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The noncentral chi-square distribution plays a key role in structural equation modeling
(SEM). The likelihood ratio test statistic that accompanies virtually al SEMs
asymptotically follows a noncentral chi-square under certain assumptions relating to
mi sspecification and multivariate distribution. Many scholars use the noncentral chi-square
distribution in the construction of fit indices, such as Steiger and Lind’s (1980) Root Mean
Square Error of Approximation (RMSEA) or the family of baseline fit indices (e.g., RNI,
CFl), and for the computation of statistical power for model hypothesistesting. Despitethis
wide use, surprisingly little is known about the extent to which the test statistic follows a
noncentral chi-squarein applied research. Our study examines several hypotheses about the
suitability of the noncentral chi-square distribution for the usual SEM test statistic under
conditions commonly encountered in practice. We designed Monte Carlo computer
simulation experiments to empirically test these research hypotheses. Our experimental
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conditions included seven sample sizes ranging from 50 to 1000, and three distinct model
types, each with five specificationsranging from acorrect model to the severely misspecified
uncorrelated baseline model. In general, we found that for models with small to moderate
misspecification, the noncentral chi-square distribution is well approximated when the
samplesizeislarge (e.g., greater than 200), but there was evidence of bias in both mean and
variance in smaller sasmples. A key finding was that the test statistics for the uncorrelated
variable baseline model did not follow the noncentral chi-square distribution for any model
type across any sample size. We discuss the implications of our findings for the SEM fit
indices and power estimation procedures that are based on the noncentral chi-square
distribution as well as potential directions for future research.

I ntroduction

Structural equation modeling (SEM) represents abroad class of models
that allows simultaneous estimation of the relations between observed and
latent variables and among the latent variables themselves (Bollen, 1989).
The SEM framework subsumes a remarkable variety of analytic methods
including the simple t-test, ANOVA, regression, confirmatory factor
analysisand beyond (Bentler, 1980, 1983; Joreskog, 1971a, 1971b; Joreskog
& Sorbom, 1978). Most of the statistical estimatorsfor SEMs sharethegoal
of minimizing the difference between the covariance matrix observed inthe
sample and the covariance matrix implied by the model parameters, where
the minimization is with respect to a“fitting function,” F. If we denote F
as the value of the sample fitting function at its minimum, then we have a
scalar that ranges from 0 to infinity and equals 0 only when the estimated
implied covariance matrix exactly reproducesthe sample covariance matrix.
Larger valuesof F reflect greater discrepancies between the observed and
implied matrices.

Themaximum likelihood fitting function leadsto atest statistic T formed
by multiplying F by N - 1, whereN representssamplesize.* Thistest statistic
T asymptotically follows a central chi-square distribution under a set of
standard assumptions. Key among these is that the specified model is
correct. That is, the covariance matrix implied by the model exactly
reproducesthe observed variables’ population covariance matrix. However,
researchers have long recognized that no model is without error and all
models are misspecified to some unknown degree (e.g., Cudeck & Browne,
1983; Meehl, 1967). Intheir seminal early work on thistopic, both Steiger
and Lind (1980) and Browne (1984) demonstrated that in the typical case of
amisspecified model, thetest statistic T doesnot follow acentral chi-square
distribution. Instead, under certain known conditions T asymptotically

! The test statistic T is commonly referred to as the “model x? test” both in the literature
and in nearly all SEM computer packages. However, we will refer to thisas T throughout
because this test statistic may or may not actually follow a chi-square distribution.
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follows anoncentral chi-square distribution defined by degrees of freedom
df and noncentrality parameter \. The noncentrality parameter \ carries
important i nformation about the degree of model misspecification, and thus
the noncentral chi-square distribution has cometo play animportant rolein
structural equation modeling.

Despite the prominence of the noncentral chi-square distribution in
structural equation modeling, little empirical work has examined the extent
to which the test statistic T follows the expected distribution in applied
research. The purpose of this article is to empirically evaluate the
appropriateness of using a noncentral chi-square distribution for T under a
range of model misspecifications and sample sizes commonly encountered
in practice. We test three key research hypotheses using data generated
from Monte Carlo simulations and compare the obtained T statistics both to
the population chi-square distributions and to alarge set of random draws
fromthe known population distributions. Prior to presenting the specifics of
our study, wewill first review theimportant role of the noncentral chi-square
distributionin structural equation modeling.

The Noncentral Chi-Square Distribution in SEM

Evidence of the ubiquitousrole of the noncentral chi-squaredistribution
in SEM is reflected in the development of numerous measures of overall
model fit. For example, Steiger and Lind (1980) originally proposed the
RMSEA (Root Mean Square Error of Approximation) to calibrate the
omnibusfit of aSEM. Not only does the computation of the point estimate
of the RM SEA depend on the sample estimate of T, but acritical featurethat
they introduced wasthe ability to form confidenceintervalsfor the RMSEA
directly based onthe noncentral chi-squaredistribution. Extending thiswork,
Browne and Cudeck (1993) proposed using the RM SEA and the noncentral
chi-squaredistribution to form hypothesistests of approximatefit rather than
the traditional tests of exact fit. Steiger, Shapiro, and Browne (1985) use
the noncentral chi-square distribution in their analysis of test statistics for
stand alone factor analysis models and comparisons of nested model fit.
Steiger (1989) and Maiti and Mukherjee (1990) apply the noncentral chi-
squaredistributionto devel op the sampling distribution of the GF fit statistic.
Bentler (1990), McDonald and Marsh (1990), and othersformfit indicesthat
comparea*baseline” model to aspecific hypothesized model, and underlying
their proposal istreating thetest statisticsfrom both modelsasif they follow
noncentral chi-square distributions. It isclear that assuming that T follows
a noncentral chi-square distribution is critical to the computation and
interpretation of all of these measures of fit.
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Another important application of thenoncentral chi-squaredistributionis
in the study of statistical power in SEM. For instance, Satorra and Saris
(1985) and Matsueda and Bielby (1986) used the noncentral chi-square
distribution to determine the power of the usual chi-square test statistic for
ahypothesized model when aspecified alternative model actually holdsinthe
population. These methods have been extended in a variety of directions
over the past 15 years. For example, MacCallum, Browne, and Sugawara
(1996) rely on the noncentral chi-square distribution when computing the
power of ‘close’ and ‘exact’ fit based upon the RMSEA, and Muthén and
Curran (1997) extended the methods of Satorraand Saris (1985) to compute
statistical power for a broad class of longitudinal models. Taken together,
all of these techniques are based on the premise that the test statistic T for
a misspecified model follows an underlying noncentral chi-square
distribution.

