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A key advantage of the root mean square error of approximation (RMSEA) is that under
certain assumptions, the sample estimate has a known sampling distribution that allows
for the computation of confidence intervals. However, little is known about the finite
sampling behaviors of this measure under violations of these ideal asymptotic condi-
tions. This information is critical for developing optimal criteria for using the RMSEA to
evaluate model fit in practice. Using data generated from a computer simulation study,
the authors empirically tested a set of theoretically generated research hypotheses about
the sampling characteristics of the RMSEA under conditions commonly encountered in
applied social science research. The results suggest that both the sample estimates and
confidence intervals are accurate for sample sizes ofn = 200and higher, but caution is
warranted in the use of these measures at smaller sample sizes, at least for the types of
models considered here.
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Assessingmodel fit is oneof themost controversial issues in structural
equation modeling (SEM), and a long and rich line of research has
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addressed this challenging problem (e.g., Bollen and Long 1993;
Jöreskog 1993; Kaplan 1990; MacCallum 1990). One measure of fit
that has become increasingly used in SEM analysis is the root mean
squared error of approximation, or RMSEA. Although the asymp-
totic statistical properties of the sample estimate of the RMSEA are
well established under ideal conditions, much less is known about the
sampling properties in conditions encountered in practice. Of partic-
ular interest are the influences of sample size, model complexity, and
model misspecification on the estimation of the RMSEA. Knowledge
of these influences is crucial for the development of well-informed
guidelines for using estimates of the RMSEA to evaluate model fit in
applied research.
We open with a brief review of the general goals of SEM and

the challenges of assessing model fit. We then summarize the back-
ground and development of the RMSEA and review existing simula-
tion studies of this measure. Finally, we combine information from
both statistical theory and prior research to generate a set of specific
research hypotheses to be empirically tested using computer simu-
lation methodology. Taken together, we hope this work will help us
gain a better understanding about the estimation and the informed use
of the RMSEA in applied social science research.

BACKGROUND AND DEVELOPMENT

Given a set ofp-observed variables, the covariance structure hypoth-
esis in SEM states that�0 = �(θ), where�0 represents thep × p

covariance matrix of the observed variables in the population,�(θ)

represents the covariance matrix implied by the hypothesized model,
and θ represents a vector of free parameters in the hypothesized
model.1 The covariance structure hypothesis thus posits that the
covariance matrix implied by the hypothesized model is equal to the
population covariance matrix of the observed variables. The sample
estimator ofθ is denoted̂θ and is calculated to minimize the discrep-
ancy between the covariance matrix implied by the model (denoted
�(θ̂)) and the covariance matrix observed in the sample (denotedS).
More formally, the parameter estimates inθ̂ are obtained by mini-

mizingasuitablediscrepancy functiondenotedF̂ (S, �(θ̂)).Although
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there are several important functions from which to choose, the
maximum likelihood (ML) estimator remains the dominant one. The
ML fitting function is as follows:

F̂ (S, �(θ̂)) = log |�(θ̂)| + tr(S�
−1

(θ̂)) − log |S| − p, (1)

whereS, �(θ̂), andp are defined as before. Assuming no excess
multivariate kurtosis, adequate sample size, and proper model spec-
ification, ML parameter estimates ofθ̂ are asymptotically unbiased,
consistent, andasymptoticallyefficient (Bollen1989a;Browne1984).
Furthermore, the minimum of the ML function is a scalar value
denotedF̂ that is equal to zero only when the observed covariance
matrix S is equal to the reproduced covariance matrix�(θ̂). The
larger the discrepancy betweenS and�(θ̂), the greater the value of
F̂ . Because of this property, the minimum of the discrepancy func-
tion has long been used as the basis for many measures of overall
model fit.

LIKELIHOOD RATIO STATISTICT

Themost commonmeasure of fit based onF̂ is the likelihood ratio
test statistic that is defined asT = F̂ (N−1), whereN represents total
sample size. Under assumptions of sufficiently large sample size, no
excessmultivariate kurtosis, and proper model specification (Browne
1984),T is asymptotically distributed as a central chi-square with
degrees of freedom denoted asdf . Given the known asymptotic sam-
pling distribution ofT under proper model specification, this test
statistic allows researchers to test the null hypothesis�0 = �(θ)

that the population covariance matrix equals the covariance matrix
implied by the population model parameters. Rejection casts doubt
on the model that leads to�(θ).
In practice, several factors complicate the interpretation and use

of this test statistic. Most important, all empirical models are likely
misspecified to some degree, and a formal test of exact fit is often not
an optimal method of model evaluation. More specifically, the high
statistical power of the test in moderate to large samples can lead to
the rejection of models with even trivial misspecifications. A further
problem is that theT statistic tends to be larger than a chi-square

 at University of North Carolina at Chapel Hill on March 12, 2015smr.sagepub.comDownloaded from 

http://smr.sagepub.com/


Curran et al. / FINITE SAMPLING PROPERTIES OF RMSEA 211

variate at smaller sample sizes and in the presence of excess
multivariate kurtosis (Anderson and Gerbing 1984; Muthén and
Kaplan 1985, 1992; Curran, West, and Finch 1996). Because of these
and other limitations, a variety of alternative measures of model fit
have been proposed to augment the likelihood ratio testT .
Baseline fit indicesrepresent a family of such measures (e.g.,

Bentler 1990; Bentler andBonett 1980; Bollen 1989b;McDonald and
Marsh 1990; Tucker and Lewis 1973). These measures share the use
of a baseline model to which to compare the relative fit of the hypoth-
esized model. Typically, the baseline model is defined such that all
variables are uncorrelated and only the variances are estimated. Most
fit indices range between 0 and 1, with higher values indicating better
model fit and values exceeding .90 or .95 indicating acceptable fit of
the model to the sample data. Although there are a number of advan-
tages to the baseline fit indices, there are several limitations as well.
We refer the reader to other sources for further discussion of these
baseline fit indices (e.g., Gerbing and Anderson 1993; Rigdon 1998;
Tanaka 1993).

ROOT MEAN SQUARE ERROR OF APPROXIMATION (RMSEA)

Absolute fit indicesrefer to another family of alternative measures
that do not measure fit relative to some baseline model. One such
measure of fit that has become increasingly popular is the RMSEA.
The seminal work on the RMSEA was first presented by Steiger and
Lind (1980) and was later elaborated by Browne and Cudeck (1993)
and Steiger (2000). The computation of the sample estimate of the
RMSEA is based on the relation between the test statisticT and the
noncentral chi-square distribution. Under the assumptions of large
sample size, no excess multivariate kurtosis, andpropermodel spec-
ification, T follows a central chi-square distribution with expected
valuedf and variance 2df. However, under the assumptions of large
sample size, no excess multivariate kurtosis, butimproperspecifica-
tion, the test statisticT follows a noncentral chi-square withdf and
noncentrality parameterλ with expected valuedf + λ and variance
2df + 4λ (Steiger, Shapiro, and Browne 1985). The noncentrality
parameterλ is a measure of the degree of misspecification of a hypo-
thesized model (Bentler 1990; McDonald and Marsh 1990; Steiger
and Lind 1980).
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Browne and Cudeck (1993) distinguish between two types of error
in SEM: errors of estimation and errors of approximation. Adopting
the notation of Browne and Cudeck,�0 is the population covariance
matrix, �̃0 represents the best fit of the hypothesized model to the
population covariance matrix, and̂� represents the best fit of the
hypothesizedmodel to theobserved covariancematrixS. The first two
matrices are fixed in the population, and the third is random.Errors of
approximationrepresent the degree of misfit between the population
covariance matrix�0 and the population model–implied covariance
matrix�̃0, and this degree of misfit is estimated as a discrepancy due
to approximation via a suitable discrepancy functionF0 = (�0, �̃0).
In contrast,errors of estimationare the degree of misfit between
the sample model implied covariance matrix�̂ and the population
model impliedcovariancematrix̃�0. Aswitherrorsof approximation,
errors of estimation are calculated via a suitable discrepancy function
F = (�̃0, �̂).
Steiger and Lind (1980) and Browne and Cudeck (1993) argue that

error of approximation is of key interest in model evaluation and thus
define the RMSEA to beε = √

F0/df whereε is the population value
of the RMSEA.F0 represents a suitably weighted sum of squared
deviations between the population covariance matrix and the covari-
ance matrix implied by the best fit of the hypothesized model to�0.
As an adjustment for parsimony,F0 is divided bydf to incorporate
information about model complexity such that a penalty is imposed
for more complicated models, as evidenced through fewerdf .

