make
when choosing a specific statistical model to optimally test a
specific research hypothesis. Indeed, appreciating that these types
of effect differ across modeling approaches might help us to better
refine our theoretical models of interest.

3 Several important approaches have been proposed to examine multi-
variate change over time, including the latent change score model (Ferrer
& McArdle, 2010; McArdle & Hamagami, 2001), the trait–state–error
model (Kenny & Zautra, 1995, 2001), and the trait–state–occasion model
(Cole, Martin, & Steiger, 2005). Space constraints preclude a comprehen-
sive examination of these alternative approaches, although such a review
would be highly beneficial.

Figure 5. Bivariate unconditional autoregressive latent trajectory model
for five repeated measures.
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The Latent Curve Model With
Structured Residuals

Our goal for the remainder of the article is to describe a novel
parameterization of the latent curve model that provides a pure
disaggregation of between-person and reciprocal, prospective
within-person components of the relation between two constructs
over time. Unlike with the multivariate LCM, we will be able to
simultaneously consider both person-specific and time-specific
influences. Unlike with the ALT model and the LCM with TVCs,
the inclusion of the time-specific regressions will not influence the
fixed-effect characteristics (e.g., the mean structure) of the under-
lying latent curve factors; thus, the time-specific and person-
specific components of change are cleanly separated from one
another. To build this model we will begin with the standard
multivariate LCM as a foundation for the estimation of between-
person effects in the usual way. However, we will use an atypical
parameterization of the SEM to impose a specific structure on the
time-specific residuals of the observed repeated measures of both
constructs. Because of this, we will refer to this particular param-
eterization as an LCM with structured residuals, or simply LCM-
SR. Referring to the model in this way highlights that our proposed
framework is a direct and logical expansion of the standard mul-
tivariate LCM and does not represent some wholly new analytic
technique. Indeed, we will show that the standard univariate and
multivariate LCMs are nested within their LCM-SR counterparts,
thus allowing for a variety of likelihood ratio tests (LRTs) to
evaluate relative improvement in model fit given increasing model
complexity.

The Univariate LCM With Structured Residuals

Recall that the measurement equation for the univariate LCM
given in Equation 1 expressed yit as a weighted combination of the
random intercept �yi, random slope �yi, and time-specific residual
εyit. Examining the residual more closely shows that it represents
the deviation between the observed and model-implied repeated
measures of yit.

Simple rearrangement of Equation 1 highlights this further,

εyit
� yit � (�yi

� �t�yi
), (12)

showing that the residual represents the deviation of the observed
repeated measure from the underlying trajectory. As we described
earlier, rarely are these residuals considered of substantive interest
beyond defining the optimal covariance structure for a given set of
data. However, when the residual is conceptualized as a time-
specific estimate of the deviation between the observed repeated
measure and the underlying trajectory, we can clearly see that it
captures potentially interesting information about within-person
processes of stability and change. We will capitalize on this
characteristic extensively here.

More specifically, instead of allowing the residuals to covary in
some unstructured way (as in Equation 6), we can draw on the
extensive literature from time series analysis and multilevel mod-
eling to define the regression of a later residual on a prior residual.
For example, for the residual defined in Equation 12, we can
expand this as

εyit
� 
yyεyi(t�1)

� �yit
, (13)

where 
yy is the regression parameter and vyit � N(0, �vy
2 ). In

words, we are regressing the residual at time t on the residual at
time t � 1. This implies that the later residual is in part determined
by the earlier residual above and beyond the influence of the latent
curve factors.4 This model is presented in Figure 6.

We refer to the model shown in Figure 6 as the univariate latent
curve model with structured residuals, or the univariate LCM-SR.
We stress that this particular univariate model is not a novel
development and has been studied to varying degrees within
frameworks including time series (Box & Jenkins, 1976; Dickey &
Fuller, 1979; Lutkepohl & Saikkonen, 2000; Saikkonen & Lutke-
pohl, 2000), multilevel models (Chi & Reinsel, 1989; Diggle,
1988; Goldstein, Healey, & Rasbash, 1994; Hedeker & Gibbons,
2006), SEM (Hamaker, Dolan, & Molenaar, 2002; van Buuren,
1997), and LCM (Hamaker, 2005; Sivo, 2001; Sivo & Fan, 2008;
Sivo, Fan, & Witta, 2005; Sivo & Wilson, 2000). Alternative
terms, notation, and path diagrams are used within different dis-
ciplines to describe this type of model; our intent is not to rename
this model for the sake of renaming but instead to allow us to move
on to the multivariate model that has no such history in these types
of frameworks.