The Validity of the Distributional Assumptions for T

Whether it isthe development of new fitindicesor the study of statistical
power, the noncentral chi-square distribution has moved from alittle used
statistical distributionin SEM to akey feature of contemporary applications.
Giventhisprominence, itissurprising that thereissolittlework on whether,
and under what conditions, the test statistic T does and does not follow a
noncentral chi-square distribution. Some suggest that the test statistic
follows anoncentral chi-square distribution whenever amodel isincorrect
while others claim that the asymptotic noncentral chi-square distribution
holdsonly if certain conditions are met. For example, Steiger et al. (1985)
note “...the noncentral Chi-square approximation will be reasonably
effective so long as the noncentrality parameter is not ‘too large’” (p. 259,
guotes in original). And when discussing the role of the noncentral chi-
squaredistribution of T for hisproposed comparativefitindex, Bentler (1990)
notes*“ It ispossiblethat the null model of independence may be so different
from the true model that another distribution could be more appropriate at
times” (p. 245).

Specifically, anoncentral chi-square distribution for T restson a series
of assumptions. Chief among theseisthat “systematic errors dueto lack of
fit of the model to the population covariance matrix are not largerelative to
random sampling errorsin S” (where S represents the sample covariance
matrix) (Browne, 1984, p. 66). Seealso Satorra(1989), Steiger et al. (1985),
and Browne and Cudeck (1993) for additional detailsonthisissue. However,
itisdifficult to know whenthe systematic errorsor the misspecificationsare
mild enough to justify thisassumption. Furthermore, these are asymptotic
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or large sampleresultsso it isunclear asto how large N must practically be
for thisapproximationto hold.

A number of simulation studies examined the empirical sampling
distributionsof T for correct model specification. A typical findingisthat the
value of T tends to be higher than it should be for a chi-sguare variable at
smaller sample sizes, but that this bias disappears as the sampl e size grows
(e.g., Anderson & Gerbing, 1984; Boomsma, 1982; Curran, West, & Finch,
1996; Hu, Bentler, & Kano, 1992). A smaller number of studies have
examined the T statistic under various misspecified models, and resultshave
indicated similar patterns of findings to those under proper model
specification (e.g., Curran et al., 1996; Fan, Thompson, & Wang, 1999).
Finally, Rigdon (1998) presented the only published study of which we are
aware that provides an example of the empirical distribution of T for the
uncorrelated variable model that ispart of baselinefitindices. Although his
resultsindicated that the distribution of T for the uncorrel ated variable model
may not follow the noncentral chi-square distribution, the external validity of
thisfinding islimited given the consideration of asingle model and asingle
samplesize.

The small amount of existing research of the empirical distribution of T
under proper and improper specification tends to be hampered by two key
limitations. Thefirst isthat, with few exceptions, researchers only compare
the means of the empirical distributions of T to that expected for the
corresponding population distributions. Rarely are measures of dispersion
compared, and this could be critical when using the noncentral chi-square to
compute confidence intervals. Second, studies of misspecified models have
not considered sever e misspecifications, the condition under which T isleast
likely tofollow the noncentral distribution. More specifically, almost nothing
isknown about thedistribution of T for the uncorrel ated variable model that is
commonly used inthe computation of many baselinefitindices(e.g., TLI, IFI,
or CFl). Thusthevalidity of treating thetest statistic T asif it followsacentral
or noncentral chi-sgquare distribution in situations commonly encountered in
appliedresearchisopentoquestion. Thepurposeof our articleistoempirically
evaluatethevalidity of employingthisdistributionin practice.

Proposed Research Hypotheses

We use extensive Monte Carlo computer simulations to empirically
evaluate hypotheses based on statistical theory and prior research. To
isolatetheimpact of misspecification and sampl e size from problems caused
by the distribution of variables, all observed variables are generated from
multinormal distributions. Our threekey research hypothesesare asfollows.
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1. Drawing on Browne (1984) and others, we propose that under proper
model specification, the test statistic T will follow a central chi-square
distribution with mean df and variance 2df, but only at moderate to large
sample sizes; T will follow some other (unknown) distribution at smaller
sample sizes.

2. Drawing on Steiger et al. (1985) and others, we propose that under
small to moderate model misspecification, the test statistic T will follow a
noncentral chi-square distribution with noncentrality parameter A, mean df
+ X\ and variance 2df + 4\. However, thiswill only hold at moderateto large
sample sizes; T will follow some other (unknown) distribution at smaller
sample sizes.

3. Alsodrawingon Steiger et al. (1985) and others, we propose that under
severe model misspecification, especially the uncorrelated variable model,
the test statistic T will not follow either the central nor the noncentral chi-
squaredistribution, and thiswill occur acrossall samplesizes; T will follow
some other (unknown) distribution regardless of sample size.

To maximize the external validity of our study, we utilized 15 separate
specifications of three general model types that represent a broad sampling
of common models. Further, we evaluate these models using sample sizes
ranging from very small to very large to further understand these issues
across a spectrum of applied research settings. Finally, we test both the
mean and the variance of the empirical distribution of T relative to the
population distributionsto eval uate theimplications of potential biasin the
calculation of both point estimatesand confidenceintervals. Takentogether,
we believe our methodological design and analytic strategy provide a
rigorous empirical evaluation of our proposed research hypotheses.

Technical Background

Prior to presenting the design of the simulation study, we will briefly
review some basic technical issues to provide background context and to
concretely define terms and clarify notation.