F0 is an unknown population value that must be estimated from the
sample data. Because the minimum of the discrepancy functionF̂ is
a biased estimate of this type of error (see McDonald 1989), a less
biased estimate of errors of approximation isF̂0 = F̂ − df

N−1. This

estimate ofF̂0 lies at the heart of the estimate of the RMSEA.
The sample estimate of the RMSEA is

ε̂ =
√

F̂0

df
=

√
T − df

df (N − 1)
=

√
λ̂

df (N − 1)
, (2)

Given that it is possible thatdf can exceedT , resulting in a negative
numerator, an added condition is that ifT − df is equal to or less
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than zero, then̂ε is set to zero (Browne and Cudeck 1993, equation
(9)). The sample estimateε̂ thus ranges from zero to positive infinity;
a value of zero denotes perfect model fit, and larger values reflect
poorermodel fit. General “rules of thumb” have recommended values
of less than .05 to denote goodmodel fit, values less than .08 to denote
adequate model fit, and values exceeding .10 to denote poor model
fit, although clear warnings are given about the subjectivity of these
critical values (Browne and Cudeck 1993; Steiger 1989).
A key strength of̂ε is that, unlike most baseline fit indices, under

certain assumptions the sampling distribution is known. Specifically,
the asymptotic distribution ofε̂ is a rescaled noncentral chi-square for
a given sample sizedf and noncentrality parameterλ. (For ease of
communication, we will refer to this rescaled asymptotic noncentral
chi-square distribution as the sampling distribution ofε̂.) Knowledge
of this sampling distribution allows for the computation of confidence
intervals around the sample point estimate. As is detailed in Browne
and Cudeck (1993, equations (10), (11), (14)), these confidence inter-
vals (CIs) are obtained by reference to the noncentral chi-square dis-
tribution, which are transformed into themetric of the RMSEA.More
specifically, the lower and upper CI values ofε̂ are given as

CI =



√
λ̂L

df (N − 1)
;

√
λ̂ U

df (N − 1)


 , (3)

whereλ̂L and λ̂U are the respective lower and upper limits of the
noncentral chi-squareunder consideration (BrowneandCudeck1993,
equation (14)).
Given certain assumptions, the noncentral chi-square distribution

provides a clear understanding of the sampling distribution ofε̂. This
knowledge allows for the computation of both point estimates of the
RMSEA and the calculation of the precision of these point estimates
via the corresponding confidence intervals. These intervals can be
used in a variety of interesting ways, including the evaluation of exact
model fit, “close” and “not close” model fit, and the computation of
omnibus statistical power (see MacCallum, Browne, and Sugawara
1996 for details about all of these potential uses).
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However, the use of the noncentral chi-square distribution relies
on the assumptions of no excess multivariate kurtosis, adequate sam-
ple size, and errors of approximation that are “not great” relative to
errors of estimation (e.g., Browne andCudeck 1993:141; Steiger et al.
1985:259). Given that any or all of these conditions might be violated
in applied research, it is critical that an understanding be gained about
the sampling characteristics of the RMSEA point estimates and CIs
under less than ideal experimental conditions. These finite sampling
characteristicsmust bebetter understoodprior to using theRMSEA to
evaluate model fit in a thoughtful and informed way. Because asymp-
totic statistical theory might not characterize finite sampling condi-
tions (e.g., small sample size or specific multivariate distribution)
(Mariano 1982), computer simulation experiments provide a power-
ful method with which to empirically examine these types of research
questions.

PREVIOUS SIMULATION STUDIES

Although there are a number of well-designed simulation studies
examining the finite sampling properties of the likelihood ratio test
statistic and a variety of incremental fit indices, much less study has
focused on the RMSEA. Furthermore, the limited amount of research
that has examined the RMSEA tends to consider only bias in point
estimationor issuesof statistical power; other importantaspectsof this
index, suchassamplingvariability andconfidence interval estimation,
have yet to be closely considered.
Hu and Bentler (1998) presented findings from a simulation study

of a variety of model specifications across a number of sample sizes
and multivariate distributions. Consistent with the results of Sug-
awara and MacCallum (1993), they found the sample estimate of
the RMSEA to be far less influenced by the type of estimation (ML
vs. GLS) compared to other incremental fit indices, particularly at
large sample sizes. Furthermore, they found the sample estimate of
the RMSEA to be somewhat overestimated at smaller sample sizes,
especially for propermodel specifications; this overestimation dimin-
ished with increasing sample size and increasing misspecification.
Finally, results indicated that, relative to other baseline fit indices,
the sample estimate of the RMSEA was moderately sensitive to
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minor model misspecifications and highly sensitive to more severe
misspecifications. These results shed important initial light on the
finite sampling behavior of the RMSEA estimate under condi-
tions commonly encountered in applied research. However, certain
limitations of this study included lack of consideration of severely
misspecified models and no evaluation of the appropriateness of the
corresponding confidence intervals.
Fan, Thompson, and Wang (1999) also presented findings from

a simulation study that, in part, examined the RMSEA across sev-
eral experimental conditions. As with Hu and Bentler (1998), Fan
et al. primarily focused on assessing bias in the mean of the sample
RMSEA estimates. Results suggested that, on average, the RMSEA
estimates were overestimated at smaller sample sizes for properly
specified models, and this bias decreased with increasing sample size
and increasingmisspecification. They also found that the sample esti-
matesof theRMSEAwere largelyunaffectedby themethodofestima-
tion (ML vs. GLS). Although important, these findings are similarly
limited in that severely misspecified models were not examined,
nor was accuracy in the calculation of the corresponding confidence
intervals.
Finally, in an unpublished dissertation thesis, Hammervold (1998)

presented detailed results from an extensive simulation study
that examined a large number of fit indices across a variety of
model parameterizations, sample sizes, andmultivariate distributions.
Consistent with prior research, she found that the sample RMSEA
estimates were generally inflated at smaller sample sizes, but this
inflation became negligible at larger sample sizes. Furthermore, she
found that the RMSEA also tended to be inflated in the presence of
multivariate nonnormality. However, as with both Hu and Bentler
(1998) and Fan et al. (1999), Hammervold did not examine the sam-
pling characteristics of the RMSEA confidence intervals across these
same experimental conditions.
Despite the importance of these initial findings, many character-

istics of the RMSEA have yet to be closely examined. For example,
although initial simulations have studied the mean of the simulated
RMSEA sampling distribution, little is known about the sampling
variability of the RMSEA across various experimental conditions.
Although the mean may be unbiased, the variability may not. More
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important, although one of the key advantages of the RMSEA is the
ability to estimate confidence intervals, and strong recommendations
aremade for thewidespreaduseof these intervals inmodel evaluation,
we are aware of no studies that have empirically examined the accu-
racy of the RMSEA CIs across various finite sampling conditions. If
theCIs areestimatedwith differential accuracyacross sample sizeand
model misspecification, this is critical information to consider when
using these CIs in practice. Finally, although Hu and Bentler (1998),
Fan et al. (1999), and Hammervold (1998) all considered misspeci-
fied models, none considered models that were severely misspecified
to the degree at whichT may no longer follow the referenced noncen-
tral chi-square distribution. This is an important condition to consider
given that the estimation of the noncentrality parameter assumes that
errors of approximation are “not great” relative to errors of estimation
(Steiger et al. 1985).

