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The noncentral chi-square distribution plays a key role in structural equation modeling
(SEM).  The likelihood ratio test statistic that accompanies virtually all SEMs
asymptotically follows a noncentral chi-square under certain assumptions relating to
misspecification and multivariate distribution.  Many scholars use the noncentral chi-square
distribution in the construction of fit indices, such as Steiger and Lind’s (1980) Root Mean
Square Error of Approximation (RMSEA) or the family of baseline fit indices (e.g., RNI,
CFI), and for the computation of statistical power for model hypothesis testing.  Despite this
wide use, surprisingly little is known about the extent to which the test statistic follows a
noncentral chi-square in applied research.  Our study examines several hypotheses about the
suitability of the noncentral chi-square distribution for the usual SEM test statistic under
conditions commonly encountered in practice.  We designed Monte Carlo computer
simulation experiments to empirically test these research hypotheses.  Our experimental
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conditions included seven sample sizes ranging from 50 to 1000, and three distinct model
types, each with five specifications ranging from a correct model to the severely misspecified
uncorrelated baseline model.  In general, we found that for models with small to moderate
misspecification, the noncentral chi-square distribution is well approximated when the
sample size is large (e.g., greater than 200), but there was evidence of bias in both mean and
variance in smaller samples.  A key finding was that the test statistics for the uncorrelated
variable baseline model did not follow the noncentral chi-square distribution for any model
type across any sample size.  We discuss the implications of our findings for the SEM fit
indices and power estimation procedures that are based on the noncentral chi-square
distribution as well as potential directions for future research.

Introduction

Structural equation modeling (SEM) represents a broad class of models
that allows simultaneous estimation of the relations between observed and
latent variables and among the latent variables themselves (Bollen, 1989).
The SEM framework subsumes a remarkable variety of analytic methods
including the simple t-test, ANOVA, regression, confirmatory factor
analysis and beyond (Bentler, 1980, 1983; Jöreskog, 1971a, 1971b; Jöreskog
& Sörbom, 1978).  Most of the statistical estimators for SEMs share the goal
of minimizing the difference between the covariance matrix observed in the
sample and the covariance matrix implied by the model parameters, where
the minimization is with respect to a “fitting function,” F.  If we denote $F
as the value of the sample fitting function at its minimum, then we have a
scalar that ranges from 0 to infinity and equals 0 only when the estimated
implied covariance matrix exactly reproduces the sample covariance matrix.
Larger values of $F  reflect greater discrepancies between the observed and
implied matrices.

The maximum likelihood fitting function leads to a test statistic T formed
by multiplying $F  by N - 1, where N represents sample size.1  This test statistic
T asymptotically follows a central chi-square distribution under a set of
standard assumptions.  Key among these is that the specified model is
correct.  That is, the covariance matrix implied by the model exactly
reproduces the observed variables’ population covariance matrix.  However,
researchers have long recognized that no model is without error and all
models are misspecified to some unknown degree (e.g., Cudeck & Browne,
1983; Meehl, 1967).   In their seminal early work on this topic, both Steiger
and Lind (1980) and Browne (1984) demonstrated that in the typical case of
a misspecified model, the test statistic T does not follow a central chi-square
distribution.  Instead, under certain known conditions T asymptotically

1 The test statistic T is commonly referred to as the “model �2 test” both in the literature
and in nearly all SEM computer packages.  However, we will refer to this as T throughout
because this test statistic may or may not actually follow a chi-square distribution.
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follows a noncentral chi-square distribution defined by degrees of freedom
df and noncentrality parameter �.  The noncentrality parameter � carries
important information about the degree of model misspecification, and thus
the noncentral chi-square distribution has come to play an important role in
structural equation modeling.

Despite the prominence of the noncentral chi-square distribution in
structural equation modeling, little empirical work has examined the extent
to which the test statistic T follows the expected distribution in applied
research.  The purpose of this article is to empirically evaluate the
appropriateness of using a noncentral chi-square distribution for T under a
range of model misspecifications and sample sizes commonly encountered
in practice.  We test three key research hypotheses using data generated
from Monte Carlo simulations and compare the obtained T statistics both to
the population chi-square distributions and to a large set of random draws
from the known population distributions.  Prior to presenting the specifics of
our study, we will first review the important role of the noncentral chi-square
distribution in structural equation modeling.

The Noncentral Chi-Square Distribution in SEM

Evidence of the ubiquitous role of the noncentral chi-square distribution
in SEM is reflected in the development of numerous measures of overall
model fit.  For example, Steiger and Lind (1980) originally proposed the
RMSEA (Root Mean Square Error of Approximation) to calibrate the
omnibus fit of a SEM.  Not only does the computation of the point estimate
of the RMSEA depend on the sample estimate of T, but a critical feature that
they introduced was the ability to form confidence intervals for the RMSEA
directly based on the noncentral chi-square distribution.  Extending this work,
Browne and Cudeck (1993) proposed using the RMSEA and the noncentral
chi-square distribution to form hypothesis tests of approximate fit rather than
the traditional tests of exact fit.   Steiger, Shapiro, and Browne (1985) use
the noncentral chi-square distribution in their analysis of test statistics for
stand alone factor analysis models and comparisons of nested model fit.
Steiger (1989) and Maiti and Mukherjee (1990) apply the noncentral chi-
square distribution to develop the sampling distribution of the GFI fit statistic.
Bentler (1990), McDonald and Marsh (1990), and others form fit indices that
compare a “baseline” model to a specific hypothesized model, and underlying
their proposal is treating the test statistics from both models as if they follow
noncentral chi-square distributions.  It is clear that assuming that T follows
a noncentral chi-square distribution is critical to the computation and
interpretation of all of these measures of fit.
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Another important application of the noncentral chi-square distribution is
in the study of statistical power in SEM.  For instance, Satorra and Saris
(1985) and Matsueda and Bielby (1986) used the noncentral chi-square
distribution to determine the power of the usual chi-square test statistic for
a hypothesized model when a specified alternative model actually holds in the
population.  These methods have been extended in a variety of directions
over the past 15 years.  For example, MacCallum, Browne, and Sugawara
(1996) rely on the noncentral chi-square distribution when computing the
power of ‘close’ and ‘exact’ fit based upon the RMSEA, and Muthén and
Curran (1997) extended the methods of Satorra and Saris (1985) to compute
statistical power for a broad class of longitudinal models.  Taken together,
all of these techniques are based on the premise that the test statistic T for
a misspecified model follows an underlying noncentral chi-square
distribution.