As we described earlier, in the majority of LCM applications
based on more traditional panel data (with assessments spaced
by months or even years) the covariance structure among the
repeated measures is frequently fully reproduced through the
joint influence of the latent curve factors. As such, time-
adjacent relations among residuals within a given construct are
less often considered from a substantive perspective; nor do
they tend to be needed from an empirical one (with the impor-
tant exception of daily diary or ecological momentary
assessment-like designs, where such influences are often re-
quired; e.g., Bolger, Davis, & Rafaeli, 2003). However, there is
far greater interest in these residual structures when moving
from the univariate to the multivariate model in both panel and
diary data designs. That is, there is often both substantive
motivation and empirical support for examining how residuals
are prospectively and bidirectionally related across two con-
structs; yet, existing analytic methods are less well developed
for estimating these types of relations. We allow for such
cross-domain relations in the multivariate LCM-SR.

The Multivariate LCM With Structured Residuals

Our goal is to parameterize a model that provides simulta-
neous estimates of person-specific, between-person processes
and time-specific, within-person processes of the over-time
relation between two constructs. We begin with the standard
multivariate LCM we described earlier, but instead of estimat-
ing unstructured correlations among the residuals (as in Equa-
tion 11) we will regress the residual at time t on that at time t �

4 In some applications, the inclusion of prior lags may also be necessary
(e.g., t-2); the need for inclusion would typically be determined by theory
and empirical necessity. Given space constraints we do not explicate
identification conditions to establish unique estimation of these lagged
residual effects, but this would be determined in precisely the same way as
for the standard LCM (Bollen & Curran, 2006, pp. 21–24).
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1 across the two constructs. More specifically, our residual
structure is given as

εyit
� 
yyεyi(t�1)

� 
yzεzi(t�1)
� �yit

(14)

and

εzit
� 
zzεzi(t�1)

� 
zyεyi(t�1)
� �zit

, (15)

where

var�
�yi1

�yi2

�yi3

�zi1

�zi2

�zi3

� � �

�y1

2

0 
�y

2

0 0 
�y

2


�z1y1
0 0 
�z1

2

0 
�zy
0 0 
�z

2

0 0 
�zy
0 0 
�z

2

�
(16)

for T � 3. We begin by equating the residual variances for t � 2
and t � 3 (�vy

2 and �vz

2) but not the t � 1 variances (�vy1
2 and �vz1

2 );
this is because the t � 1 residual variance is not conditioned on a
prior measure, whereas the latter measures are. In other words, the
t � 2 and t � 3 residuals are themselves a residual given the auto-
and cross-lagged regressions; in contrast, the t � 1 residual is not
expressed as a function of other predictors. Note also that we
continue to allow for the across-construct residuals to covary
within time assessment (i.e., �vzy1 and �vzy), because these are not
temporally ordered as are the regressions of the later residual of
one construct on the earlier residual of the other. This model is
presented in Figure 7 for five repeated measures of each construct.

Although the structure of the covariance matrix from the
LCM-SR in Equation 16 is similar in form to that of the standard
multivariate LCM in Equation 11, the fundamental difference here
is that Equation 16 represents the covariance matrix of residuals
above and beyond not only the underlying latent curve factors but
also the prior residuals within- and across-construct. More collo-
quially, the diagonal elements of this matrix are the residual
variances of the residuals (excluding t � 1) as a function of the
four regression parameters 
yy, 
zz, 
yz, and 
zy. We can see how
the multivariate LCM and LCM-SR are closely related in that if all
four regression parameters are equal to zero, Equations 11 and 16
will be equal. The extent to which these matrices differ reflects the

existence of the higher order structure among the residuals, a
structure that is omitted in the standard LCM.

Importantly, the inclusion of the regression structure among
the residuals does not directly impact the fixed effects (i.e.,
means) of the latent curve factors. In other words, the mean of
the latent intercept and slope are unchanged regardless of the
inclusion or exclusion of the regressions among the residuals.5

We view this as a distinct strength of the LCM-SR; namely, the
mean structure of the repeated measures is modeled solely as a
function of the latent curve factors, whereas the covariance
structure of the repeated measures is modeled jointly as a
function of the latent curve factors and the structure imposed
among the residuals. This is in direct contrast to the ALT
model, in which the time-specific regressions at the level of the
observed variables (and not residuals) directly influences the
means of the latent factors; this characteristic of the ALT has
been seen as both an advantage (Bollen & Curran, 2004) and a
disadvantage (Voelkle, 2008), depending upon the goals of the
particular application at hand.

Finally, both the univariate and the multivariate LCM-SR can
naturally be expanded to include time-invariant covariates such as
gender, race, or treatment condition. As with the standard LCM,
exogenous predictors can be binary, ordinal, or continuous, and
interactive and nonlinear effects can be estimated among two or
more covariates (e.g., Curran, Bauer, & Willoughby, 2004). These
exogenous predictors would be included in the structural equations
for the latent curves in the usual way (e.g., as in Equation 7), so we
do not explicate this further here.