The Central and Noncentral Chi-Square Distribution. The central
chi-square (x?) distributionisacommon distributionininferential statistics.
The central x2 distribution is defined by a single parameter df, or degrees
of freedom, and is a special case of the broader family of gamma
distributions (Freund, 1992). We can express a random variable that is
distributed asacentral chi-square asthe sum of df squared random normal
deviates z such that
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df
) Xa=) 7

where df = degrees of freedom. The mean of x?, isdf and the varianceis 2df.

A lesswidely utilized variant of the central x2 distributionisthenoncentral chi-
squaredistribution (commonly denoted x'2). Whereasthe central x2isthesum
of one or more squared normal deviates, the noncentral x’2isthe sum of one
or more sguared normal deviates plus a constant ¢ such that

of
2 2

2 Xa = ) (z;+¢)

(2) 12:1 [

The noncentral chi-square is defined by two parameters, df and the
noncentrality parameter X (where \ = Ecz) The mean of x'Z isdf + \ and
the variance is 2df + 4\.

Structural Equation Modeling. Within the SEM framework, %, the
population covariance matrix of the observed variables, equals an implied
covariance matrix, %(0) where the values of 6 represent the regression
coefficients, factor |oadings, and covariance matrices of the specified model
[e.g., for further details see Chapter 2 of Bollen, 1989, for notation, and
Chapter 8 for %(6)]. This covariance structure is fitted to the observed
covariance matrix S by means of minimizing agivenfit function F[S, 2(6)]
withrespectto 6. Thisminimizationresultsin 6 whichisavector of model
parameter estimates, and 3=3(6 whichisthe covariance structureimplied
by the parameter estimates. Thegoal of the estimation procedureisto select
values for 6 that minimize the difference between S and 3. The
discrepancy function F[S,%(0)] is thus a scalar value that ranges from 0 to
o andisequal toOwhenS= 3(6) . Thereareseveral discrepancy functions
fromwhich to choose (see, e.g., Browne, 1984), but the most widely used in
applied research ismaximum likelihood estimation.

Maximum Likelihood Estimation. The maximum likelihood fitting
functionis:

3) Fu. =10g12()|+tr[ S5 (6)] ~log]S| -

where p represents the total number of observed measured variables.
Assuming no excessive kurtosis, adequate sample size, and proper model
specification, ML parameter estimates are asymptotically unbiased,
consistent, and efficient (see, e.g., Bollen, 1989). Further, atest statisticis
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(4) T=Fy (N-1)

which, given the above assumptions, isasymptotically distributed asacentral
chi-square with df = 1/2(p)(p + 1)-t where t isthe number of parametersto
be estimated. Thistest statistic and corresponding df permit tests of the null
hypothesisH : 3 = %(6). Under the assumptions of no excessive kurtosis,
adequate sample size, and improper model specification (but not severely
s0), the test statistic T instead follows a noncentral chi-square distribution
defined by df and noncentrality parameter A. The noncentrality parameter
\ provides a basis for evaluating the degree of model misfit.

Method

Given spacelimitations, we provideageneral summary of the simulation
design and methods here. A comprehensive presentation of thisinformation
isavailable in Paxton, Curran, Bollen, Kirby and Chen (2001). Aswill be
described below, we generated two sets of datato test our hypotheses. The
first data set was comprised of the T statistics estimated from the SEM
simulationsacrossavariety of experimental conditions. The second data set
was comprised of random draws from a known central and noncentral chi-
square distribution, the generation of which wasentirely independent of the
SEM simulations. A key component of our analytic strategy isto compare
thedistribution of the simulated T statisticswith (a) the popul ation moments
of the known underlying distribution, and (b) the sample moments of the
variatesrandomly drawn from the same known underlying distribution. This
second comparison was necessary given that the parametric tests comparing
the T test statistics to the underlying population distribution parameters
assumes normality, and we know apriori that the T statisticswill not follow
a normal distribution. We thus combine parametric and nonparametric
comparisons to allow for a comprehensive evaluation of the proposed
research hypotheses.

We will now describe the selection of the target models and the method
used to generate the two simulated data sets.

Model Types and Experimental Conditions

Drawing both on a review of the social science literature over the
previousfive yearsand on our combined modeling experience, we selected
three general model types for study: Model 1 (see Figure 1) contains nine
measured variables and three latent factors with three to four indicators per
factor, Model 2 (see Figure 2) has 15 measured variables and three latent
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factors with five to six indicators per factor, and Model 3 (see Figure 3)
consists of 13 measured variables with the same form as Model 1 but with
the addition of four measured and correlated exogenous variables. We
designed these model sto represent featuresthat are commonly encountered
insocial scienceresearch. Furthermore, for each model we use one correct
and four incorrect specifications, resulting in atotal of 15 target models.

Model 1. Specification 1 is a properly specified model such that the
estimated model matches the population model; Specification 2 omits the
complex loading linking item 7 with factor 2; Specification 3 additionally
omits the complex loading linking item 6 with factor 3; Specification 4
additionally removes the complex loading linking item 4 with factor 1; and
finally, Specification 5 is the standard uncorrelated variables model where
variances are estimated but all covariances are fixed at zero.
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Figurel

Target Population Model 1

Note: numbers shown are unstandardized parameter values with standardized values in
parenthesis; solid and dashed lines represent the population model structure, and dashed
lines represent omitted parameters under model misspecification.
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Model 2. Specification 1isproperly specified; Specification 2omitsthe
complex loading linking item 11 with factor 2; Specification 3 additionally
omits the complex loading linking item 10 with factor 3; Specification 4
additionally removes the complex loading linking item 6 with factor 1; and
Specification 5 is the standard uncorrel ated variables model.

Model 3. Specification 1 is properly specified; Specification 2 jointly
omits the set of three complex factor loadings (item 7 with factor 2, item 6
with factor 3, and item 4 with factor 1); Specification 3 jointly omitsthe set
of four regression parameters (factor 2 on predictor 1, factor 3 on predictor
1, factor 2 on predictor 3, and factor 3 on predictor 3); Specification 4 jointly
combinesthe omissions of Specifications2 and 3 (omission of the set of three
factor loadings and the set of four regression parameters); and Specification
5 isthe standard uncorrelated variables model.