The Validity of the Distributional Assumptions for T

Whether it is the development of new fit indices or the study of statistical
power, the noncentral chi-square distribution has moved from a little used
statistical distribution in SEM to a key feature of contemporary applications.
Given this prominence, it is surprising that there is so little work on whether,
and under what conditions, the test statistic T does and does not follow a
noncentral chi-square distribution.  Some suggest that the test statistic
follows a noncentral chi-square distribution whenever a model is incorrect
while others claim that the asymptotic noncentral chi-square distribution
holds only if certain conditions are met.  For example, Steiger et al. (1985)
note “...the noncentral Chi-square approximation will be reasonably
effective so long as the noncentrality parameter is not ‘too large’” (p. 259,
quotes in original).  And when discussing the role of the noncentral chi-
square distribution of T for his proposed comparative fit index, Bentler (1990)
notes “It is possible that the null model of independence may be so different
from the true model that another distribution could be more appropriate at
times” (p. 245).

Specifically, a noncentral chi-square distribution for T rests on a series
of assumptions.  Chief among these is that “systematic errors due to lack of
fit of the model to the population covariance matrix are not large relative to
random sampling errors in S” (where S represents the sample covariance
matrix) (Browne, 1984, p. 66).  See also Satorra (1989), Steiger et al.  (1985),
and Browne and Cudeck (1993) for additional details on this issue.  However,
it is difficult to know when the systematic errors or the misspecifications are
mild enough to justify this assumption.   Furthermore, these are asymptotic
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or large sample results so it is unclear as to how large N must practically be
for this approximation to hold.

A number of simulation studies examined the empirical sampling
distributions of T for correct model specification.  A typical finding is that the
value of T tends to be higher than it should be for a chi-square variable at
smaller sample sizes, but that this bias disappears as the sample size grows
(e.g., Anderson & Gerbing, 1984; Boomsma, 1982; Curran, West, & Finch,
1996; Hu, Bentler, & Kano, 1992).  A smaller number of studies have
examined the T statistic under various misspecified models, and results have
indicated similar patterns of findings to those under proper model
specification (e.g., Curran et al., 1996; Fan, Thompson, & Wang, 1999).
Finally, Rigdon (1998) presented the only published study of which we are
aware that provides an example of the empirical distribution of T for the
uncorrelated variable model that is part of baseline fit indices.  Although his
results indicated that the distribution of T for the uncorrelated variable model
may not follow the noncentral chi-square distribution, the external validity of
this finding is limited given the consideration of a single model and a single
sample size.

The small amount of existing research of the empirical distribution of T
under proper and improper specification tends to be hampered by two key
limitations.  The first is that, with few exceptions, researchers only compare
the means of the empirical distributions of T to that expected for the
corresponding population distributions.  Rarely are measures of dispersion
compared, and this could be critical when using the noncentral chi-square to
compute confidence intervals.  Second, studies of misspecified models have
not considered severe misspecifications, the condition under which T is least
likely to follow the noncentral distribution.  More specifically, almost nothing
is known about the distribution of T for the uncorrelated variable model that is
commonly used in the computation of many baseline fit indices (e.g., TLI, IFI,
or CFI).  Thus the validity of treating the test statistic T as if it follows a central
or noncentral chi-square distribution in situations commonly encountered in
applied research is open to question.  The purpose of our article is to empirically
evaluate the validity of employing this distribution in practice.

Proposed Research Hypotheses

We use extensive Monte Carlo computer simulations to empirically
evaluate hypotheses based on statistical theory and prior research.  To
isolate the impact of misspecification and sample size from problems caused
by the distribution of variables, all observed variables are generated from
multinormal distributions.  Our three key research hypotheses are as follows.
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1.  Drawing on Browne (1984) and others, we propose that under proper
model specification, the test statistic T will follow a central chi-square
distribution with mean df and variance 2df, but only at moderate to large
sample sizes; T will follow some other (unknown) distribution at smaller
sample sizes.

2.  Drawing on Steiger et al.  (1985) and others, we propose that under
small to moderate model misspecification, the test statistic T will follow a
noncentral chi-square distribution with noncentrality parameter �, mean df
+ � and variance 2df + 4�.  However, this will only hold at moderate to large
sample sizes; T will follow some other (unknown) distribution at smaller
sample sizes.

3.  Also drawing on Steiger et al.  (1985) and others, we propose that under
severe model misspecification, especially the uncorrelated variable model,
the test statistic T will not follow either the central nor the noncentral chi-
square distribution, and this will occur across all sample sizes; T will follow
some other (unknown) distribution regardless of sample size.

To maximize the external validity of our study, we utilized 15 separate
specifications of three general model types that represent a broad sampling
of common models.  Further, we evaluate these models using sample sizes
ranging from very small to very large to further understand these issues
across a spectrum of applied research settings.  Finally, we test both the
mean and the variance of the empirical distribution of T relative to the
population distributions to evaluate the implications of potential bias in the
calculation of both point estimates and confidence intervals.  Taken together,
we believe our methodological design and analytic strategy provide a
rigorous empirical evaluation of our proposed research hypotheses.

Technical Background

Prior to presenting the design of the simulation study, we will briefly
review some basic technical issues to provide background context and to
concretely define terms and clarify notation.