In summary thus far, the multivariate LCM-SR is able to
isolate the between-person and within-person components of
the relation between two constructs over time. We believe the

5 There will likely be slight variations in value in any given application
due to the persnicketiness of full information maximum likelihood estima-
tion.

Figure 6. Univariate unconditional linear latent curve model with struc-
tured residuals for five repeated measures.

Figure 7. Bivariate unconditional linear latent curve model with struc-
tured residuals for five repeated measures.
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LCM-SR offers a unique method by which we can more rigor-
ously evaluate bidirectional within-person relations in a way
that is much more consistent with theory than is typically
possible. Not only do we have unique estimates of the bidirec-
tional and prospective influences of one construct on the other,
but we can structure these relations in a variety of ways to test
specific hypotheses about processes of stability and change.
Next, we briefly describe two of the more exciting possibilities:
modeling heterogeneity in reciprocal relations over time and
across group. We focus our discussion on the across-construct
regressions, but all of our developments equally apply to the
within-construct stabilities.

Modeling Heterogeneity in Reciprocal Relations
Over Time

The model we defined above assumes that the cross-domain
residual regressions are equal over time.6 This is seen in that 
yz

and 
zy are not indexed to denote a specific time interval. However,
as we described earlier, many substantive theories within clinical
psychology predict that the magnitude of the relation between two
constructs changes over time. That is, two behaviors may become
increasingly intertwined as children age, or a clinical intervention
might be designed to “uncouple” two behaviors over time. We can
explicitly test such relations in the LCM-SR in two ways.

First, we can simply remove the restriction that the cross-
domain regressions are equal over time and instead allow them to
take on any optimal value supported by the data. We can denote
these regressions 
yzd� and 
zyd�, where d� is simply a numerical
identifier that denotes a specific adjacent pair of time points � �
0, 1, . . . , T � 1 (e.g., d0 � 0 denotes the relation between t � 1
and t � 2, d1 � 1 denotes the relation between t � 2 and t � 3,
and so on). Because the model in which the reciprocal relations are
held equal over time is nested within this model in which they
freely vary over time, we can conduct an LRT to determine if the
model fit is impacted by the removal of the equality restriction
over time. We will demonstrate this momentarily.

Second, we may hypothesize that the magnitude of the recipro-
cal relations does not simply vary in value over time but that it is
related in some systematic way with the passage of time. Thus,
instead of allowing each cross-domain regression to take on any
optimal unique value, we could impose a parametric constraint
such that the value of the regression varies in a structured way. For
example, say we hypothesized that the magnitude of the reciprocal
relations between two constructs became stronger over time and
that this rate of increase was linear with respect to time.

Using the general method of constraints described by Bauer and
Hussong (2009), we could allow the across-construct residual
regressions to vary as a function of time such that



yzd�

� 
yz0
� �yzd� (17)

and



zyd�

� 
zy0
� �zyd�, (18)

where 
yz0 and 
zy0 are the reciprocal regressions of the across-
construct residuals at the first time-adjacent measures, and �yz and
�zy are the increments to the regression parameters that are linearly

weighted via d�. It is easy to see that if �yz� 0 then 
yzd� � 
yz0

for all d�, resulting in the same model as that with equal regres-
sions over time defined in Equation 14. These linear increments
are uniquely defined model parameters with associated sample
estimates and standard errors, the significance of which can be
tested in the usual way. Although we show a linear function here,
any of a variety of interesting functions could be considered (e.g.,
quadratic, exponential).

Modeling Heterogeneity in Reciprocal Relations
Across Group

Our discussion thus far has made a fundamental assumption that
the magnitude of the within-person reciprocal relations may vary
as a function of time but that these relations are equal with respect
to all between-person characteristics. In other words, although the
reciprocal relations might become systematically stronger or
weaker with the passage of time, these relations are assumed
invariant across measures such as subject gender, race, and treat-
ment group membership. However, this restriction can also be
relaxed, and we can test a variety of interesting hypotheses related
to the interaction between the prospective reciprocal regressions
and between-person characteristics.

Drawing further on the methods described by Bauer and Hus-
song (2009), we can extend the parameter constraints we used
earlier to test for the interaction between the prospective time-
adjacent effects and time but allow these to also include the
moderating effect of group membership. For example, say that we
would like to test the moderating effects of treatment group mem-
bership on the magnitude of the within-person effects across our
two constructs. We could define a binary indicator to reflect group
membership where gi � 0 denotes membership in the control
group and gi � 1 denotes membership in the treatment group. We
could expand the prior equation to include both the main effect of
group and the interaction between group and the specific time-
adjacent measures. For example, for the regression of the residual
of y on z,



yzd�

� 
yz0
� �yz1d� � �yz2gi � �yz3(d� � gi), (19)

where �yz3 tests whether the linear increment in the strength of the
prospective relation is significantly different in the treatment group
than in the control group. These tests can be further extended in
variety of interesting ways to include information about both
time-invariant and time-varying influences on the magnitude of the
prospective within-person effects.