Model Parameterization. For all three model types, parameter values
were carefully selected to result in a range of effect sizes (e.g.,
communalities and R? values ranging from 49% to 72%), and for the
misspecified conditions to lead to both a wide range of power to detect the
misspecifications (e.g., power ranging from .07 to 1.0 across all sample
sizes) and arange of biasin parameter estimates (e.g., absolute biasranging
from 0 to 37%). See Paxton et al. (2001) for a comprehensive description
of our model parameterization. We believe this parameterization reflects
values commonly encountered in applied research and that the omission of

51 51 51 51 51 2895 .51 51 512895 2895 .51 51 51 51
(S1) (S (S (51 (51) (2895)  (S1)  (S1)  (S1)  (.2895) (.2895)  (S1)  (S1) (51 (51

49
(1.0)

Figure2

Target Population Model 2

Note: numbers shown are unstandardized parameter values with standardized values in
parenthesis; solid and dashed lines represent the population model structure, and dashed
lines represent omitted parameters under model misspecification.
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Target Population Model 3

Note: numbers shown are unstandardized parameter values with standardized values in
parenthesis; solid and dashed lines represent the population model structure, and dashed
lines represent omitted parameters under model misspecification.

one or more parameters would result in meaningful impacts on parameter
estimation and overall model fit.

Sample Size. We chose seven sample sizes to represent those
commonly encountered in applied research and these range from very small
tolarge: 50, 75, 100, 200, 400, 800, and 1000.

Data Generation and Estimation. We used the simulation feature in
Version 5 of EQS (Bentler, 1995) to generate the dataand EQS' s maximum
likelihood estimation to estimate the model. The data generation and
estimation procedure was comprised of three basic steps. First, the
population covariance matrix was computed to correspond to the
parameterization of each of the three target models. Second, raw datawere
randomly generated from amultivariate normal distributionto correspondto
the structure of the population covariance matrix. Finally, the particular
specification within each target model wasfit to the simulated raw datausing
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ML estimation. We used the population valuesfor each parameter asinitial
start values, and we allowed a maximum of 100 iterations to achieve
convergence. This method permitted us to fit a model that differed in
structure from the model that generated the data. See Bentler (1995) for
further details about EQS data generation procedures.

Distribution.  We generated data from a multivariate normal
distribution.

Replications. Therewere atotal of 105 experimental conditions (three
models, five specifications, and seven sample sizes), and we generated up to
500 replications for each condition.

Convergence. We eliminated any replication that failed to converge
within 100 iterations, or did converge but resulted in an out of bounds
parameter estimate (e.g., “Heywood Case”) or alinear dependency among
parameters. To maintain 500 replications per condition, we generated an
initial set of up to 650 replications. We then fit the modelsto the generated
data and selected the first 500 proper solutions, or selected as many proper
solutionsas existed when the total number of replicationswasreached. This
resulted in 500 proper solutions for all properly specified and most
misspecified experimental conditions, but there were several misspecified
conditions that resulted in fewer than 500 proper solutions. Of the 105
experimental conditions, 82 (78%) contained 500 replicationsand 23 (22%)
contained fewer than 500 replications. Of those 23 conditions containing
fewer than 500 replications, the number of replications ranged from 443 to
499 with amedian of 492, and the smallest number of 443 replications was
for Model 3, Specification4, N=50. Whether improper solutionsshould be
excluded or removed from the simulation design is a debatable issue. We
chose to excludeimproper solutionsto mimic the lowered chance of results
with improper solutions being reported. Fortunately, no differences were
found in any results when including or excluding improper solutions (see
Anderson & Gerbing, 1984, for further discussion of thistopic). Elsewhere
we have examined the causes and consegquences of improper solutions in
more detail ( Chen, Bollen, Paxton, Curran, & Kirby, 2001).

Outcome Measures. The outcome measures of key interest hereisthe
likelihood ratio test statistic T (commonly referred to as the “maodel x?")
estimated for each replicated model and the corresponding degrees of
freedom for the estimated model. We obtained these values directly from
EQSinwhich the T statistic is computed as the product of the minimum of
the ML fit function and N - 1, and the df is computed as the difference
between the total number of unique variances and covariances minus the
total number of estimated parameters.
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Smulated Data Drawn from the Noncentral Chi-Square Distribution

Data Generation. A key research question posed here is whether the
model test statistics T computed from the simulated structural equation
models follow the expected underlying central or noncentral chi-square
distribution. Aspart of theempirical eval uation of thisquestion, we generated
additional simulated data drawn directly from the known population chi-
square distributions using Version 7.0 of the SAS data system (SAS Inc.,
1999). Asmentioned earlier, wedid thisto allow for nonparametric teststhat
do not assumethat thetest statisticsare normally distributed, acondition that
likely does not hold here. We generated random variates from expected
population distributions using a combination of the gamma and normal
distributionfunctionsin SAS. When A waszero, thisresulted in random draws
from the central chi-square distribution; when \ was greater than zero, this
resulted in random draws from the noncentral chi-square distribution.

Experimental Conditions. The mean and variance of the central and
noncentral chi-square distributionsvary asafunction of degrees of freedom
and the noncentrality parameter . Thus, we drew 105 separate samples
from 105 different population distributions, one corresponding to each SEM
experimental condition under study.

Replications. To achieve stable sample estimates of the underlying
population distributions, we made 5000 draws for each of the 105
experimental conditions. Thus, all means and variances reported below are
based on 5000 independent draws for each experimental condition.