PROPOSED HYPOTHESES

Drawing on both the statistical theory underlying the estimation of
the RMSEA and the empirical simulation results from prior research,
we propose three specific research questions about the sample esti-
mation of the RMSEA.

1. Are the sample estimates of the RMSEA based on the ML fitting func-
tion biased as a function of sample size under proper and improper
model specification?Statistical theory predicts that the sample esti-
mates of the RMSEA will be unrelated to sample size at or above
some minimum sample size and that this independence should hold
for both properly specified and misspecified models given that the
misspecification is not excessive. Drawing on both statistical theory
and limited prior empirical results, we predict that the mean of the
simulatedRMSEAsample estimateswill not be significantly biased at
moderate to large sample sizes for both properly specified andmoder-
ately misspecified models, but we expect biased estimation at smaller
sample sizes and for the most severely misspecified models.

2. Does the coverage accuracy of the RMSEA confidence intervals
depend on sample size under proper or improper specification?As
with point estimation, statistical theory predicts that at some mini-
mum sample size, the confidence intervals will cover the known pop-
ulation value at the expected nominal rate across sample size and
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misspecification, again assuming that the misspecification is not
excessive.Weare aware of no prior empirical studies of theCIs to help
inform our research hypotheses. We thus expect that the confidence
intervals will be accurate across all sample sizes and model speci-
fications, but bias of unknown magnitude is expected for the more
severely misspecified models at smaller sample sizes.

3. Is the accuracy of the confidence intervals equivalent regardless of
the percent coverage?It is common to report 90 percent confidence
intervals for the RMSEA, primarily because of the resulting direct
link to hypothesis testing based on the model test statistic (for fur-
ther details, see Browne and Cudeck 1993:145). However, there may
be situations in which we want to consider intervals that represent
80 or 95 percent coverage, and it is important to examine the accuracy
of estimation at these coverage levels as well. Again, we are aware
of no prior empirical or theoretical work to help inform us about this
question. We thus expect that the confidence intervals will be compa-
rably accurate regardless of the percentage coverage.

METHOD

MODEL TYPES AND EXPERIMENTAL CONDITIONS

One of our guiding goals for this study was to identify popula-
tion models that would allow us to maximize the external validity of
resulting findings (for further details, see Curran et al. 2002; Paxton
et al. 2001). To accomplish this, we reviewed five years of key jour-
nals within several areas of social science research to catalog themost
common types of SEMapplications. Using this information in combi-
nation with our own modeling experience, we selected three general
model types for study: Model 1 (see Figure 1) contains 9 measured
variables and three latent factors with three to four indicators per
factor, Model 2 (see Figure 2) has 15 measured variables and three
latent factors with five to six indicators per factor, and Model 3 (see
Figure 3) consists of 13 measured variables with the same form as
Model 1 but with the addition of four measured and correlated exoge-
nous variables. We designed these models to represent features that
are commonly encountered in social science research. Furthermore,
for each model, we use one correct and four incorrect specifications,
resulting in a total of 15 individual models.
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Figure 1: Target Population Model 1
NOTE: Numbers shown are unstandardized parameter values with standardized values in parentheses; solid and dashed lines represent
the population model structure, and dashed lines represent omitted parameters under model misspecification.
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Figure 2: Target Population Model 2
NOTE: Numbers shown are unstandardized parameter values with standardized values in parentheses; solid and dashed lines represent the
population model structure, and dashed lines represent omitted parameters under model misspecification.
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Figure 3: Target Population Model 3

NOTE: Numbers shown are unstandardized parameter values with standardized values in
parentheses; solid and dashed lines represent the population model structure, and dashed lines
represent omitted parameters under model misspecification.

Model 1. Specification 1 is aproperlyspecifiedmodel such that the
estimatedmodelmatches the populationmodel; Specification 2 omits
the complex loading linking Item 7with Factor 2, Specification 3 also
omits the complex loading linking Item 6with Factor 3, Specification
4 also removes the complex loading linking Item 4 with Factor 1, and
Specification 5 is the standard uncorrelated variables model in which
variances are estimated but all covariances are fixed at zero.
Model 2. Specification 1 is properly specified, Specification 2omits

thecomplex loading linking Item11withFactor2,Specification3also
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omits thecomplex loading linking Item10withFactor3,Specification
4 also removes the complex loading linking Item 6 with Factor 1, and
Specification 5 is the standard uncorrelated variables model.
Model 3. Specification 1 is properly specified, Specification 2

jointly omits the set of three complex factor loadings (Item 7 with
Factor 2, Item 6 with Factor 3, and Item 4 with Factor 1), Specifi-
cation 3 jointly omits the set of four regression parameters (Factor 2
regressed on Predictor 1, Factor 3 regressed on Predictor 1, Factor 2
regressed on Predictor 3, and Factor 3 regressed on Predictor 3),
Specification 4 jointly combines the omissions of Specifications
2 and 3 (omission of the set of three factor loadings and the set of
four regression parameters), and Specification 5 is the standard
uncorrelated variables model.
Model parameterization. For all three model types, parameter

values were carefully selected to result in a range of effect sizes (e.g.,
communalities andR2 values ranging from 49 to 72 percent) and, for
the misspecified conditions, to lead to both a wide range of power
to detect the misspecifications (e.g., power estimates computed using
the method of Satorra and Saris [1985] ranged from .07 to 1.0 across
all sample sizes) and a range of bias in parameter estimates (e.g.,
absolute bias ranged from 0 to 37 percent). See Paxton et al. (2001)
for a comprehensive description of our model parameterization. We
believe this parameterization reflects values commonly encountered
in applied research and that the omission of one or more para-
meters would result in meaningful impacts on parameter estimation
and overall model fit.
Sample size. We chose seven sample sizes to represent those com-

monly encountered in applied research, and these range from very
small to large: 50, 75, 100, 200, 400, 800, and 1,000.
Data generation and estimation. We used the simulation feature

in Version 5.7bof EQS (Bentler 1995) to generate the raw data and
EQS’smaximum likelihood estimation to fit the samplemodels to the
resulting covariance matrices. Population values for each parameter
were used as initial start values, and amaximum of 100 iterations was
allowed to achieve convergence.
Distribution. We generated data from a multivariate normal

distribution.
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Replications. There were a total of 105 experimental conditions
(three models, five specifications, and seven sample sizes), and we
generated up to 500 replications for each condition.
Convergence.We eliminated any replication that failed to converge

within 100 iterations or did converge but resulted in an out-of-bounds
parameter estimate (e.g., “Heywood Case”). We adopted this strategy
because the research hypotheses were directly related to proper solu-
tions inSEM,and theexternal validity of findingswouldbe threatened
with the inclusion of improper solutions.2 To maintain 500 replica-
tions per condition, we generated an initial set of up to 650 replica-
tions.We then fit themodels to the generated data and selected the first
500 proper solutions or selected as many proper solutions as existed
when the total number of replications was reached. This resulted in
500 proper solutions for all properly specified and most misspecified
experimental conditions, but several misspecified conditions resulted
in fewer than 500 proper solutions. Of the 105 experimental condi-
tions, 82 (78 percent) contained 500 replications, and 23 (22 percent)
contained fewer than 500 replications. Of those 23 conditions con-
taining fewer than 500 replications, the number of replications ranged
from 443 and 499 with a median of 492, and the smallest number of
443 replications was for Model 3, Specification 4,n = 50.
Outcome measures. The outcome measures studied here are the