Summary

The LCM-SR is a novel yet logical extension of several well-
developed variations of the latent curve model. Of key importance
is that the inclusion of the time-specific residual structures isolates
the within- and between-person effects. These within-person ef-
fects can represent within-construct stabilities or across-construct

6 Imposing a simple equality constraint over time assumes that all
measures are equally spaced. If some or all repeated assessments are
unequally spaced, additional restrictions are needed to account for these
differences.
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time-adjacent effects. Both the within- and across-construct resid-
ual regressions can then be structured as a function of time or one
or more person-specific individual difference measures. The
LCM-SR is thus able to separate the person-specific and time-
specific relations between two or more constructs and to treat these
as separate yet jointly contributing components of developmental
change. We will now demonstrate the use of the LCM-SR using an
artificially generated data set created to reflect the hypothetical
within- and between-person relations between depressive symp-
tomatology and alcohol use over time.

Artificial Data Demonstration of the LCM-SR

We demonstrate the use of the LCM-SR by fitting a series of
models of increasing complexity to a single sample of artificially
generated repeated measures data. The disadvantage of using ar-
tificial data is that we are not using real data related to the study of
psychopathology; the advantage is that we have full knowledge of
the population-generating model and can thus unambiguously de-
termine the extent to which we are recovering the true underlying
parameters of interest. Future research is needed to more fully
study the utility of the LCM-SR across a variety of research
settings; our more modest intent here is to provide a demonstration
of how the LCM-SR might be used in practice.

Population Model

Drawing both on recent findings in the substantive literature and
on our own collective experiences, we defined a population model
to be consistent with a hypothetical reciprocal developmental
relation between depression and alcohol use spanning adolescence.
Our specific model is just one of a myriad of possible applications,
and we simply use this given the overlap with other substantively
focused work conducted in our research group (e.g., Hussong et
al., 2001, 2008, 2011). We began by generating data for a random
sample of N � 250 individuals each of whom contributed T � 5
repeated measures with no missing data. Few real-world applica-
tions offer equally spaced assessments of continuously and nor-
mally distributed measures with no missing data, but these char-
acteristics reduce sampling variability and allow us better insight
into the recovery of the population values. We chose to present the
results from just a single generated data set to highlight our
proposed model-building strategy; as such, there are slight differ-
ences between the population and sample values we report below,
and these are due to random fluctuations associated with the use of
a single data set.7

We began by defining a positive linear growth trajectory in
alcohol use spanning the five repeated measures, and we included
significant individual differences in both starting point and rate of
change over time. We defined an intercept-only model for depres-
sion such that there was person-to-person variability in the overall
level of depressive symptomatology, but depression did not sys-
tematically increase as a function of time. Finally, we allowed the
latent factors for the intercept and slope of alcohol use to positively
covary with one another and with the latent factor for the intercept
of depression to jointly define the between-person components of
the relation between alcohol use and depression over time.

We included time-adjacent autoregressions among the time-
specific residuals that were positive in value but small in magni-

tude; this inclusion was intended to reflect a modest within-
construct autoregressive effect above and beyond the contribution
of the underlying latent factors. We also defined a positive pro-
spective within-person relation between depression and alcohol
use such that higher values relative to the underlying trajectories at
one time were predictive of higher values at the following time
point. The strength of these prospective associations was constant
for alcohol use predicting depression but linearly increased in
magnitude as a function of time for depression predicting alcohol
use. The positive covariance between the within-time residuals of
depression and alcohol use accounted for any influences that were
potentially omitted from the model. These residual relations jointly
define the within-person components of the relation between al-
cohol use and depression over time.

Finally, we included two exogenous time-invariant covariates
that influence the three latent curve factors. Both were scaled as
binary predictors to hypothetically represent subject gender (fe-
males equal to 0 and males to 1) and treatment condition (control
equal to 0 and treatment equal to 1). These two predictors varied
in direction and magnitude in their relation with the latent curve
factors. Our final conditional multivariate LCM-SR is presented in
Figure 8.

Data were generated and models were fitted with Version 6.11
of Mplus, although any standard SEM program could be used for
these analyses. The introduction of the regression coefficients
among the residuals is an atypical parameterization of the general
SEM; they are sometimes called “phantom variables” and have
been used in SEMs for many years (e.g., Rindskopf, 1984; all code
and data are available at www.unc.edu/~curran). We next describe
the steps involved in fitting a series of LCM-SRs in increasing
complexity.