Summary

In sum, we generated two compl ete sets of datato empirically evaluate
our proposed research hypotheses. Thefirst set was comprised of up to 500
test statistics T (one drawn from each SEM replication) estimated within
each of 105 experimental conditions; we refer to these data as the SEM
simulations. The second set was comprised of 5000 random draws from
105 different population central (for properly specified models) and
noncentral (for misspecified models) chi-square distributions, one
distribution corresponding to each SEM experimental condition under study;
we refer to these data as the chi-square simulations. The core of our data
analytic strategy is (a) the parametric comparison of the sample means and
variances of the T statistics from the SEM simulations with the known
population counterparts, and (b) the nonparametric comparison of the means
and variances of the T statistics from the SEM simulations with the random
chi-sgquare variates drawn from the known population distributions.
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Results

Weempirically eval uated the proposed research hypotheses using three
related methods. First, we computed one-sampl e z-tests of the sample mean
of the SEM test statisticsto the corresponding popul ation mean with known
population variance, and we used one-sampl e x? tests of the samplevariance
of the SEM test statistics to the corresponding population variance. These
are parametric tests of the null hypothesisthat the sample mean and variance
of the SEM test statistics equals the population mean and variance of the
expected underlying distributions, and both tests assume that the popul ation
isnormally distributed (Kanji, 1993). Second, because of the assumption of
normality associated with the parametric tests, a condition that is not
expected to hold here,? we used the nonparametric Wil coxon Rank-Sum test
of means and Siegel-Tukey test of variances to compare the empirical
distributions of the SEM statistics with the corresponding empirical
distributionsfrom the chi-square simulations. TheWilcoxon Rank-Sum test
evaluates the hypothesis that two random samples came from two
populations with the same mean, and the Siegel-Tukey test evaluates the
hypothesis that two random samples came from two populations with the
same variance. Both of these nonparametric tests only assume that the two
populations have continuous frequency distributions (Kanji, 1993, p. 86).
Finally, to augment the parametric and nonparametric statistical tests, we
computed effect sizes based on absoluterel ative bias (observed value minus
expected value divided by expected value) and considered val ues of 5% or
greater to indicate meaningful bias. In sum, we utilized parametric tests,
nonparametric tests, and measures of effect size to evaluate our research
hypotheses.

Tests of Central Tendency

One Sample z-Test. Table 1 presents all summary statistics and the
results of the parametric (z) and nonparametric (Wilcoxon) tests for the
meansof the population distribution, the SEM simulations, and the chi-square
simulations. For each of the 105 experimental conditions, we compared the
sample mean of the SEM test statistic T to the mean of the population

2 We do not expect the assumption of normality to hold here because the T statistics are
expected to follow acentral or noncentral chi-square distribution whichitself isnot normal,
at least under the conditions studied here. However, 103 of the 105 measures of univariate
kurtosis of the sample distributions of T were below 1.0, and the largest value of kurtosis
was 1.1 (Model 3, Specification 1, N = 100). Based on these empirical results, it does not
appear that the assumption of normality is excessively violated here.
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distributionthat it isexpected to follow given aknown population variance.
To control for inflated familywise error rate stemming from the 105 mean
comparisons, we set the per comparison rate to o = .001 to maintain a
familywiserate of approximately o =.10. Usingthissignificancecriterion,®a
rather clear pattern of results emerges acrossall conditions: the mean of the
SEM test statistics systematically overestimated the mean of the expected
underlying popul ation distributionsat the smaller samplesizesacrossall three
model types. For Specifications 1 through 4 (the one proper and three
improper specifications) of Model 1, thistended to occur at sample sizes of
100 and below, and for Specifications 1 through 4 of Models 2 and 3, this
tended to occur at sample sizes of 200 and below. Interestingly, there was
little evidence of bias in the mean estimate for Specification 5 (the
uncorrelated variables model) for Model 1, and there was modest
overestimation for Specification 5 of Models2 and 3, but only at the smal | est
sample size of 50.

Relative Bias. To further understand these relations in terms of effect
sizes, relative biaswas computed for all conditions. For Model 1, significant
relative bias in the means (e.g., greater than 5%) was observed at sample
sizes of N = 100 and below for the proper specification, at N = 50 for the
improper specifications, and no bias was observed for the uncorrelated
variablesnull model. For Model 2, the significant relative biasin the means
wasobserved for both the proper and improper specificationsat N= 100 and
below, and again there was no appreciable bias for the null model. This
pattern was also found for Model 3 but only at sample sizes of N = 75 and
below. In general, the experimental conditions associated with significant
relativebiasclosely corresponded with those conditionsidentified using the
parametric z-test, but the relative bias results were somewhat more
conservative compared to the parametric results. Thus, based on the 5%
relative bias criterion, the means were systematically overestimated at the
smaller sample sizesfor the proper and improper model specifications, and
the mean for the null model was unbiased across all sample sizes.

Wilcoxon Rank-Sum Test. The Wilcoxon Rank Sum test compared the
mean of the SEM test statistics with the mean of the 5000 random variates
drawn from the corresponding population distribution that the test statistics
areexpectedtofollow. Again, we used this method of comparison given the

%It could be argued that there are actually 210 total tests (e.g., 105 tests of mean and 105
tests of variance), or even 420 total tests given theinclusion of the nonparametric mean and
variance comparisons. We chose to correct for 105 tests because these were the total
number of comparisons that focused on one particular parameter within one particular
statistical test. However, we present exact p-values for each individual test so that the
reader may make any correction they so desire.
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likely failure of the T statisticsto meet the assumption of normality required
by the z-test. As expected, the nonparametric tests tended to demonstrate
lower power relative to the parametric counterparts. However, nearly
without exception, every condition for which ameaningful differenceresults
using the parametric tests, this same condition is identified in the
nonparametric tests (based on the corrected o = .001).

Summary of Tests of Central Tendency. Based on the corrected
significance levels of the parametric and nonparametric tests aswell asthe
magnitude of relative bias, we concluded that the mean of the SEM test
statistics consistently overestimated the mean of the expected underlying
population distribution for Specifications 1 through 4 for all three model types
(the properly specified and three misspecified conditions), but only at the
smallest sample sizes (e.g., 100 to 200 and below). At samples above 200,
we found no appreciable bias across any condition. Further, we found no
significant overestimation of the population mean for Specification 5 (the
uncorrelated variables model) for any model type at any sample size.