The Central and Noncentral Chi-Square Distribution.  The central
chi-square (�2) distribution is a common distribution in inferential statistics.
The central �2 distribution is defined by a single parameter df, or degrees
of freedom, and is a special case of the broader family of gamma
distributions (Freund, 1992).   We can express a random variable that is
distributed as a central chi-square as the sum of df squared random normal
deviates z such that
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A less widely utilized variant of the central �2 distribution is the noncentral chi-
square distribution (commonly denoted ��2).  Whereas the central �2 is the sum
of one or more squared normal deviates, the noncentral ��2 is the sum of one
or more squared normal deviates plus a constant c such that
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The noncentral chi-square is defined by two parameters, df and the
noncentrality parameter � (where � = �c2

j
).  The mean of ��2

df
 is df + � and

the variance is 2df + 4�.
Structural Equation Modeling.  Within the SEM framework, �, the

population covariance matrix of the observed variables, equals an implied
covariance matrix, �(�) where the values of � represent the regression
coefficients, factor loadings, and covariance matrices of the specified model
[e.g., for further details see Chapter 2 of Bollen, 1989, for notation, and
Chapter 8 for �(�)].  This covariance structure is fitted to the observed
covariance matrix S by means of minimizing a given fit function F[S, �(�)]
with respect to �.   This minimization results in $� which is a vector of model
parameter estimates, and $ $� �= �d i  which is the covariance structure implied
by the parameter estimates.  The goal of the estimation procedure is to select
values for $�  that minimize the difference between S and $� .  The
discrepancy function F[S,�(�)] is thus a scalar value that ranges from 0 to
∞  and is equal to 0 when S = � $�d i .  There are several discrepancy functions
from which to choose (see, e.g., Browne, 1984), but the most widely used in
applied research is maximum likelihood estimation.

Maximum Likelihood Estimation.  The maximum likelihood fitting
function is:

(3) $ $ $F tr S S pML = + − −−log| ( )| [ ( )] log| |� �� �1

where p represents the total number of observed measured variables.
Assuming no excessive kurtosis, adequate sample size, and proper model
specification, ML parameter estimates are asymptotically unbiased,
consistent, and efficient (see, e.g., Bollen, 1989).  Further, a test statistic is



P. Curran, K. Bollen, P. Paxton, J. Kirby, and F. Chen

8 MULTIVARIATE BEHAVIORAL RESEARCH

(4) T F NML= −$ ( )1

which, given the above assumptions, is asymptotically distributed as a central
chi-square with df = 1/2(p)(p + 1)-t where t is the number of parameters to
be estimated.  This test statistic and corresponding df  permit tests of the null
hypothesis H

0
: � = �(�).  Under the assumptions of no excessive kurtosis,

adequate sample size, and improper model specification (but not severely
so), the test statistic T instead follows a noncentral chi-square distribution
defined by df and noncentrality parameter �.  The noncentrality parameter
� provides a basis for evaluating the degree of model misfit.

Method

Given space limitations, we provide a general summary of the simulation
design and methods here.  A comprehensive presentation of this information
is available in Paxton, Curran, Bollen, Kirby and Chen (2001).  As will be
described below, we generated two sets of data to test our hypotheses.  The
first data set was comprised of the T statistics estimated from the SEM
simulations across a variety of experimental conditions.  The second data set
was comprised of random draws from a known central and noncentral chi-
square distribution, the generation of which was entirely independent of the
SEM simulations.  A key component of our analytic strategy is to compare
the distribution of the simulated T statistics with (a) the population moments
of the known underlying distribution, and (b) the sample moments of the
variates randomly drawn from the same known underlying distribution.  This
second comparison was necessary given that the parametric tests comparing
the T test statistics to the underlying population distribution parameters
assumes normality, and we know a priori that the T statistics will not follow
a normal distribution.  We thus combine parametric and nonparametric
comparisons to allow for a comprehensive evaluation of the proposed
research hypotheses.

We will now describe the selection of the target models and the method
used to generate the two simulated data sets.

Model Types and Experimental Conditions

Drawing both on a review of the social science literature over the
previous five years and on our combined modeling experience, we selected
three general model types for study: Model 1 (see Figure 1) contains nine
measured variables and three latent factors with three to four indicators per
factor, Model 2 (see Figure 2) has 15 measured variables and three latent
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factors with five to six indicators per factor, and Model 3 (see Figure 3)
consists of 13 measured variables with the same form as Model 1 but with
the addition of four measured and correlated exogenous variables.  We
designed these models to represent features that are commonly encountered
in social science research.   Furthermore, for each model we use one correct
and four incorrect specifications, resulting in a total of 15 target models.

Model 1.  Specification 1 is a properly specified model such that the
estimated model matches the population model; Specification 2 omits the
complex loading linking item 7 with factor 2; Specification 3 additionally
omits the complex loading linking item 6 with factor 3; Specification 4
additionally removes the complex loading linking item 4 with factor 1; and
finally, Specification 5 is the standard uncorrelated variables model where
variances are estimated but all covariances are fixed at zero.

Figure 1
Target Population Model 1
Note: numbers shown are unstandardized parameter values with standardized values in
parenthesis; solid and dashed lines represent the population model structure, and dashed
lines represent omitted parameters under model misspecification.
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Model 2.  Specification 1 is properly specified; Specification 2 omits the
complex loading linking item 11 with factor 2; Specification 3 additionally
omits the complex loading linking item 10 with factor 3; Specification 4
additionally removes the complex loading linking item 6 with factor 1; and
Specification 5 is the standard uncorrelated variables model.

Model 3.  Specification 1 is properly specified; Specification 2 jointly
omits the set of three complex factor loadings (item 7 with factor 2, item 6
with factor 3, and item 4 with factor 1); Specification 3 jointly omits the set
of four regression parameters (factor 2 on predictor 1, factor 3 on predictor
1, factor 2 on predictor 3, and factor 3 on predictor 3); Specification 4 jointly
combines the omissions of Specifications 2 and 3 (omission of the set of three
factor loadings and the set of four regression parameters); and Specification
5 is the standard uncorrelated variables model.