Modeling-Building Strategy

It is not possible to establish a fixed model-building strategy to
be used in all applications because of the unique characteristics
associated with any given model and data. However, we can
describe a general framework from which models can be built in
increasing complexity. First, we will establish the optimally fitting
model within each construct separately; this includes the identifi-
cation of the optimal function of time, the testing of autoregres-
sions among the residuals, and the testing of equality constraints
on these autoregressions. Next, we estimate a model for both
constructs simultaneously; we then conduct tests of across-
construct relations at the level of the latent factors and of the
time-specific residuals and again test equality constraints on the
cross-lagged regressions. Finally, we expand the multivariate
model to include the set of exogenous covariates of interest. For
each step we conduct LRTs to formally evaluate the change in
model fit relative to the inclusion of additional parameters or the
imposing of parameter constraints. Substantive conclusions are
then drawn from our final conditional multivariate model.

7 To further examine this, we fit the same model to 1,000 separate
samples of size N � 250. The mean parameter estimates pooled across the
full set of replications were all within 1% of their population-generating
values.
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Univariate Unconditional LCM-SR for Alcohol Use

We began by estimating a random intercept model for alcohol
use that included only a mean and variance of the intercept factor
and residual variances for each of our repeated measures that we
allowed to vary over time. As expected, this model fit the data
poorly, �2(7) � 283.08, p � .0001, root-mean-square error of
approximation (RMSEA) � .29, comparative fit index (CFI) �
.47, Tucker–Lewis index (TLI) � .59. We extended this model
with the addition of a linear slope factor � � 0,1,2,3,4, consistent
with Figure 1. We estimated a mean and variance for both the
intercept and the slope factor; a covariance between the intercept
and the slope factor, and we allowed the time-specific residual
variances to vary over time. This model resulted in a significant
improvement in model fit relative to the intercept-only model,
��

2 (3) � 265.98, p � .0001; the model as a whole reflected a good
fit to the data, �2(10) � 17.01, p � .07; RMSEA � .05, CFI � .99,
TLI � .99.

There was a significant mean and variance for both the intercept
(	̂y� � 3.41, SE � .17; �̂y�y� � 4.66, SE � .66) and linear slope
(	̂y� � 0.63, SE � .08; �̂y�y� � 1.16, SE � .15), respectively.
These results indicated that alcohol use was significantly increas-
ing at a linear rate of change and that there was significant
individual variability around both the starting point and rate of
change over time. We then expanded this model to include an
autoregressive component among the residuals. The univariate
LCM and the LCM-SR are nested, thus allowing for a formal test
of improvement in model fit given the inclusion of the additional
parameter. The autoregressive parameter was nonsignificant
(
yy � .07, SE � .07), and the likelihood ratio test similarly

indicated that model fit was not significantly improved with the
inclusion of the autoregressive residual structure, ��

2 (1) � 0.88,
p � .35. We will retain this residual structure even though the LRT
was nonsignificant because these effects were hypothesized to
exist; in other applications it might be equally defensible to omit
this from further models, particularly if the inclusion of these
parameters leads to instability in model estimation.8

Univariate Unconditional LCM-SR for Depression

We began with a random intercept model as we did for alcohol
use, and this model fit the data reasonably well, �2(13) � 23.47,
p � .04, RMSEA � .06, CFI � .96, TLI � .97. We expanded this
model to include a linear slope factor, but this did not lead to a
significant improvement in overall model fit, ��

2 (3) � 5.37, p �
.15. As such, we retained the random intercept-only model. There
was both a significant mean and variance of the intercept factor
(	̂z� � 0.98, SE � .10; �̂z�z� � 1.83, SE � .21), indicating that
there was potentially meaningful individual variability in overall
depressive symptomatology. We then expanded the model to in-
clude the time-adjacent autoregressions among residuals, and this
again did not lead to a significant improvement in model fit,
��

2 (1) � 1.84, p � .18; as before, we will retain the residual
structure as we continue our model-building strategy.

8 The inclusion or exclusion of these nonsignificant autoregressions
exerted no impact on the final models to be presented below.