Tests of Dispersion

One Sample x2-Test. Table 2 presents all summary statistics, parametric
(x? and nonparametric (Siegel-Tukey) tests, and rel ative biasfor thevariances
of the population distribution, the SEM simulations, and the chi-square
simulations. Againusingaper comparisonrateof a =.001to control for multiple
testing, thevarianceof the T statisticsfor Model 1 only significantly varied from
the expected population value at the smallest sample size for the properly
specified and themost minor improper specification (Specifications1and 2); in
contrast, the variance was significantly overestimated across all sample sizes
for theuncorrel ated variablebaselinemodel (Specification5). A similar pattern
of resultswas found for both Model 2 and Model 3. Thus, although there was
evidence of significant overestimation of thesamplevarianceof T relativetothe
expected underlying distribution at N = 50 for the proper and minor improper
specifications, the variance of the uncorrelated variable baseline model was
significantly overestimated at every samplesizefor every model typeeven using
the adjusted a = .001 per comparison error rate.

Relative Bias. Unlike the tests of central tendency that indicated a
larger number of biased conditions based on the parametric test results
compared to the relative bias results, for the tests of dispersion a larger
number of biased conditions were identified based upon the relative bias
results compared to the parametric test results. For Specifications 1 through
4 for al three model types, the variance of the SEM test statistics
overestimated the expected variance of the population distributions at the
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smaller sample sizes. Relative bias exceeded 5% at samples of N = 100
and below for Model 1,* at about N = 200 and below for Model 2, and at
about N = 75 and below for Model 3. Indeed, at the smallest sample size
of N =50, relative bias ranged from 12% up to 39% indicating substantial
overestimation of the corresponding population parameter.® Of key interest
isthefinding that for Specification 5 (theuncorrelated variablesmodel), the
sample variance of the SEM test statistics significantly overestimated the
population counterpart at every samplesizeacrossall threemodel typeswith
relative biasranging from aminimum of 32% to aremarkable 164%. Indeed,
for Model 2, biaswas 120% or higher across all sample sizes. Thus, for the
uncorrel ated variables model, therewasnot oneinstancein which the sample
estimates of the SEM test statistics showed evidence of following the
dispersion of the expected noncentral chi-square population distribution.
Segel-Tukey Test. As with the z-test of the means, the parametric x?2
test of the variances al so assumes normality thus necessitating the use of the
nonparametric equivalents. The Siegel-Tukey nonparametric test of
variance (Kanji, 1993, p. 87) compared the variance of the SEM test
statistics and the variance of the N = 5000 random variates drawn from the
expected underlying population distribution, and thistest only assumesthat
the popul ation distributionsare continuous. Ingeneral, aswasfound withthe
Wilcoxon Rank-Sumtest of central tendency, theresultsof the Siegel-Tukey
test of dispersion closely corresponded with those of the x? test, although
again there is some evidence of the lower power of the nonparametric test.
Ingeneral, the Siegel-Tukey resultsindicated overestimation of thevariance
at the smallest sample size for nearly all of the properly and improperly
specified models, and indicated significant overestimation at all samplesizes
for all three model types for the uncorrelated variable baseline model.
Summary of Tests of Dispersion. Results from the parametric and
nonparametric tests in combination with the magnitude of the absolute
relative biaslead usto two key patterns of results. First, for Specifications

4 An odd pattern of findings was evident for the first four Specifications of Model 1 at N=75
in which the estimated variance of the SEM test statistics was smaller at N = 75 compared
to the N = 50 and N = 100 conditions. We suspected that this was an error in data
generation, but extensive exploration of these conditions coupled with the generation of
additional datarevealed no errors. We found that there is much sampling variability in the
estimation of the variance of the SEM test statistics at the smaller sample sizes, and the
somewhat odd pattern of resultsfor this one particular condition is most likely attributable
to this random variability.

5 Oneinteresting finding to noteisthat at N = 400 and N = 800 of Specification 3 of Model
3, therelative bias was actually a negative value (both approximately -18%). Thisfinding
was not predicted, but also was not consistent across model or specification. It isthus not
immediately clear what this limited evidence of underestimation of variance implies, if
anything at all.
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1through4for all three model types (e.g., the one proper and threeimproper
specifications), the variance of the SEM test statistics consistently
overestimated the corresponding variance of the expected underlying
central and noncentral chi-sgquare population distribution at smaller sample
sizes. Second, for Specification 5 (the uncorrelated variables baseline
model), the expected population variance was significantly overestimated
for every model type at every sample size under study. The smallest bias
found was 32%, but for most conditions biasranged between 50% and 150%.
Consistent with statistical theory, in terms of dispersion the SEM test
statistics are not following the expected noncentral chi-square distributions
at smaller samplesizesfor the properly specified or moderately misspecified
conditions, nor at any samplesizefor the severely misspecified uncorrel ated
variablesmodel.

Potential Implications of Findings

Our simulation results demonstrate that the likelihood ratio test statistic
T does follow the expected noncentral chi-square distribution under some
experimental conditions, but does not follow thisdistribution under others.
Aswediscussed in theintroduction, thefailure of the test statistic to follow
the expected underlying distribution may threaten thevalidity of avariety of
measures of fit and methods of power estimation that rely upon the sample
test statistic T. A comprehensive examination of the various waysinwhich
these measures and methods may be adversely affected is beyond the scope
of the current article, and we are examining these issues in greater detail
elsewhere. However, we will briefly examine the implications of our
simulation results for a single measure that relies directly on the condition
that thetest statistic followsanoncentral chi-squaredistribution, namely the
computation of confidence intervals for the RMSEA.

RMSEA Confidence Intervals. The RMSEA was originally proposed
by Steiger and Lind (1980) and was further developed by Browne and
Cudeck (1993). The point estimate of the RMSEA is given as

(5) RMsEA= | —df
df (N-1)

where T and df represent the likelihood ratio test statistic and degrees-of-
freedom from the hypothesized model, respectively, and N represents

sample size. The numerator thus represents the sample estimate of the
noncentrality parameter N\ and it is an estimate of the degree of model
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misspecification. A unique characteristic of the RMSEA isthat, under the
assumptions that lead the test statistic to follow a noncentral chi-square
distribution, the sampling distribution is known. This allows for the
computation of confidence intervals (Cls) around the point estimate. The
Cls for the RMSEA are computed using appropriate upper and lower
percentilelimitsof anoncentral chi-squaredistribution for given degrees-of-
freedom and noncentrality parameter \ (see Equation 14, Browne &
Cudeck, 1993). The Clsareasymmetric around the point estimate and range
from zeroto positiveinfinity.