RMSEA point estimates and associated 80, 90, and 95 percent confi-
dence intervals. These values were computed in SAS Version 8 (SAS
2000) using the computational formulas presented in Browne and
Cudeck (1993) based on the maximum likelihood fit function min-
ima computed by EQSVersion 5.7b. We cross-validated the accuracy
of these computations by comparing the computed values with those
produced by EQS, and all point estimates and all 90 percent confi-
dence intervals were equal for all experimental conditions.3

ANALYTIC PLAN

As with any large simulation study, there were far too many empir-
ical results to present in full detail within the scope of a single arti-
cle. We thus present the information in three different ways. First,
detailed results are presented for findings that are particularly criti-
cal in our evaluation of the research hypotheses. Second, less critical
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information is presented in summarized form, either in tables or in
figures. Finally, full and comprehensive results arepresented in a tech-
nical appendix that may be obtained from the first author or may be
downloaded directly from www.unc.edu/∼curran.

RESULTS

The general organization of our findings is as follows. First, we report
the population values for the ML fitting function, the noncentrality
parameter, and thepopulationRMSEAacrossallmodel specifications
under study. Next, we examineε̂ , the sample estimates ofε from the
simulations.Weconsider themeans, standarddeviations, relativebias,
and root mean square error (denoted root MSE to avoid confusion
with RMSEA) of ε̂ across all design factors. Finally, we evaluated the
accuracy of the simulated 80, 90, and 95 percent confidence intervals
in terms of the percentage coverage ofε (the population RMSEA)
relative to the expected nominal coverage rate.

POPULATION VALUES

Table 1 summarizes the population values of the maximum likeli-
hood fitting function (FML), the noncentrality parameter (λ), and the
RMSEA (ε); the number ofmanifest variableswithin eachmodel type
(9 for Model 1, 15 for Model 2, and 13 for Model 3); and the model
df for each specification for each model type (dfs ranging from
22 to 105). Several characteristics ofε are immediately evident. First,
ε is zero for all three properly specified models. This is because the
noncentrality parameterλ is zero under proper model specification,
thus making the numerator term ofε zero (see equation (2) above).
Second, for the misspecified conditions,ε does not vary as a function
of sample sizewithin model type. For example, for Specification 3
of Model 1,ε is equal to .04 regardless of sample size. Note that this
characteristic differs from the expected value of the likelihood ratio
test statisticT for misspecified models in which the expected value
does vary as a function of sample size.

ε values range from a minimum of zero for the properly specified
models up to a maximum of .315 for the null uncorrelated variable
specification of Model 1. Theε values range from .021 to .097 for the
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TABLE 1: Population Minima (F ML ), Noncentrality Parameter (λλλ), Population RMSEA (ε), and Sample RMSEA (̂ε)

Number of Sample RMSEA
Estimated Population Noncentrality Population Root Relative

n Parameters df FML λ RMSEA Mean (SD) MSE Bias

Model 1 (9 manifest variables): Specification 1

50 23 22 0.000 0.000 0.000 0.039 (0.044) 0.059 –
75 23 22 0.000 0.000 0.000 0.030 (0.033) 0.045 –
100 23 22 0.000 0.000 0.000 0.027 (0.030) 0.040 –
200 23 22 0.000 0.000 0.000 0.017 (0.020) 0.026 –
400 23 22 0.000 0.000 0.000 0.011 (0.014) 0.017 –
800 23 22 0.000 0.000 0.000 0.007 (0.009) 0.012 –
1,000 23 22 0.000 0.000 0.000 0.007 (0.008) 0.011 –

Model 1 (9 manifest variables): Specification 2

50 22 23 0.017 0.810 0.027 0.045 (0.045) 0.049 65.849
75 22 23 0.017 1.230 0.027 0.035 (0.035) 0.035 29.750
100 22 23 0.017 1.640 0.027 0.033 (0.032) 0.032 21.342
200 22 23 0.017 3.300 0.027 0.025 (0.023) 0.023 −8.261
400 22 23 0.017 6.610 0.027 0.024 (0.017) 0.017 −8.976
800 22 23 0.017 13.230 0.027 0.025 (0.011) 0.011 −6.824
1,000 22 23 0.017 16.540 0.027 0.024 (0.010) 0.011 −10.904
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TABLE 1: Continued

Number of Sample RMSEA
Estimated Population Noncentrality Population Root Relative

n Parameters df FML λ RMSEA Mean (SD) MSE Bias

Model 1 (9 manifest variables): Specification 3

50 21 24 0.038 1.840 0.040 0.049 (0.045) 0.046 23.010
75 21 24 0.038 2.780 0.040 0.040 (0.035) 0.035 1.592
100 21 24 0.038 3.720 0.040 0.040 (0.033) 0.033 0.818
200 21 24 0.038 7.490 0.040 0.035 (0.023) 0.024 −11.183
400 21 24 0.038 15.010 0.040 0.037 (0.016) 0.016 −6.035
800 21 24 0.038 30.060 0.040 0.039 (0.009) 0.009 −2.410
1,000 21 24 0.038 37.590 0.040 0.038 (0.008) 0.008 −3.961

Model 1 (9 manifest variables): Specification 4

50 20 25 0.094 4.630 0.061 0.064 (0.045) 0.045 3.683
75 20 25 0.094 6.990 0.061 0.056 (0.037) 0.038 −9.207
100 20 25 0.094 9.350 0.061 0.059 (0.033) 0.033 −3.833
200 20 25 0.094 18.790 0.061 0.059 (0.020) 0.020 −4.176
400 20 25 0.094 37.670 0.061 0.061 (0.013) 0.013 −1.019
800 20 25 0.094 75.440 0.061 0.061 (0.008) 0.008 −1.090
1,000 20 25 0.094 94.320 0.061 0.060 (0.007) 0.007 −1.611
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TABLE 1: Continued

Number of Sample RMSEA
Estimated Population Noncentrality Population Root Relative

n Parameters df FML λ RMSEA Mean (SD) MSE Bias

Model 1 (9 manifest variables): Specification 5

50 9 36 3.569 174.860 0.315 0.315 (0.032) 0.032 −0.027
75 9 36 3.569 264.070 0.315 0.315 (0.026) 0.026 −0.079
100 9 36 3.569 353.280 0.315 0.315 (0.022) 0.022 0.008
200 9 36 3.569 710.130 0.315 0.315 (0.016) 0.016 −0.069
400 9 36 3.569 1423.830 0.315 0.314 (0.011) 0.011 −0.226
800 9 36 3.569 2851.240 0.315 0.314 (0.008) 0.008 −0.151
1,000 9 36 3.569 3564.940 0.315 0.314 (0.007) 0.007 −0.117

Model 2 (15 manifest variables): Specification 1

50 35 85 0.000 0.000 0.000 0.051 (0.031) 0.060 –
75 35 85 0.000 0.000 0.000 0.032 (0.026) 0.041 –
100 35 85 0.000 0.000 0.000 0.025 (0.022) 0.033 –
200 35 85 0.000 0.000 0.000 0.014 (0.015) 0.021 –
400 35 85 0.000 0.000 0.000 0.008 (0.010) 0.013 –
800 35 85 0.000 0.000 0.000 0.006 (0.007) 0.009 –
1,000 35 85 0.000 0.000 0.000 0.005 (0.006) 0.008 –
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TABLE 1: Continued