Figure 8. Final model results for artificial data set corresponding to a bivariate conditional latent curve model
with structured residuals for five repeated measures. All numerical values are standardized and are significant
at p � .05; regression coefficients for binary covariates are partially standardized; dashed lines are estimated but
nonsignificant. Full results are in Table 1. alc � alcohol use; dep � depression; gen � gender; tx � treatment
group.
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Bivariate Unconditional LCM-SR for Alcohol Use
and Depression

We next combined the two univariate LCMs into a single
bivariate LCM consistent with Figure 4 but with the inclusion
of only an intercept factor for depression. We allowed the
intercept and slope factor for alcohol use to covary with one
another as well as with the intercept factor for depression. We
allowed the time-specific residuals to covary between alcohol
use and depression and set these covariances to be equal across
time for Times 2, 3, 4, and 5. We also allowed autoregressive
components among the residuals of alcohol use and depression.
This model did not fit the data well, �2(42) � 170.10, p �
.0001, RMSEA � .11, CFI � .86, TLI � .85. However, we
know from the population-generating model that the source of
this misfit is due to the omission of the prospective reciprocal
relations across the two constructs. Interestingly, the structured
residual effects would not be a considered component from a
standard LCM, and it would thus not be immediately apparent
as to what was leading to the poor model fit.

Following a general model-building strategy, we began by
introducing the regression of the residual of alcohol use on
depression while holding the regression of the residual of
depression on alcohol use at zero. We then removed these
regressions and introduced the regression of the residual of
depression on alcohol use while holding the regressions of
alcohol use on depression at zero. Finally, we introduced both
sets of regressions simultaneously. This strategy allows for the
unambiguous evaluation of each side of the reciprocal effects
by considering them one at a time. However, alternative ap-
proaches could be used in which all regressions are considered
simultaneously or one set is introduced and then retained when
including the other set. The utility of these alternatives depends
on the application at hand.

We thus added the regression of the residual of alcohol use on
depression to the multivariate LCM and allowed these values to be
freely estimated over time. The fit of the model was significantly
improved with the inclusion of these prospective regressions
among the residuals relative to the multivariate LCM, ��

2 (4) �
26.20, p � .0001. We then imposed the constraint that the regres-
sions were equal over time; this restriction did not degrade model
fit, ��

2 (3) �2.59, p � .63, and was thus retained. Because the LRT
indicated these regressions were equal over time, we did not
proceed to test whether the values increased as a function of time.
We then fixed these regressions to zero and repeated the process
for the regression of depression on alcohol use.

There was again a significant improvement in model fit with the
inclusion of the regression parameters that were allowed to freely
vary over time relative to the multivariate LCM, ��

2 (4) � 60.90,
p � .0001. However, the imposition that these regressions were
equal over time did lead to a significant decrement in model fit,
��

2 (3) � 19.91, p � .0005, and was thus not retained. Given that
the magnitude of the regressions was not equal over time, these
values might be systematically related to the passage of time. We
thus imposed the constraint defined in Equation 17 such that the
strength of the regression of depression on prior alcohol use
systematically increased with time. This restriction did not lead to
a decrement in model fit, ��

2 (3) � 1.68, p � .80, and it was
retained.

Next, we combined both sets of regressions in a single model,
and this reproduced the observed data well, �2(39) � 56.34, p �
.036, RMSEA � .04, CFI � .98, TLI � .98. Interestingly, all three
covariances among the latent growth factors do not significantly
differ from zero (all ps � .10). We would thus conclude from a
substantive perspective that there are no systematic between-
person relations among the latent curve components of depression
and alcohol use. However, these between-person effects are only
one component of the more complex relation between these two
constructs. To see this, we next consider the within-person com-
ponents of change over time.

Consistent with the submodels in our model-building strategy,
earlier depression positively and significantly predicted subse-
quent alcohol use, and the magnitude of this relation was constant
over time (
̂yz � .45, SE � .06). In contrast, earlier alcohol use
also positively and significantly predicted subsequent depression,
but the magnitude of this relation linearly increased with time.
More specifically, the prediction of depression from alcohol use
was 
̂zy � .09 (SE � .07) between Times 1 and 2, and this was
significantly incremented by �̂zy � .13 (SE � .03) at each subse-
quent time-adjacent relation. The within-person component of the
bivariate relation was significant and constant for depression pre-
dicting subsequent alcohol use, but the reciprocal component of
this relation was significant and linearly increasing in magnitude
with the passage of time for alcohol use predicting depression.
Thus, there are indeed strong relations between depression and
alcohol use over time, but these are not at the level of the indi-
vidual but at the level of prospective deviations from the under-
lying trajectory of each construct.

Given that we have established the optimal within-person
model, our final step was to regress the three latent curve factors
on our two correlated time-invariant covariates that hypothetically
represented gender and treatment group membership. The fit of the
conditional LCM-SR to the observed data was excellent, �2(53) �
69.19, p � .07, RMSEA � .04, CFI � .99, TLI � .98.9 The final
model is shown in Figure 8, and the full set of results is presented
in Table 1. Our hypothetical measure of gender was significantly
associated with both the intercept and slope of alcohol such that
males started higher (�̂y�1 � 1.19, SE � .31) and increased more
rapidly (�̂y�1 � 0.65, SE � .15) than did females. In contrast,
males reported significant lower means of depression than did
females (�̂z�1 � �1.57, SE � .17). Finally, our hypothetical
measure of treatment group membership was not significantly
related to the starting point of alcohol use (�̂y�2 � 0.32, SE � .32)
but was significantly associated with less steep increases in alcohol
use over time (�̂y�2��0.36, SE � .15) and lower overall levels of
depression (�̂z�2� �0.41, SE � .17).