Model Parameterization.  For all three model types, parameter values
were carefully selected to result in a range of effect sizes (e.g.,
communalities and R2 values ranging from 49% to 72%), and for the
misspecified conditions to lead to both a wide range of power to detect the
misspecifications (e.g., power ranging from .07 to 1.0 across all sample
sizes) and a range of bias in parameter estimates (e.g., absolute bias ranging
from 0 to 37%).  See Paxton et al.  (2001) for a comprehensive description
of our model parameterization.  We believe this parameterization reflects
values commonly encountered in applied research and that the omission of

Figure 2
Target Population Model 2
Note: numbers shown are unstandardized parameter values with standardized values in
parenthesis; solid and dashed lines represent the population model structure, and dashed
lines represent omitted parameters under model misspecification.
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one or more parameters would result in meaningful impacts on parameter
estimation and overall model fit.

Sample Size.  We chose seven sample sizes to represent those
commonly encountered in applied research and these range from very small
to large: 50, 75, 100, 200, 400, 800, and 1000.

Data Generation and Estimation.  We used the simulation feature in
Version 5 of EQS (Bentler, 1995) to generate the data and EQS’s maximum
likelihood estimation to estimate the model.  The data generation and
estimation procedure was comprised of three basic steps.  First, the
population covariance matrix was computed to correspond to the
parameterization of each of the three target models.  Second, raw data were
randomly generated from a multivariate normal distribution to correspond to
the structure of the population covariance matrix.  Finally, the particular
specification within each target model was fit to the simulated raw data using

Figure 3
Target Population Model 3
Note: numbers shown are unstandardized parameter values with standardized values in
parenthesis; solid and dashed lines represent the population model structure, and dashed
lines represent omitted parameters under model misspecification.
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ML estimation.  We used the population values for each parameter as initial
start values, and we allowed a maximum of 100 iterations to achieve
convergence.  This method permitted  us to fit a model that differed in
structure from the model that generated the data .  See Bentler (1995) for
further details about EQS data generation procedures.

Distribution.  We generated data from a multivariate normal
distribution.

Replications.  There were a total of 105 experimental conditions (three
models, five specifications, and seven sample sizes), and we generated up to
500 replications for each condition.

Convergence.  We eliminated any replication that failed to converge
within 100 iterations, or did converge but resulted in an out of bounds
parameter estimate (e.g., “Heywood Case”) or a linear dependency among
parameters.  To maintain 500 replications per condition, we generated an
initial set of up to 650 replications.  We then fit the models to the generated
data and selected the first 500 proper solutions, or selected as many proper
solutions as existed when the total number of replications was reached.  This
resulted in 500 proper solutions for all properly specified and most
misspecified experimental conditions, but there were several misspecified
conditions that resulted in fewer than 500 proper solutions.  Of the 105
experimental conditions, 82 (78%) contained 500 replications and 23 (22%)
contained fewer than 500 replications.  Of those 23 conditions containing
fewer than 500 replications, the number of replications ranged from 443 to
499 with a median of 492, and the smallest number of 443 replications was
for Model 3, Specification 4, N = 50.   Whether improper solutions should be
excluded or removed from the simulation design is a debatable issue.   We
chose to exclude improper solutions to mimic the lowered chance of results
with improper solutions being reported.   Fortunately, no differences were
found in any results when including or excluding improper solutions (see
Anderson & Gerbing, 1984, for further discussion of this topic).  Elsewhere
we have examined the causes and consequences of improper solutions in
more detail ( Chen, Bollen, Paxton, Curran, & Kirby, 2001).

Outcome Measures.  The outcome measures of key interest here is the
likelihood ratio test statistic T (commonly referred to as the “model �2”)
estimated for each replicated model and the corresponding degrees of
freedom for the estimated model.   We obtained these values directly from
EQS in which the T statistic is computed as the product of the minimum of
the ML fit function and N - 1, and the df is computed as the difference
between the total number of unique variances and covariances minus the
total number of estimated parameters.
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Simulated Data Drawn from the Noncentral Chi-Square Distribution

Data Generation.  A key research question posed here is whether the
model test statistics T computed from the simulated structural equation
models follow the expected underlying central or noncentral chi-square
distribution.  As part of the empirical evaluation of this question, we generated
additional simulated data drawn directly from the known population chi-
square distributions using Version 7.0 of the SAS data system (SAS Inc.,
1999).  As mentioned earlier, we did this to allow for nonparametric tests that
do not assume that the test statistics are normally distributed, a condition that
likely does not hold here.  We generated random variates from expected
population distributions using a combination of the gamma and normal
distribution functions in SAS.  When � was zero, this resulted in random draws
from the central chi-square distribution; when � was greater than zero, this
resulted in random draws from the noncentral chi-square distribution.

Experimental Conditions.  The mean and variance of the central and
noncentral chi-square distributions vary as a function of degrees of freedom
and the noncentrality parameter �.  Thus, we drew 105 separate samples
from 105 different population distributions, one corresponding to each SEM
experimental condition under study.

Replications.   To achieve stable sample estimates of the underlying
population distributions, we made 5000 draws for each of the 105
experimental conditions.  Thus, all means and variances reported below are
based on 5000 independent draws for each experimental condition.