Number of Sample RMSEA
Estimated Population Noncentrality Population Root Relative

n Parameters df FML λ RMSEA Mean (SD) MSE Bias

Model 2 (15 manifest variables): Specification 2

50 34 86 0.040 1.940 0.021 0.055 (0.031) 0.046 156.540
75 34 86 0.040 2.930 0.021 0.037 (0.026) 0.030 70.199
100 34 86 0.040 3.920 0.021 0.030 (0.023) 0.024 41.106
200 34 86 0.040 7.880 0.021 0.022 (0.016) 0.016 4.032
400 34 86 0.040 15.810 0.021 0.020 (0.011) 0.011 −8.225
800 34 86 0.040 31.650 0.021 0.021 (0.007) 0.007 −3.165
1,000 34 86 0.040 39.580 0.021 0.021 (0.005) 0.005 −2.265

Model 2 (15 manifest variables): Specification 3

50 33 87 0.083 4.050 0.031 0.059 (0.030) 0.041 91.722
75 33 87 0.083 6.120 0.031 0.041 (0.026) 0.028 34.022
100 33 87 0.083 8.190 0.031 0.037 (0.022) 0.023 19.240
200 33 87 0.083 16.470 0.031 0.031 (0.015) 0.015 −0.170
400 33 87 0.083 33.020 0.031 0.029 (0.010) 0.010 −4.521
800 33 87 0.083 66.120 0.031 0.031 (0.005) 0.005 −0.585
1,000 33 87 0.083 82.670 0.031 0.031 (0.004) 0.004 −0.912
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TABLE 1: Continued

Number of Sample RMSEA
Estimated Population Noncentrality Population Root Relative

n Parameters df FML λ RMSEA Mean (SD) MSE Bias

Model 2 (15 manifest variables): Specification 4

50 32 88 0.141 6.900 0.040 0.064 (0.029) 0.038 59.460
75 32 88 0.141 10.420 0.040 0.048 (0.025) 0.026 20.307
100 32 88 0.141 13.940 0.040 0.044 (0.022) 0.022 9.833
200 32 88 0.141 28.020 0.040 0.040 (0.013) 0.013 −0.620
400 32 88 0.141 56.180 0.040 0.039 (0.008) 0.008 −1.505
800 32 88 0.141 112.500 0.040 0.040 (0.004) 0.004 −0.288
1,000 32 88 0.141 140.670 0.040 0.040 (0.004) 0.004 −0.226

Model 2 (15 manifest variables): Specification 5

50 15 105 6.694 328.000 0.252 0.258 (0.022) 0.023 2.089
75 15 105 6.694 495.340 0.252 0.253 (0.018) 0.018 0.373
100 15 105 6.694 662.690 0.252 0.253 (0.015) 0.015 0.310
200 15 105 6.694 1332.070 0.252 0.252 (0.011) 0.011 −0.086
400 15 105 6.694 2670.840 0.252 0.253 (0.008) 0.008 0.013
800 15 105 6.694 5348.380 0.252 0.252 (0.006) 0.006 −0.153
1,000 15 105 6.694 6687.150 0.252 0.252 (0.005) 0.005 −0.239
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TABLE 1: Continued

Number of Sample RMSEA
Estimated Population Noncentrality Population Root Relative

n Parameters df FML λ RMSEA Mean (SD) MSE Bias

Model 3 (13 manifest variables): Specification 1

50 41 50 0.000 0.000 0.000 0.048 (0.038) 0.061 –
75 41 50 0.000 0.000 0.000 0.033 (0.029) 0.043 –
100 41 50 0.000 0.000 0.000 0.023 (0.024) 0.033 –
200 41 50 0.000 0.000 0.000 0.015 (0.017) 0.023 –
400 41 50 0.000 0.000 0.000 0.009 (0.011) 0.014 –
800 41 50 0.000 0.000 0.000 0.006 (0.008) 0.010 –
1,000 41 50 0.000 0.000 0.000 0.006 (0.007) 0.009 –

Model 3 (13 manifest variables): Specification 2

50 38 53 0.126 6.190 0.049 0.067 (0.037) 0.041 36.612
75 38 53 0.126 9.340 0.049 0.054 (0.029) 0.029 9.846
100 38 53 0.126 12.500 0.049 0.049 (0.024) 0.024 0.878
200 38 53 0.126 25.120 0.049 0.048 (0.016) 0.016 −1.080
400 38 53 0.126 50.370 0.049 0.048 (0.009) 0.009 −2.515
800 38 53 0.126 100.870 0.049 0.049 (0.005) 0.005 0.295
1,000 38 53 0.126 126.120 0.049 0.048 (0.005) 0.005 −1.098
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TABLE 1: Continued

Number of Sample RMSEA
Estimated Population Noncentrality Population Root Relative

n Parameters df FML λ RMSEA Mean (SD) MSE Bias

Model 3 (13 manifest variables): Specification 3

50 37 54 0.385 18.840 0.084 0.098 (0.030) 0.033 15.756
75 37 54 0.385 28.460 0.084 0.089 (0.023) 0.023 5.741
100 37 54 0.385 38.070 0.084 0.085 (0.019) 0.019 0.468
200 37 54 0.385 76.530 0.084 0.085 (0.011) 0.011 0.462
400 37 54 0.385 153.440 0.084 0.084 (0.007) 0.007 −0.212
800 37 54 0.385 307.270 0.084 0.084 (0.005) 0.005 −0.404
1,000 37 54 0.385 384.190 0.084 0.084 (0.004) 0.004 0.041

Model 3 (13 manifest variables): Specification 4

50 34 57 0.537 26.310 0.097 0.108 (0.029) 0.031 11.709
75 34 57 0.537 39.730 0.097 0.101 (0.021) 0.021 3.732
100 34 57 0.537 53.150 0.097 0.098 (0.018) 0.018 0.521
200 34 57 0.537 106.840 0.097 0.097 (0.011) 0.011 0.118
400 34 57 0.537 214.220 0.097 0.097 (0.007) 0.007 −0.504
800 34 57 0.537 428.970 0.097 0.097 (0.005) 0.005 −0.056
1,000 34 57 0.537 536.340 0.097 0.097 (0.004) 0.004 −0.147
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TABLE 1: Continued

Number of Sample RMSEA
Estimated Population Noncentrality Population Root Relative

n Parameters df FML λ RMSEA Mean (SD) MSE Bias

Model 3 (13 manifest variables): Specification 5

50 13 78 5.486 268.810 0.265 0.271 (0.020) 0.021 2.368
75 13 78 5.486 405.960 0.265 0.267 (0.016) 0.016 0.826
100 13 78 5.486 543.110 0.265 0.265 (0.014) 0.014 0.103
200 13 78 5.486 1091.710 0.265 0.266 (0.010) 0.010 0.140
400 13 78 5.486 2188.910 0.265 0.265 (0.007) 0.007 0.073
800 13 78 5.486 4383.310 0.265 0.265 (0.005) 0.005 0.071
1,000 13 78 5.486 5480.510 0.265 0.265 (0.004) 0.004 0.067
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ninemisspecified conditions (not including the uncorrelated variables
model) with a median of .040. These values represent a range of
misspecifications from properly specified to minor, moderate, and
severe misspecifications. It is theseε parameter values that are being
estimated by the sample RMSEA statistics,ε̂, to which we now turn.