There are several extensions to this model that we do not
demonstrate here. For example, we considered the main effects of
gender and treatment, and we could easily include the interaction
between these two (e.g., Curran et al., 2004). We could also
expand the predictor set to include any of a variety of additional
individual difference measures as main effects or multiplicative
interactions. Further, we could extend the constraints imposed on
the within-person prospective effects to vary as a function not only

9 As well it should, given that this was the population-generating model
used to create the artificial data.
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of time but also of exogenous covariates. For example, we could
directly test whether the magnitude of the relations among the
within-person effects varies as a function of gender, ethnicity, or
treatment group membership. We might hypothesize that the
strength of the reciprocal relations between the two constructs is
constant over time for the control group, but these become sys-
tematically weakened over time for the treatment group. Given the
separation of the within-person and between-person components
of change within a single model, a variety of intriguing tests is
available in ways not previously possible.

Conclusion

This is an exciting time to be conducting research in clinical
psychology. Not only have our theoretical models developed in com-
plex and increasingly nuanced ways, but we have available an arsenal
of advanced statistical techniques that can be used to rigorously
empirically evaluate our research hypotheses under study. Despite the
myriad of advances we have witnessed over the past decade, one
challenge continues to vex substantive researchers, ourselves includ-
ed: How do we best model the dynamic and reciprocal relations
between two constructs over time? There are a number of well-
developed modeling strategies that have tackled different aspects of

this question, but the relative utility of each depends on both the
theoretical model and the empirical data at hand.

For example, the multivariate latent curve model examines the
relation between two constructs over time, but this is primarily a
between-person model that evaluates the across-construct relations
at the level of the person-specific growth factors. This multivariate
LCM can be redefined as an LCM with TVCs to provide an
estimate of the within-person component of change, but this is
done at the cost of omitting the between-person component and is
restricted to unidirectional influences. This model can be further
redefined to correspond to an autoregressive latent trajectory
model that allows both person-specific and time-specific relations,
but this approach does not provide a pure disaggregation of within-
and between-person components of change. All of these existing
modeling approaches work well, at least under the assumption that
the statistical model is well matched to the theoretical model. The
extent to which the statistical and theoretical models diverge
directly undermines our ability to validly test our research hypoth-
eses. As such, if our theory posits the simultaneous existence of
between-person and within-person components of stability and
change, the magnitude of which may vary as a function of person-
specific characteristics, then none of these existing techniques is

Table 1
Population and Final Sample Values for Artificially Simulated Data

Parameter Population value Unstandardized coefficient SE Standardized coefficient p

	y� 3.00 2.64� 0.28 1.31 �.001
	y� 0.45 0.46� 0.13 0.44 .001
	z� 2.00 1.99� 0.15 1.56 �.001
�y�y�

3.60 3.71� 0.71 0.91 �.001
�y�y�

0.85 0.95� 0.14 0.87 �.001
�z�z�

0.80 0.97� 0.18 0.60 �.001
�y�y�

�0.65 �0.53� 0.23 �0.28 .024
�z�y�

0.25 0.45 0.27 0.24 .090
�z�y�

0.15 0.05 0.10 0.06 .603
��y1

2 3.80 3.29� 0.67 1.00 �.001
��y2

2 4.40 4.52� 0.50 0.90 �.001
��y3

2 5.00 4.91� 0.57 0.89 �.001
��y4

2 5.80 5.14� 0.71 0.90 �.001
��y5

2 7.00 7.33� 1.05 0.90 �.001
��z1

2 3.00 2.45� 0.28 1.00 �.001
��z2

2 3.00 2.79� 0.29 0.99 �.001
��z3

2 3.00 2.18� 0.23 0.89 �.001
��z4

2 3.00 3.05� 0.31 0.82 �.001
��z5

2 3.00 3.11� 0.34 0.71 �.001
��zy

1.05 0.50 0.31 0.18 .108
��zy1

1.05 0.81� 0.16 .17 to .25a �.001

yy 0.06 0.06 0.07 .05 to .06a .331

zz 0.01 0.02 0.04 .02 to .03a .595

yz 0.50 0.44 0.06 .29 to .32a �.001

zy 0.30 0.11 0.07 0.11 .106
�zy 0.05 0.12� 0.03 N/A �.001
�y�1 1.55 1.19� 0.31 0.59 �.001
�y�1 0.52 0.65� 0.15 0.63 �.001
�z�1 �1.35 �1.57� 0.17 �1.23 �.001
�y�2 0.05 0.32 0.32 0.16 .311
�y�2 �0.46 �0.36� 0.15 �0.35 .015
�z�2 �0.60 �0.41� 0.17 �0.32 .013