Summary

In sum, we generated two complete sets of data to empirically evaluate
our proposed research hypotheses.  The first set was comprised of up to 500
test statistics T (one drawn from each SEM replication) estimated within
each of 105 experimental conditions; we refer to these data as the SEM
simulations.  The second set was comprised of 5000 random draws from
105 different population central (for properly specified models) and
noncentral (for misspecified models) chi-square distributions, one
distribution corresponding to each SEM experimental condition under study;
we refer to these data as the chi-square simulations.  The core of our data
analytic strategy is (a) the parametric comparison of the sample means and
variances of the T statistics from the SEM simulations with the known
population counterparts, and (b) the nonparametric comparison of the means
and variances of the T statistics from the SEM simulations with the random
chi-square variates drawn from the known population distributions.
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Results

We empirically evaluated the proposed research hypotheses using three
related methods.  First, we computed one-sample z-tests of the sample mean
of the SEM test statistics to the corresponding population mean with known
population variance, and we used one-sample �2  tests of the sample variance
of the SEM test statistics to the corresponding population variance.  These
are parametric tests of the null hypothesis that the sample mean and variance
of the SEM test statistics equals the population mean and variance of the
expected underlying distributions, and both tests assume that the population
is normally distributed (Kanji, 1993).  Second, because of the assumption of
normality associated with the parametric tests, a condition that is not
expected to hold here,2 we used the nonparametric Wilcoxon Rank-Sum test
of means and Siegel-Tukey test of variances to compare the empirical
distributions of the SEM statistics with the corresponding empirical
distributions from the chi-square simulations.  The Wilcoxon Rank-Sum test
evaluates the hypothesis that two random samples came from two
populations with the same mean, and the Siegel-Tukey test evaluates the
hypothesis that two random samples came from two populations with the
same variance.  Both of these nonparametric tests only assume that the two
populations have continuous frequency distributions (Kanji, 1993, p. 86).
Finally, to augment the parametric and nonparametric statistical tests, we
computed effect sizes based on absolute relative bias (observed value minus
expected value divided by expected value) and considered values of 5% or
greater to indicate meaningful bias.  In sum, we utilized parametric tests,
nonparametric tests, and measures of effect size to evaluate our research
hypotheses.

Tests of Central Tendency

One Sample z-Test.  Table 1 presents all summary statistics and the
results of the parametric (z) and nonparametric (Wilcoxon) tests for the
means of the population distribution, the SEM simulations, and the chi-square
simulations.  For each of the 105 experimental conditions, we compared the
sample mean of the SEM test statistic T to the mean of the population

2 We do not expect the assumption of normality to hold here because the T statistics are
expected to follow a central or noncentral chi-square distribution which itself is not normal,
at least under the conditions studied here.  However, 103 of the 105 measures of univariate
kurtosis of the sample distributions of T were below 1.0, and the largest value of kurtosis
was 1.1 (Model 3, Specification 1, N = 100).  Based on these empirical results, it does not
appear that the assumption of normality is excessively violated here.
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distribution that it is expected to follow given a known population variance.
To control for inflated familywise error rate stemming from the 105 mean
comparisons, we set the per comparison rate to � = .001 to maintain a
familywise rate of approximately � = .10.  Using this significance criterion,3 a
rather clear pattern of results emerges across all conditions: the mean of the
SEM test statistics systematically overestimated the mean of the expected
underlying population distributions at the smaller sample sizes across all three
model types.  For Specifications 1 through 4 (the one proper and three
improper specifications) of Model 1, this tended to occur at sample sizes of
100 and below, and for Specifications 1 through 4 of Models 2 and 3, this
tended to occur at sample sizes of 200 and below.  Interestingly, there was
little evidence of bias in the mean estimate for Specification 5 (the
uncorrelated variables model) for Model 1, and there was modest
overestimation for Specification 5 of Models 2 and 3, but only at the smallest
sample size of 50.

Relative Bias.  To further understand these relations in terms of effect
sizes, relative bias was computed for all conditions.  For Model 1, significant
relative bias in the means (e.g., greater than 5%) was observed at sample
sizes of N = 100 and below for the proper specification, at N = 50 for the
improper specifications, and no bias was observed for the uncorrelated
variables null model.  For Model 2, the significant relative bias in the means
was observed for both the proper and improper specifications at N = 100 and
below, and again there was no appreciable bias for the null model.  This
pattern was also found for Model 3 but only at sample sizes of N = 75 and
below.  In general, the experimental conditions associated with significant
relative bias closely corresponded with those conditions identified using the
parametric z-test, but the relative bias results were somewhat more
conservative compared to the parametric results.  Thus, based on the 5%
relative bias criterion, the means were systematically overestimated at the
smaller sample sizes for the proper and improper model specifications, and
the mean for the null model was unbiased across all sample sizes.

Wilcoxon Rank-Sum Test.  The Wilcoxon Rank Sum test compared the
mean of the SEM test statistics with the mean of the 5000 random variates
drawn from the corresponding population distribution that the test statistics
are expected to follow.  Again, we used this method of comparison given the

3 It could be argued that there are actually 210 total tests (e.g., 105 tests of mean and 105
tests of variance), or even 420 total tests given the inclusion of the nonparametric mean and
variance comparisons.  We chose to correct for 105 tests because these were the total
number of comparisons that focused on one particular parameter within one particular
statistical test.  However, we present exact p-values for each individual test so that the
reader may make any correction they so desire.
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likely failure of the T statistics to meet the assumption of normality required
by the z-test.  As expected, the nonparametric tests tended to demonstrate
lower power relative to the parametric counterparts.  However, nearly
without exception, every condition for which a meaningful difference results
using the parametric tests, this same condition is identified in the
nonparametric tests (based on the corrected � = .001).

Summary of Tests of Central Tendency.  Based on the corrected
significance levels of the parametric and nonparametric tests as well as the
magnitude of relative bias, we concluded that the mean of the SEM test
statistics consistently overestimated the mean of the expected underlying
population distribution for Specifications 1 through 4 for all three model types
(the properly specified and three misspecified conditions), but only at the
smallest sample sizes (e.g., 100 to 200 and below).  At samples above 200,
we found no appreciable bias across any condition.  Further, we found no
significant overestimation of the population mean for Specification 5 (the
uncorrelated variables model) for any model type at any sample size.