A key condition for the computation of these Clsisthat the test statistic
T from the tested model follows a noncentral chi-sgquare distribution. Our
simulation results suggest that T doesindeed follow anoncentral chi-square
distribution under some experimental conditions, but not under others. To
briefly examinethe potential impact of these findings on the computation of
the Cls for the RMSEA, we compared the percent of sample Cls from the
SEM simulationsthat covered the known popul ation RM SEA valuefor two
conditions under which we found T to follow a noncentral chi-square
distribution and for two conditionsunder whichit did not. Under conditions
in which the test statistic follows the population noncentral chi-square
distribution, we expect that approximately 90% of the 90% Clswould cover
the known population value of the RMSEA.

Recall that the simulation resultsindicated that the likelihood ratio test
statistic T closely followed the noncentral chi-square distribution interms of
both central tendency and dispersion for the moderately misspecified M odel
3 (thefull SEM), Specification 2 (omitting three crossloadings) at N = 400
and N = 800. For Specification 2 of Model 3, 91% and 90% of the sample
90% Cl s covered the population RMSEA value for N = 400 and N = 800,
respectively. Thus, under conditionsin which T does follow the expected
underlying distribution, the 90% Cls appear to be covering the population
RMSEA at the expected rate. In contrast, recall that the simulated test
statistics failed to follow a noncentral chi-square distribution for the same
Model 3, Specification 2 at N = 50 and N = 75 in terms of both central
tendency and dispersion. Here, 79% and 86% of the sample 90% Cls
covered the population RMSEA value for N =50 and N = 75, respectively.
Thus, under experimental conditionsinwhich T doesnot foll ow the expected
noncentral chi-square distribution, the computed Cl s based on thisunderlying
distribution are not covering the population parameter at the expected rate.

Summary. This brief exploration of the RMSEA Cls suggests that the
departure of T from the expected noncentral chi-square distribution may
indeed exert anegativeinfluence on other measuresof fit basedon T, at | east
under the conditions studied here. The RMSEA confidence intervals are
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only one of many measuresof fit and methods of power estimation that might
be influenced by the departures of T from the expected underlying
distribution.  Future research is necessary to fully understand the
implications of these findings across a much broader range of outcomes.

Discussion

A central goal of our article was to empirically evaluate the degree to
which the SEM likelihood ratio test statistic T follows a central chi-square
distribution under proper model specification, and a noncentral chi-square
distribution under improper model specification. Thisisacritically important
issueto better understand given thereliance on thetest statistic following this
known distribution across many areas of SEM applications and research,
particularly in terms of fit indices and statistical power. Drawing on
statistical theory and prior research, we proposed three research hypotheses
that we empirically evaluated using data generated from Monte Carlo
simulations. Experimental conditionsincluded 15 different modelsvarying
both in complexity and in degree of misspecification, as well as arange of
samplesizesfalling between 50 and 1000. Thoughwefeel that we exercised
considerable care in the selection of our experimental conditions, we of
course need to keep in mind the usual limitations that must accompany any
Monte Carlo simulation design. That is, we cannot be certain about the
degree to which we can extrapolate from our conditions to other modeling
conditions; however, given the close correspondence of our findingsto what
was predicted from statistical theory, we feel confident that these findings
do generalize across many research settings commonly encountered in
practice. Keepingthese caveatsin mind, wefind several interesting results.

Proposed Research Hypotheses

Hypothesis 1. Our first hypothesis predicted that for properly specified
models, the SEM test statistic T wouldfollow acentral chi-squaredistribution
with mean df and variance 2df, but only at moderate to large sample sizes.
Consistent with both statistical theory (e.g., Browne, 1984) and prior research
findings (e.g., Curran et al., 1996; Hu et al., 1992), our results supported this
hypothesis. Intermsof biasinthecentral tendency of thedistribution, themean
of the sample estimates of T consistently overestimated the mean of the
expected population distribution at the smaller samplesizes. Thisbiasinthe
mean became negligible at sample sizes of N = 200 and higher. A similar
pattern of biaswasfoundintermsof the dispersion of the distribution such that
the variance of the sample estimates of T significantly overestimated the
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variance of the expected popul ation distribution at the smaller samplesizesfor
all three properly specified models. Although these results replicate several
previous studies of similar research questions, the vast mgjority of these
studies only examined the distribution of T in terms of central tendency. We
extend thesefindings by demonstrating important departuresin thedistribution
of T in terms of variance as well. This finding has important potential
implications for the computation of confidenceintervals, apoint that we will
discuss further below.

Hypothesis 2. Our second hypothesis wasthat under small to moderate
model misspecification, the test statistic T would follow a noncentral chi-
squaredistribution with noncentrality parameter A, mean df + A and variance
2df + 4\, but this was expected to only hold at moderate to large samples.
Again consistent with both statistical theory (e.g., Steiger et al., 1985) and
prior research (e.g., Curranet al., 1996; Fan et al., 1999), our resultsclearly
demonstrated that for model sthat were misspecified, but not severely so, the
distribution of T did indeed follow the expected underlying noncentral chi-
square distribution. However, thisonly held for moderate to large samples,
and T did not follow a noncentral chi-square distribution at smaller sample
sizes. Aswasfound for the properly specified conditions, both the mean and
variance of theempirical distribution of T showed significant biasrelativeto
the expected population distribution, but the magnitude of biaswaslarger for
the variance compared to the mean of T.