Note. Standardized coefficients for binary covariates are partially standardized. SE � standard error; N/A �
parameter not available as a standardized estimate.
a Standardized values for parameters constrained to equality are not computed as a single common estimate.
� p � .05.
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ideally suited to the task at hand. Our motivating goal for this
article has been to describe and demonstrate a model that allows
for this disaggregation of effects, and we refer to this as the latent
curve model with structured residuals.

The LCM-SR is a novel yet natural extension of the multivariate
LCM. It draws on the rich traditions of structuring residuals within
the multilevel (e.g., Goldstein et al., 1994) and time series (e.g.,
Box & Jenkins, 1976) modeling frameworks, techniques that to
our knowledge have not yet been incorporated into the LCM with
more than a single construct. By separating the between-person
effects at the level of the person-specific latent factors from the
within-person effects at the level of the time-specific residuals, we
are able to test a variety of hypotheses in a powerful and highly
flexible way. For example, we can test whether the time-adjacent
within-person effects are constant over time or may strengthen or
weaken with the passage of time. We can extend these tests using
the methods of Bauer and Hussong (2009) to evaluate whether the
magnitude of these over-time relations itself varies as a function of
treatment group membership of individual characteristics such as
gender or ethnicity. We could even test whether the reciprocal
effects are moderated by a continuous covariate such as symptom-
atology at baseline or some measure of early executive function-
ing. These are just a few of the novel types of hypotheses that
could be tested within the LCM-SR.

Of course, our approach is not without potential limitations.
Most obviously, the LCM-SR is not well suited for theoretical
questions that posit relations that are not composed of separate
between- and within-person components of stability and change.
For example, Raudenbush and Bryk (2002, p. 179) described a
situation in which one might regress time-specific measures of
reading achievement on how many days of instruction the child
received in the same year; this model corresponds to what we have
described as the LCM with TVCs. However, the entire point of
their model is to statistically adjust reading scores as a function of
student absenteeism in each given year and to fit the trajectory
model to the adjusted readings scores, thus making the TVC model
ideal. Similarly, Ferrer and McArdle (2010) described a latent
change score model to examine the relation between change in one
construct and subsequent change in another construct. Again, the
LCM-SR is not well suited to modeling these kinds of dynamics
because the within-person regressions are based on the deviations
of a time-specific measure from the corresponding trajectory.
These examples are not limitations of the LCM-SR in general but
rather highlight the obvious point that no single modeling frame-
work is optimal for evaluating all possible theoretically derived
hypotheses related to individual stability and change over time.

Another potential limitation is that we must have direct access to
the time-specific residuals in order to estimate the prospective
reciprocal effects. However, these residuals are not uniquely iden-
tified when one uses discretely scaled repeated measures within
nonlinear link functions in the SEM (e.g., compare Equations 1 vs.
3 in Bauer & Hussong, 2009). Thus, if maximum likelihood
estimation is used in an LCM with binary or ordinal repeated
measures, it is not possible to structure the residuals in the way we
have described here. Using a weighted least squares–based
method of estimation is one option, but this itself introduces
another layer of complexities (e.g., Wirth & Edwards, 2007).

Finally, careful thought is needed about both how to space the
repeated assessments and whether sufficient numbers of observa-

tions are obtained over time to provide stable estimates of the
prospective reciprocal relations. As with the standard LCM, the
methods we describe here can be used with data that are unbal-
anced and partially missing. However, because we are modeling
the relation between an earlier measure on one construct and a later
measure on another construct, an adequate number of cases must
provide measures at both time points on both constructs. Future
attention must be paid to all of these issues to better understand the
relative performance of the LCM-SR under conditions commonly
encountered in psychopathology research.

In conclusion, we have described what we believe to be a novel yet
logical extension of the multivariate latent curve model. We use an
atypical parameterization of the standard latent curve model to allow
access to the time-specific deviations of the repeated measures rela-
tive to the corresponding underlying growth trajectory; we can then
use these individual- and time-specific deviations to provide unique
tests of reciprocal within-person relations between two or more con-
structs as they unfold over time. Importantly, these within-person
influences are simultaneously estimated in the presence of the
between-person relations assessed at the level of the latent trajectories.
The simultaneous disaggregation of levels of effect allows for a more
comprehensive empirical examination of the hypothesized underlying
developmental processes and allows us to move one step forward in
our quest to forge stronger links between our theoretical and statistical
models of human behavior.
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