Tests of Dispersion

One Sample �2-Test.  Table 2 presents all summary statistics, parametric
(�2) and nonparametric (Siegel-Tukey) tests, and relative bias for the variances
of the population distribution, the SEM simulations, and the chi-square
simulations.  Again using a per comparison rate of � = .001 to control for multiple
testing, the variance of the T statistics for Model 1 only significantly varied from
the expected population value at the smallest sample size for the properly
specified and the most minor improper specification (Specifications 1 and 2); in
contrast, the variance was significantly overestimated across all sample sizes
for the uncorrelated variable baseline model (Specification 5).  A similar pattern
of results was found for both Model 2 and Model 3.  Thus, although there was
evidence of significant overestimation of the sample variance of T relative to the
expected underlying distribution at N = 50 for the proper and minor improper
specifications, the variance of the uncorrelated variable baseline model was
significantly overestimated at every sample size for every model type even using
the adjusted � = .001 per comparison error rate.

Relative Bias.  Unlike the tests of central tendency that indicated a
larger number of biased conditions based on the parametric test results
compared to the relative bias results, for the tests of dispersion a larger
number of biased conditions were identified based upon the relative bias
results compared to the parametric test results.  For Specifications 1 through
4 for all three model types, the variance of the SEM test statistics
overestimated the expected variance of the population distributions at the
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smaller sample sizes.  Relative bias exceeded 5% at samples of N = 100
and below for Model 1,4 at about N = 200 and below for Model 2, and at
about N = 75 and below for Model 3.  Indeed, at the smallest sample size
of N = 50, relative bias ranged from 12% up to 39% indicating substantial
overestimation of the corresponding population parameter.5 Of key interest
is the finding that for Specification 5 (the uncorrelated variables model), the
sample variance of the SEM test statistics significantly overestimated the
population counterpart at every sample size across all three model types with
relative bias ranging from a minimum of 32% to a remarkable 164%.  Indeed,
for Model 2, bias was 120% or higher across all sample sizes.  Thus, for the
uncorrelated variables model, there was not one instance in which the sample
estimates of the SEM test statistics showed evidence of following the
dispersion of the expected noncentral chi-square population distribution.

Siegel-Tukey Test.  As with the z-test of the means, the parametric �2

test of the variances also assumes normality thus necessitating the use of the
nonparametric equivalents.  The Siegel-Tukey nonparametric test of
variance (Kanji, 1993, p. 87) compared the variance of the SEM test
statistics and the variance of the N = 5000 random variates drawn from the
expected underlying population distribution, and this test only assumes that
the population distributions are continuous.  In general, as was found with the
Wilcoxon Rank-Sum test of central tendency, the results of the Siegel-Tukey
test of dispersion closely corresponded with those of the �2 test, although
again there is some evidence of the lower power of the nonparametric test.
In general, the Siegel-Tukey results indicated overestimation of the variance
at the smallest sample size for nearly all of the properly and improperly
specified models, and indicated significant overestimation at all sample sizes
for all three model types for the uncorrelated variable baseline model.

Summary of Tests of Dispersion.  Results from the parametric and
nonparametric tests in combination with the magnitude of the absolute
relative bias lead us to two key patterns of results.   First, for Specifications

4 An odd pattern of findings was evident for the first four Specifications of Model 1 at N = 75
in which the estimated variance of the SEM test statistics was smaller at N = 75 compared
to the N = 50 and N = 100 conditions.   We suspected that this was an error in data
generation, but extensive exploration of these conditions coupled with the generation of
additional data revealed no errors.  We found that there is much sampling variability in the
estimation of the variance of the SEM test statistics at the smaller sample sizes, and the
somewhat odd pattern of results for this one particular condition is most likely attributable
to this random variability.
5 One interesting finding to note is that at N = 400 and N = 800 of Specification 3 of Model
3, the relative bias was actually a negative value (both approximately -18%).  This finding
was not predicted, but also was not consistent across model or specification.  It is thus not
immediately clear what this limited evidence of underestimation of variance implies, if
anything at all.
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1 through 4 for all three model types (e.g., the one proper and three improper
specifications), the variance of the SEM test statistics consistently
overestimated the corresponding variance of the expected underlying
central and noncentral chi-square population distribution at smaller sample
sizes.  Second, for Specification 5 (the uncorrelated variables baseline
model), the expected population variance was significantly overestimated
for every model type at every sample size under study.  The smallest bias
found was 32%, but for most conditions bias ranged between 50% and 150%.
Consistent with statistical theory, in terms of dispersion the SEM test
statistics are not following the expected noncentral chi-square distributions
at smaller sample sizes for the properly specified or moderately misspecified
conditions, nor at any sample size for the severely misspecified uncorrelated
variables model.

Potential Implications of Findings

Our simulation results demonstrate that the likelihood ratio test statistic
T does follow the expected noncentral chi-square distribution under some
experimental conditions, but does not follow this distribution under others.
As we discussed in the introduction, the failure of the test statistic to follow
the expected underlying distribution may threaten the validity of a variety of
measures of fit and methods of power estimation that rely upon the sample
test statistic T.  A comprehensive examination of the various ways in which
these measures and methods may be adversely affected is beyond the scope
of the current article, and we are examining these issues in greater detail
elsewhere.  However, we will briefly examine the implications of our
simulation results for a single measure that relies directly on the condition
that the test statistic follows a noncentral chi-square distribution, namely the
computation of confidence intervals for the RMSEA.

RMSEA Confidence Intervals.  The RMSEA was originally proposed
by Steiger and Lind (1980) and was further developed by Browne and
Cudeck (1993).  The point estimate of the RMSEA is given as

(5) RMSEA
T df

df N
= −

−( )1

where T and df represent the likelihood ratio test statistic and degrees-of-
freedom from the hypothesized model, respectively, and N represents
sample size.  The numerator thus represents the sample estimate of the
noncentrality parameter � and it is an estimate of the degree of model
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misspecification.  A unique characteristic of the RMSEA is that, under the
assumptions that lead the test statistic to follow a noncentral chi-square
distribution, the sampling distribution is known.  This allows for the
computation of confidence intervals (CIs) around the point estimate.  The
CIs for the RMSEA are computed using appropriate upper and lower
percentile limits of a noncentral chi-square distribution for given degrees-of-
freedom and noncentrality parameter � (see Equation 14, Browne &
Cudeck, 1993).  The CIs are asymmetric around the point estimate and range
from zero to positive infinity.