SAMPLING DISTRIBUTION OF̂ε

Table 1 also provides information on the sampling distributions of
ε̂, the sample RMSEA estimates, within each experimental condition
and statistics that enable us to compare them to the correspondingε,
the population value of the RMSEA. Comparing the mean ofε̂ to the
correspondingε enables us to estimate the degree of bias in the sample
estimates of theRMSEA.Relative biaswas computedas theempirical
mean of̂ε minusε divided byε and multiplied by 100. This provides
a measure of the percentage of bias of the sample estimate of the
RMSEArelative to thepopulationvaluewithineachcondition.For the
properly specified conditions (Specification 1 of Models 1, 2, and 3),
ε was zero, and relative bias is undefined because of the division by
zero, so relative bias is not reported, although the absolute bias is
evident from comparing the mean ofε̂ to the correspondingε. Table 1
also reports the standard deviation of the simulatedε̂ and the root
mean squared error (or root MSE) that is the square root of the sum
of the squared deviations betweenε̂ andε within each experimental
condition. Root MSE gives a summary measure of accuracy in that
it takes account of both bias and variance of an estimate. To further
aid the interpretation of these results, the box plots of the simulated
RMSEAs are presented in Figures 4, 5, and 6.
Properly specified models. To begin, consider the pattern of means

of ε̂ for the three properly specified conditions across sample size
(the specific values are presented in Table 1, and box plots of the
simulated sampling distributions ofε̂ are in Figures 4-6). Although
the value ofε within each model type is equal to zero, the means of
the simulated sampling distributions ofε̂ clearly vary as a function
of sample size. Consider Specification 1 of Model 1. Althoughε is
zero, the mean of̂ε for n = 50 is .039, with a large standard devia-
tion of .044 and root MSE of .059. Indeed, 55 percent of the RMSEA
sample estimates were greater than zero. Similarly, the sample mean
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Figure 4: RMSEA Estimates, Model 1, Specifications 1-5, Sample Sizes 50-1,000

NOTE: The horizontal line within the box denote the sample median, the box length is the
interquartile range, and the whiskers reflect the largest and smallest observed values that are
less than 1.5 box lengths from either end of the distribution. RMSEA= root mean square error
of approximation.

of ε̂ at n = 100 is .027 (SD= .030; root MSE= .045; 54 percent
> 0), atn = 400 is .011 (SD= .014; root MSE= .017; 48 percent
> 0), and atn = 1,000 is .007 (SD= .009; root MSE= .011; 46
percent> 0). A highly similar pattern exists for Specification 1 of
Models 2 and 3 as well, and these results will not be detailed here.
Thus, consistent with limited prior research findings, under proper
specification,̂ε tends to substantially overestimateε at smaller sam-
ple sizes, and this overestimation decreases with increasing sample
size. Specifically, the bias is present but negligible at sample sizes of
n = 200 or greater.
Improperly specifiedmodels. Next consider the means of the simu-

lated sampling distributions ofε̂ for the misspecified conditions. For
the misspecified models, we are able to compute bias and relative
bias given the nonzero values ofε. Although the mean of̂ε contin-
ues to be inflated relative toε at smaller sample sizes, the magni-
tude of this effect is less evident compared to the properly specified
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Figure 5: RMSEA Estimates, Model 2, Specifications 1-5, Sample Sizes 50-1,000

NOTE: The horizontal line within the box denote the sample median, the box length is the
interquartile range, and the whiskers reflect the largest and smallest observed values that are
less than 1.5 box lengths from either end of the distribution. RMSEA = root mean square error
of approximation.

conditions described above. Across all three model types, there is
clear evidence of significant overestimation at the smallest sample
sizes. For example, for the minor misspecification (Specification 2)
of Model 1, theε is overestimated on average by 66 percent atn = 50
(mean= .045, SD = .04, root MSE= .049) and 21 percent at
n = 100 (mean= .033, SD = .032, root MSE= .032). Simi-
larly, for Specification 3 of Model 2,ε is overestimated on average by
92percent atn = 50 (mean= .059, SD= .03, rootMSE= .041)and
19 percent atn = 100 (mean= .037, SD= .022, root MSE= .023).
However, this overestimation at smaller sample sizes quickly dimin-
ishes at moderate to large sample sizes. For example, no misspecified
condition exceeded approximately 10 percent absolute relative value
bias at sample sizes ofn = 200 or above for any model type.
As we expected based on limited prior research on the RMSEA,

it is clear that the sample overestimation of the correspondingε not
only decreases with increasing sample size but also decreases with
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Figure 6: RMSEA Estimates, Model 3, Specifications 1-5, Sample Sizes 50-1,000

NOTE: The horizontal line within the box denote the sample median, the box length is the
interquartile range, and the whiskers reflect the largest and smallest observed values that are
less than 1.5 box lengths from either end of the distribution. RMSEA = root mean square error
of approximation.

increasing misspecification. This is also evident in the reduction in
root MSE with increasing sample size. To observe this effect graph-
ically, consider the first panel of Figure 4 in which the horizontal
line within the box denotes the sample median, the box length is the
interquartile range, and the whiskers reflect the largest and smallest
observed values that are less than 1.5 box lengths from either end
of the distribution. It can be seen that the sample mean ofε̂ (which
is quite close to the median value shown in the plot) converges toε

at approximatelyn = 200 for a minor misspecification andn = 75
for a moderate misspecification, and it appears unbiased even at
n = 50 for the severe misspecification. What is important to note is
that although the sample means do demonstrate convergence on the
corresponding expected value, the sampling variability is still quite
high, especially at smaller sample sizes. For example, the sample
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mean of ε̂ for the severely misspecified condition of Model 1
(Specification 4) atn = 50 shows little mean bias (sample mean
= .064, parameter value= .061, relative bias= 3.7 percent), but the
sample standard deviation is .045 with a point estimate range of 0 up
to .187. Thus, although themeans of the RMSEA estimates at smaller
sample sizes are unbiased under increasing model misspecification,
there remains substantial variability in the sample estimates.
The standard deviations of the simulated sampling distributions ofε̂

decrease for eachmodel andspecificationas thesamplesize increases.
This expected pattern reflects the well-known pattern of decreased
variability as the sample size increases. It also is interesting to note
that the growth in themean value inε̂ as the degree ofmisspecification
increases is not accompanied by a growth in its standard deviation for
a given sample size. For instance, in Model 2, the standard deviations
of ε̂ for Specifications 1 to 4 atn = 100 are .022, .023, .022, and
.022, respectively. The main exception is in the case of the most
severe misspecification, in which the standard deviation ofε̂ tends to
be smaller at a given sample size.
The root MSE provides a summary of both the bias and variability

of ε̂ as an estimate of the population RMSEA (ε). Perhaps the most
obvious trend in the results is the decrease in the root MSE ofε̂

within each model and specification as the sample size grows. Given
our observations on the decrease in bias and shrinkage in standard
deviations asn is larger, this result for the root MSE is fully expected.
Less expected is the tendency for the root MSE ofε̂ to decrease as
the degree of misspecification increases. In Model 2 atn = 100, for
instance, the root MSE ofε̂ is .033 for the correct model and .023 for
Specification 3. This is likely to result from the drop in relative bias
as the degree of specification error increases.
Uncorrelated variable baseline model. Finally, the results in

Table 1 indicate that the mean of the simulated sampling distribution
of ε̂ for the uncorrelated variables model is very close to the corre-
spondingε across all sample sizes for all threemodel types. For exam-
ple, for the uncorrelated variable baseline specification of Model 1
atn = 100,ε is .315, and the sample mean ofε̂ is .315; for Model 2
at n = 200, ε is .252, and the sample mean ofε̂ is .252; finally, for
Model 3 atn = 400,ε is .265, and the samplemean ofε̂ is .265. These
results indicate that for the uncorrelated variable baseline model, the
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meanof the simulated̂ε is an unbiasedestimate of the correspondingε.
However, as was found for the misspecified models, the simulated
sampling distribution of the RMSEA was also characterized by a
rather large variance, especially at smaller sample sizes. We will
explore this finding more thoroughly in a moment.