Hypothesis 3. Our third and final hypothesis was that under severe
model misspecification, especially theuncorrelated variable model, the test
statistic T would follow neither the central nor the noncentral chi-square
distribution, and we expected this to occur across all sample sizes.
Consistent with both statistical theory (e.g., Steiger et al., 1985) and some
limited prior research (e.g., Rigdon, 1998), our findings indicated that the
empirical distribution of the test statistic T did not follow the expected
noncentral chi-square distribution for any model at any sample size.
However, there was an intriguing aspect about this pattern of bias. When
comparing the mean of the empirical distribution of T to the expected
population counterpart, there was no evidence of bias found based on the
parametric, nonparametric, or effect size estimates. Again, prior simulation
studies have typically only considered departures of T from the expected
distribution in terms of central tendency. When comparing the variance of
the empirical distribution of T to the expected population counterpart, there
was significant bias evident across all modelsand all samplesizes. Indeed,
relative bias in the variance of T ranged from 32% to 164% with a median
bias of 69% acrossall sample sizesand model types. Thus, if biaswereonly
considered intermsof central tendency, it would be concluded that T did not
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depart from the expected underlying distribution. However, when measuring
biasin terms of dispersion, there were pervasive and significant departures
of Tfromthe expected underlying distribution acrossall modeling conditions.

Implications

We briefly explored the potential implications of these findings on a
single measure of fit and demonstrated that the failure of T to follow the
expected underlying distribution may indeed have negative consequencesfor
other applications in SEM. Other areas in SEM that might be adversely
affected include the computation of many fit indices and corresponding
confidence intervals, as well as several power estimation procedures. For
example, many relative fit indices incorporate the test statistic from the
uncorrelated variables baseline model in the computation of the index, and
are based onthe conditionthat T followsanoncentral chi-square distribution
(e.g., RNI, CFI).6 However, our results provide strong evidence that this
condition isnot valid under any condition studied here. Thevariance of the
T statistic for the null baseline model departsfrom that of the corresponding
expected noncentral chi-square distribution across every sample size
considered, although the mean of T showed only negligible bias. From one
perspective, the lack of strong bias in the mean suggests that the point
estimates of these relative fit indices might not greatly suffer aslong asthe
sampleisnot small. Ontheother hand, therelativefit indices are nonlinear
functions of the test statistics for the uncorrelated baseline and the
hypothesized structure and this nonlinear structure complicates the
assessment of the potential impact of the bias. Further, one goal has been
to work toward the development of confidence intervals around the point
estimates of theserelativefitindices (e.g., Bentler, 1990). So, although the
lack of biasinthe mean of T may allow for appropriate point estimation, the
substantial biasin the variance of T may have a much greater impact on the
ability to compute corresponding confidence intervals. Further researchis
needed to more fully address these implications.

In contrast to therelativefit indices, the computation of the RM SEA does
not involve a baseline chi-square test statistic. Since the RMSEA only
assumesanoncentral chi-squaredistribution of T for the hypothesized model,
our results imply that the greatest possible bias will occur in the smaller
samplesizeswherethetest statistic does not appear to follow the noncentral
chi-squaredistribution. Animportant finding hereisthat at sample sizes of

6 An exception is the IFI where Bollen (1989, p. 305) suggests that the test statistic for the
baseline model will not always follow a noncentral chi-square distribution and thus uses
the baseline chi-square rather than the noncentrality estimate in the IFI calculation.
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around N = 100 and above, the mean of the T statistic was not biased even
under the most severe misspecification of amodel that might be considered
theoretically tenable in practice. However, a significant advantage of the
RMSEA isthedirect cal culation of corresponding confidenceintervals(e.g.,
Browne & Cudeck, 1993; Steiger & Lind, 1980). Our resultsindicate that
thevariance of T closely correspondsto that of the underlying noncentral chi-
squaredistribution, but only at sample sizesabovearound N = 200. Thus, we
might expect that both the point estimates and the confidenceinterval s of the
RMSEA are well validated for use in practical research applications given
moderate to large sample sizes, but may be biased at smaller sample sizes.
Our ongoingwork isdirectly exploring these very issueswith regard to point
estimation, Type | error, and power of the RMSEA.

Finally, our results indicate that power estimation procedures that
depend on the condition that T follows a noncentral chi-square distribution
require special carewhen Nissmall. It wasbeyond the scope of thisarticle
to examinethe power of thelikelihood ratio test statistic toreject anincorrect
model, but our findings imply that the accuracy of methods such as those
proposed by Satorraand Saris(1985), MacCallum et al. (1996), and M uthén
and Curran (1997) may degrade as afunction of decreasing sample size and
increasing model misspecification. Further empirical work is needed to
better understand the conditions under which these power estimates may
become inaccurate.

It isimportant to stressthat, although there is strong evidence that there
arekey experimental conditionsunder which T does not follow anoncentral
chi-squaredistribution, given the scope of thisarticlewehave not explicitly
considered therobustness of T not following thisunderlying distribution on
the baselinefit indices, stand-alone measures such asthe RM SEA, or power
estimation procedures. It is possible that even though the test statistic
significantly departs from the noncentral chi-square, it may very well be a
good enough approximation for practical utilization. Our study provides
important insightsinto thispotential problemintermsof thedistributionof T,
but caution dictatesthat additional research isneeded that focusesexplicitly
on each of these particular applications that utilize T.

Limitations and Future Directions

Asweraised earlier, an inherent limitation to any computer simulation
study isthat it is possible that the resultant findings can not be generalized
beyond the experimental conditions under study. We endorse this as a
potential limitation, but we al so took great carein designing our experimental
conditions to reflect a wide variety of sample sizes and model types
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commonly encountered in applied behavioral research. Giventhis, findings
may differ with variations in factors such as model complexity, model
parameterization, and degree of misspecification, and futureresearch will do
well to further explore theseissues. A related limitation of our study isthat
we examined only data generated from a multivariate normal distribution.
Prior research hasindicated that it isimportant to al so consider non-normally
distributed data (e.g., Muthén & Kaplan, 1985, 1992), but an examination of
thiswas beyond the scope of the current manuscript. Given that non-normal
distributions are a significant problem in social science research (e.g.,
Micceri, 1989), much can be learned about the distribution of T under
combinations of sample size, model specification, and multivariate
distribution. These limitations should warrant some caution in over
generalizing from our results, but wefeel our findings provide an important
first glimpseinto the empirical distribution of T and may serve asastarting
point for future research in this important area of structural equation
modeling.
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