A key condition for the computation of these CIs is that the test statistic
T from the tested model follows a noncentral chi-square distribution.  Our
simulation results suggest that T does indeed follow a noncentral chi-square
distribution under some experimental conditions, but not under others.  To
briefly examine the potential impact of these findings on the computation of
the CIs for the RMSEA, we compared the percent of sample CIs from the
SEM simulations that covered the known population RMSEA value for two
conditions under which we found T to follow a noncentral chi-square
distribution and for two conditions under which it did not.  Under conditions
in which the test statistic follows the population noncentral chi-square
distribution, we expect that approximately 90% of the 90% CIs would cover
the known population value of the RMSEA.

Recall that the simulation results indicated that the likelihood ratio test
statistic T closely followed the noncentral chi-square distribution in terms of
both central tendency and dispersion for the moderately misspecified Model
3 (the full SEM), Specification 2 (omitting three cross loadings) at N = 400
and N = 800.  For Specification 2 of Model 3, 91% and 90% of the sample
90% CIs covered the population RMSEA value for N = 400 and N = 800,
respectively.  Thus, under conditions in which T does follow the expected
underlying distribution, the 90% CIs appear to be covering the population
RMSEA at the expected rate.  In contrast, recall that the simulated test
statistics failed to follow a noncentral chi-square distribution for the same
Model 3, Specification 2 at N = 50 and N = 75 in terms of both central
tendency and dispersion.  Here, 79% and 86% of the sample 90% CIs
covered the population RMSEA value for N = 50 and N = 75, respectively.
Thus, under experimental conditions in which T does not follow the expected
noncentral chi-square distribution, the computed CIs based on this underlying
distribution are not covering the population parameter at the expected rate.

Summary.  This brief exploration of the RMSEA CIs suggests that the
departure of T from the expected noncentral chi-square distribution may
indeed exert a negative influence on other measures of fit based on T, at least
under the conditions studied here.  The RMSEA confidence intervals are
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only one of many measures of fit and methods of power estimation that might
be influenced by the departures of T from the expected underlying
distribution.  Future research is necessary to fully understand the
implications of these findings across a much broader range of outcomes.

Discussion

A central goal of our article was to empirically evaluate the degree to
which the SEM likelihood ratio test statistic T follows a central chi-square
distribution under proper model specification, and a noncentral chi-square
distribution under improper model specification.  This is a critically important
issue to better understand given the reliance on the test statistic following this
known distribution across many areas of SEM applications and research,
particularly in terms of fit indices and statistical power.  Drawing on
statistical theory and prior research, we proposed three research hypotheses
that we empirically evaluated using data generated from Monte Carlo
simulations.  Experimental conditions included 15 different models varying
both in complexity and in degree of misspecification, as well as a range of
sample sizes falling between 50 and 1000.  Though we feel that we exercised
considerable care in the selection of our experimental conditions, we of
course need to keep in mind the usual limitations that must accompany any
Monte Carlo simulation design.  That is, we cannot be certain about the
degree to which we can extrapolate from our conditions to other modeling
conditions; however, given the close correspondence of our findings to what
was predicted from statistical theory, we feel confident that these findings
do generalize across many research settings commonly encountered in
practice.  Keeping these caveats in mind, we find several interesting results.

Proposed Research Hypotheses

Hypothesis 1.  Our first hypothesis predicted that for properly specified
models, the SEM test statistic T would follow a central chi-square distribution
with mean df and variance 2df, but only at moderate to large sample sizes.
Consistent with both statistical theory (e.g., Browne, 1984) and prior research
findings (e.g., Curran et al., 1996; Hu et al., 1992), our results supported this
hypothesis.  In terms of bias in the central tendency of the distribution, the mean
of the sample estimates of T consistently overestimated the mean of the
expected  population distribution at the smaller sample sizes.  This bias in the
mean became negligible at sample sizes of N = 200 and higher.  A similar
pattern of bias was found in terms of the dispersion of the distribution such that
the variance of the sample estimates of T significantly overestimated the



P. Curran, K. Bollen, P. Paxton, J. Kirby, and F. Chen

MULTIVARIATE BEHAVIORAL RESEARCH 31

variance of the expected population distribution at the smaller sample sizes for
all three properly specified models.  Although these results replicate several
previous studies of similar research questions, the vast majority of these
studies only examined the distribution of T in terms of central tendency.  We
extend these findings by demonstrating important departures in the distribution
of T in terms of variance as well.  This finding has important potential
implications for the computation of confidence intervals, a point that we will
discuss further below.

Hypothesis 2.  Our second hypothesis was that under small to moderate
model misspecification, the test statistic T would follow a noncentral chi-
square distribution with noncentrality parameter �, mean df + � and variance
2df + 4�, but this was expected to only hold at moderate to large samples.
Again consistent with both statistical theory (e.g., Steiger et al., 1985) and
prior research (e.g., Curran et al., 1996; Fan et al., 1999), our results clearly
demonstrated that for models that were misspecified, but not severely so, the
distribution of T did indeed follow the expected underlying noncentral chi-
square distribution.  However, this only held for moderate to large samples,
and T did not follow a noncentral chi-square distribution at smaller sample
sizes.  As was found for the properly specified conditions, both the mean and
variance of the empirical distribution of T showed significant bias relative to
the expected population distribution, but the magnitude of bias was larger for
the variance compared to the mean of T.