SUMMARY

Overall, themeanof the simulated sampling distribution ofε̂ tended
to overestimate the correspondingε, particularly at smaller sample
sizes and for the properly specified and less severe misspecified con-
ditions. It is evident from the plots in Figure 4 that the overestima-
tion at smaller sample sizes and under less severe misspecification is
attributable to the higher number of sample estimates that were esti-
mated to be negative but were set to zero due to the restricted lower
bound of the RMSEA of 0. Although this overestimation decreased
with increasing sample size and increasing misspecification, there
remained substantial sampling variability inε̂. The sample standard
deviations and the root MSE ofε̂ decreased as the sample size grew
within a given model and specification. Holding model and sample
size constant, therewas some tendency for the rootMSE to be smaller
as the degree of specification error grew. We will now examine the
confidence intervals of̂ε.

RMSEA CONFIDENCE INTERVALS

To evaluate the accuracy of the RMSEA confidence intervals, we
computed the percentage coverage ofε by the simulated CIs within
each experimental condition. Ifε for a given specification fell within
the bounds of the simulatedCI for a given replication, then thatCIwas
deemed “accurate,” given that it properly covered the corresponding
ε value. In the long run, it is expected that the percentage of CIs
that cover the correspondingε will converge on the nominal rate of
the CI (i.e., 90 percent of the simulated 90 percent CIs are expected
to contain the associatedε). The empirical coverage rates and mean
interval widths are presented in Table 2.
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TABLE 2: Coverage Rates for 80, 90, and 95 Percent Confidence Intervals (CIs) and
Interval Width for 90 Percent CI

90%CI Interval Width
80%Coverage 90%Coverage 95%Coverage

n Rate Rate Rate Mean (SD)

Model 1 (9 manifest variables): Specification 1

50 0.762 0.876 0.922 0.114 (0.038)
75 0.786 0.894 0.946 0.092 (0.034)
100 0.762 0.880 0.938 0.080 (0.028)
200 0.786 0.890 0.950 0.055 (0.020)
400 0.802 0.900 0.950 0.038 (0.014)
800 0.818 0.914 0.960 0.027 (0.010)
1,000 0.802 0.892 0.960 0.023 (0.009)

Model 1 (9 manifest variables): Specification 2

50 0.754 0.881 0.938 0.117 (0.036)
75 0.785 0.888 0.945 0.095 (0.030)
100 0.769 0.878 0.938 0.083 (0.025)
200 0.814 0.900 0.958 0.061 (0.016)
400 0.802 0.906 0.944 0.045 (0.010)
800 0.810 0.904 0.950 0.033 (0.005)
1,000 0.774 0.884 0.956 0.029 (0.004)

Model 1 (9 manifest variables): Specification 3

50 0.769 0.890 0.944 0.119 (0.035)
75 0.799 0.894 0.943 0.097 (0.029)
100 0.792 0.897 0.940 0.086 (0.024)
200 0.826 0.916 0.962 0.064 (0.012)
400 0.798 0.888 0.938 0.046 (0.007)
800 0.790 0.900 0.950 0.029 (0.003)
1,000 0.780 0.888 0.950 0.025 (0.002)

Model 1 (9 manifest variables): Specification 4

50 0.779 0.878 0.940 0.125 (0.031)
75 0.809 0.894 0.933 0.103 (0.025)
100 0.780 0.889 0.946 0.091 (0.017)
200 0.810 0.918 0.958 0.064 (0.009)
400 0.772 0.882 0.946 0.039 (0.004)
800 0.788 0.910 0.954 0.025 (0.001)
1,000 0.774 0.888 0.934 0.022 (0.000)

 at University of North Carolina at Chapel Hill on March 12, 2015smr.sagepub.comDownloaded from 

http://smr.sagepub.com/


Curran et al. / FINITE SAMPLING PROPERTIES OF RMSEA 239

TABLE 2: Continued

90%CI Interval Width
80%Coverage 90%Coverage 95%Coverage

n Rate Rate Rate Mean (SD)

Model 1 (9 manifest variables): Specification 5

50 0.682 0.804 0.874 0.082 (0.001)
75 0.652 0.768 0.850 0.066 (0.000)
100 0.674 0.798 0.872 0.056 (0.000)
200 0.664 0.790 0.876 0.039 (0.000)
400 0.664 0.796 0.876 0.028 (0.000)
800 0.654 0.764 0.850 0.019 (0.000)
1,000 0.656 0.768 0.832 0.017 (0.000)

Model 2 (15 manifest variables): Specification 1

50 0.584 0.730 0.816 0.088 (0.017)
75 0.706 0.838 0.890 0.068 (0.016)
100 0.734 0.848 0.922 0.057 (0.016)
200 0.796 0.880 0.926 0.038 (0.012)
400 0.816 0.896 0.944 0.026 (0.009)
800 0.824 0.912 0.958 0.018 (0.006)
1,000 0.810 0.914 0.962 0.016 (0.006)

Model 2 (15 manifest variables): Specification 2

50 0.573 0.719 0.824 0.088 (0.016)
75 0.696 0.832 0.908 0.069 (0.015)
100 0.744 0.862 0.918 0.060 (0.014)
200 0.788 0.884 0.936 0.043 (0.009)
400 0.792 0.896 0.946 0.031 (0.006)
800 0.778 0.896 0.946 0.021 (0.004)
1,000 0.784 0.880 0.944 0.018 (0.003)

Model 2 (15 manifest variables): Specification 3

50 0.598 0.725 0.831 0.088 (0.015)
75 0.718 0.846 0.916 0.071 (0.013)
100 0.750 0.848 0.916 0.061 (0.012)
200 0.808 0.880 0.940 0.044 (0.007)
400 0.782 0.890 0.930 0.029 (0.005)
800 0.810 0.900 0.950 0.017 (0.002)
1,000 0.802 0.910 0.950 0.014 (0.001)
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TABLE 2: Continued

90%CI Interval Width
80%Coverage 90%Coverage 95%Coverage

n Rate Rate Rate Mean (SD)

Model 2 (15 manifest variables): Specification 4

50 0.623 0.754 0.836 0.088 (0.015)
75 0.734 0.854 0.926 0.071 (0.012)
100 0.750 0.864 0.924 0.062 (0.011)
200 0.808 0.904 0.944 0.042 (0.007)
400 0.756 0.882 0.946 0.025 (0.004)
800 0.804 0.902 0.948 0.015 (0.001)
1,000 0.792 0.912 0.956 0.013 (0.000)

Model 2 (15 manifest variables): Specification 5

50 0.572 0.698 0.788 0.049 (0.001)
75 0.588 0.724 0.822 0.039 (0.000)
100 0.638 0.726 0.814 0.034 (0.000)
200 0.606 0.726 0.804 0.023 (0.000)
400 0.606 0.706 0.792 0.016 (0.000)
800 0.546 0.658 0.760 0.011 (0.000)
1,000 0.582 0.694 0.766 0.010 (0.000)