Hypothesis 3.  Our third and final hypothesis was that under severe
model misspecification, especially the uncorrelated variable model, the test
statistic T would follow neither the central nor the noncentral chi-square
distribution, and we expected this to occur across all sample sizes.
Consistent with both statistical theory (e.g., Steiger et al., 1985) and some
limited prior research (e.g., Rigdon, 1998), our findings indicated that the
empirical distribution of the test statistic T did not follow the expected
noncentral chi-square distribution for any model at any sample size.
However, there was an intriguing aspect about this pattern of bias.  When
comparing the mean of the empirical distribution of T to the expected
population counterpart, there was no evidence of bias found based on the
parametric, nonparametric, or effect size estimates.  Again, prior simulation
studies have typically only considered departures of T from the expected
distribution in terms of central tendency.  When comparing the variance of
the empirical distribution of T to the expected population counterpart, there
was significant bias evident across all models and all sample sizes.  Indeed,
relative bias in the variance of T ranged from 32% to 164% with a median
bias of 69% across all sample sizes and model types.  Thus, if bias were only
considered in terms of central tendency, it would be concluded that T did not
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depart from the expected underlying distribution.  However, when measuring
bias in terms of dispersion, there were pervasive and significant departures
of T from the expected underlying distribution across all modeling conditions.

Implications

We briefly explored the potential implications of these findings on a
single measure of fit and demonstrated that the failure of T to follow the
expected underlying distribution may indeed have negative consequences for
other applications in SEM.  Other areas in SEM that might be adversely
affected include the computation of many fit indices and corresponding
confidence intervals, as well as several power estimation procedures.  For
example, many relative fit indices incorporate the test statistic from the
uncorrelated variables baseline model in the computation of the index, and
are based on the condition that T follows a noncentral chi-square distribution
(e.g., RNI, CFI).6  However, our results provide strong evidence that this
condition is not valid under any condition studied here.  The variance of the
T statistic for the null baseline model departs from that of the corresponding
expected noncentral chi-square distribution across every sample size
considered, although the mean of T showed only negligible bias.  From one
perspective, the lack of strong bias in the mean suggests that the point
estimates of these relative fit indices might not greatly suffer as long as the
sample is not small.  On the other hand, the relative fit indices are nonlinear
functions of the test statistics for the uncorrelated baseline and the
hypothesized structure and this nonlinear structure complicates the
assessment of the potential impact of the bias.  Further, one goal has been
to work toward the development of confidence intervals around the point
estimates of these relative fit indices (e.g., Bentler, 1990).  So, although the
lack of bias in the mean of T may allow for appropriate point estimation, the
substantial bias in the variance of T may have a much greater impact on the
ability to compute corresponding confidence intervals.  Further research is
needed to more fully address these implications.

In contrast to the relative fit indices, the computation of the RMSEA does
not involve a baseline chi-square test statistic.  Since the RMSEA only
assumes a noncentral chi-square distribution of T for the hypothesized model,
our results imply that the greatest possible bias will occur in the smaller
sample sizes where the test statistic does not appear to follow the noncentral
chi-square distribution.  An important finding here is that at sample sizes of

6 An exception is the IFI where Bollen (1989, p. 305) suggests that the test statistic for the
baseline model will  not always follow a noncentral chi-square distribution and thus uses
the baseline chi-square rather than the noncentrality estimate in the IFI calculation.
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around N = 100 and above, the mean of the T statistic was not biased even
under the most severe misspecification of a model that might be considered
theoretically tenable in practice.  However, a significant advantage of the
RMSEA is the direct calculation of corresponding confidence intervals (e.g.,
Browne & Cudeck, 1993; Steiger & Lind, 1980).  Our results indicate that
the variance of T closely corresponds to that of the underlying noncentral chi-
square distribution, but only at sample sizes above around N = 200.  Thus, we
might expect that both the point estimates and the confidence intervals of the
RMSEA are well validated for use in practical research applications given
moderate to large sample sizes, but may be biased at smaller sample sizes.
Our ongoing work is directly exploring these very issues with regard to point
estimation, Type I error, and power of the RMSEA.

Finally, our results indicate that power estimation procedures that
depend on the condition that T follows a noncentral chi-square distribution
require special care when N is small.  It was beyond the scope of this article
to examine the power of the likelihood ratio test statistic to reject an incorrect
model, but our findings imply that the accuracy of methods such as those
proposed by Satorra and Saris (1985), MacCallum et al. (1996), and Muthén
and Curran (1997) may degrade as a function of decreasing sample size and
increasing model misspecification.  Further empirical work is needed to
better understand the conditions under which these power estimates may
become inaccurate.

It is important to stress that, although there is strong evidence that there
are key experimental conditions under which T does not follow a noncentral
chi-square distribution, given the scope of this article we have not explicitly
considered the robustness of T not following this underlying distribution on
the baseline fit indices, stand-alone measures such as the RMSEA, or power
estimation procedures.  It is possible that even though the test statistic
significantly departs from the noncentral chi-square, it may very well be a
good enough approximation for practical utilization.  Our study provides
important insights into this potential problem in terms of the distribution of T,
but caution dictates that additional research is needed that focuses explicitly
on each of these particular applications that utilize T.

Limitations and Future Directions

As we raised earlier, an inherent limitation to any computer simulation
study is that it is possible that the resultant findings can not be generalized
beyond the experimental conditions under study.  We endorse this as a
potential limitation, but we also took great care in designing our experimental
conditions to reflect a wide variety of sample sizes and model types
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commonly encountered in applied behavioral research.   Given this, findings
may differ with variations in factors such as model complexity, model
parameterization, and degree of misspecification, and future research will do
well to further explore these issues.  A related limitation of our study is that
we examined only data generated from a multivariate normal distribution.
Prior research has indicated that it is important to also consider non-normally
distributed data (e.g., Muthén & Kaplan, 1985, 1992), but an examination of
this was beyond the scope of the current manuscript.  Given that non-normal
distributions are a significant problem in social science research (e.g.,
Micceri, 1989), much can be learned about the distribution of T under
combinations of sample size, model specification, and multivariate
distribution.  These limitations should warrant some caution in over
generalizing from our results, but we feel our findings provide an important
first glimpse into the empirical distribution of T and may serve as a starting
point for future research in this important area of structural equation
modeling.
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