Model 3 (13 manifest variables): Specification 1

50 0.646 0.778 0.868 0.098 (0.023)
75 0.742 0.852 0.928 0.077 (0.022)
100 0.808 0.894 0.946 0.065 (0.018)
200 0.782 0.896 0.936 0.045 (0.014)
400 0.800 0.910 0.954 0.030 (0.011)
800 0.816 0.896 0.962 0.021 (0.008)
1,000 0.818 0.900 0.946 0.019 (0.007)

Model 3 (13 manifest variables): Specification 2

50 0.662 0.797 0.871 0.101 (0.018)
75 0.752 0.859 0.927 0.083 (0.015)
100 0.803 0.902 0.958 0.073 (0.012)
200 0.798 0.892 0.952 0.049 (0.007)
400 0.802 0.908 0.954 0.029 (0.003)
800 0.782 0.898 0.960 0.018 (0.000)
1,000 0.792 0.876 0.934 0.016 (0.000)
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TABLE 2: Continued

90%CI Interval Width
80%Coverage 90%Coverage 95%Coverage

n Rate Rate Rate Mean (SD)

Model 3 (13 manifest variables): Specification 3

50 0.719 0.828 0.916 0.097 (0.015)
75 0.791 0.896 0.935 0.075 (0.012)
100 0.790 0.890 0.945 0.062 (0.008)
200 0.810 0.912 0.948 0.037 (0.002)
400 0.848 0.934 0.980 0.024 (0.000)
800 0.820 0.932 0.976 0.017 (0.000)
1,000 0.838 0.918 0.964 0.015 (0.000)

Model 3 (13 manifest variables): Specification 4

50 0.727 0.833 0.903 0.090 (0.014)
75 0.762 0.867 0.928 0.069 (0.010)
100 0.765 0.879 0.943 0.056 (0.006)
200 0.813 0.908 0.948 0.035 (0.001)
400 0.818 0.912 0.966 0.023 (0.000)
800 0.820 0.916 0.962 0.016 (0.000)
1,000 0.804 0.908 0.958 0.014 (0.000)

Model 3 (13 manifest variables): Specification 5

50 0.692 0.820 0.888 0.057 (0.001)
75 0.732 0.844 0.914 0.045 (0.000)
100 0.720 0.834 0.906 0.039 (0.000)
200 0.688 0.814 0.896 0.027 (0.000)
400 0.718 0.848 0.914 0.019 (0.000)
800 0.698 0.840 0.920 0.013 (0.000)
1,000 0.712 0.816 0.898 0.012 (0.000)

PROPERLY SPECIFIED MODELS: 90 PERCENT CONFIDENCE INTERVALS

For all three properly specified models, the coverage rates of the
ε were remarkably accurate at moderate to large sample sizes. For
example, at sample sizesofn = 200andhigher, theproportionof sim-
ulatedCIs correctly containingεwerewithin 2 percent of the expected
nominal 90 percent rate. Although the accuracy degraded somewhat
at smaller sample sizes, this decrement in performance varied as a
function of model complexity. For Model 1, the CIs were within
2 percent of the nominal rate at all sample sizes, even at the smallest
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sample size ofn = 50.However, this degreeof accuracy at the smaller
sample sizes did not hold for Models 2 and 3. For example, for the
proper specification of Model 2, theε was accurately covered only
73 percent of the time atn = 50, 84 percent atn = 75, and
85 percent atn = 100; for the proper specification of Model 3,
the ε was accurately covered 78 percent of the time atn = 50,
85 percent atn = 75, and 89 percent atn = 100. Thus, the coverage
rate converged on the nominal rate atn = 50 for Model 1,n = 200
for Model 2, andn = 100 for Model 3.
It is interesting to note that for those cases in which the simulated

CI did not contain the associatedε, the expected value always fell
below thelower boundary of the CI. There was not a single instance
in any replication in which the simulated CI failed to contain the cor-
respondingε by falling below that value; this was true for all specifi-
cations of all models.

MISSPECIFIED MODELS: 90 PERCENT CONFIDENCE INTERVALS

For the three misspecified conditions for each of the three tar-
get models (but not yet considering the uncorrelated variable base-
line model), the empirical coverage rates were quite similar to those
found for the properly specified conditions. For all three misspecified
conditions of Model 1, the empirical coverage rates were within
2 percent of the nominal rate across all sample sizes. The nominal rate
was again achieved atn = 200 andn = 100 for all threemisspecified
conditions of Models 2 and 3, respectively.
However, as was found for the properly specified conditions of

Models 2 and 3, the empirical rate fell well below the nominal rate
at the smaller sample sizes. For example, for the moderately mis-
specified condition of Model 2, the empirical CIs only covered the
correspondingε value 73 percent atn = 50, 85 percent atn = 75
andn = 100, and 88 percent atn = 200. Similarly, for the moder-
ately misspecified condition of Model 3, the empirical CIs only cov-
ered the correspondingε value 83 percent atn = 50 but was within
2 percent of the nominal rates atn = 75 and above. Thus, in
general, the CIs were quite accurate for all misspecified models at
sample sizes ofn = 200 and higher, and this accuracy was evident at
smaller sample sizes but only for the less complex models.
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UNCORRELATED VARIABLE BASELINE MODEL:
90 PERCENT CONFIDENCE INTERVALS

Of course, in applied research settings, it would rarely be of interest
to compute the RMSEA and associated confidence intervals for the
uncorrelated variable baseline model given that this is used primar-
ily as a null model with which to compute the baseline fit indices.
However, as described earlier, one of the key assumptions underly-
ing the RMSEA is that the errors of approximation are “not great”
relative to errors of estimation. It is thus of interest to examine the
finite sampling behavior of the RMSEACIs for the uncorrelated vari-
able baseline model to examine whether this severe misspecification
is too extreme in magnitude to reference the underlying noncentral
chi-square distribution on which the computation of the CIs is based.
In general, there was evidence of poor accuracy in CI coverage of

the expected value of the RMSEA for the uncorrelated baseline con-
ditions of all three models across all sample sizes. For example, for
the uncorrelated variable baseline model for Models 1 and 3, the per-
centage of 90 percent CIs that cover the knownε is approximately
80 percent across all sample sizes; for Model 2, the coverage rate
drops to approximately 70 percent across all sample sizes. Thus, for
the uncorrelated variables’ specification of all three model types, the
empirical coverage of the expected value of the RMSEA falls 10 to
20 percent below the nominal coverage rate. This suggests that, con-
sistent with the results of Curran et al. (2002), the severe misspecifi-
cation of the uncorrelated baseline model may indeed be too extreme
to reference the corresponding noncentral chi-square distribution in
the computation of the CIs.

RMSEA 80 AND 95 PERCENT CONFIDENCE INTERVALS

Widespread use of the 90 percent CI is based on the ability to link
thisCI to the use of the usual likelihood ratio testT . Specifically, if the
lower bound of the 90 percent CI is equal to zero, this implies that the
probability level of the test statisticT is greater than .05. Thus, the CI
provides information about the likelihood ratio test statistic but also
providesmuchmore information about model fit beyond the standard
p value (for further details, see MacCallum et al. 1996). Although
this is a useful link on which to capitalize, there is no reason why any
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other CI coverage rate cannot be considered. To better understand the
accuracy of the CI estimates as a function of width of coverage, we
repeated the above analyses for CIs with widths of 80 and 95 percent.
As before, these analyses produceda tremendous amount of empirical
results, and we only summarize the key findings here.
In general, it is striking how similar the pattern of findings is

for these alternative coverage rates, as were found for the 90 per-
cent CIs presented in detail above. At sample sizes ofn = 200 and
higher, the coverage rates of the CIs were quite consistent with the
corresponding expected nominal rate. This consistency was evident
for the proper and three improper specifications of all three model
types atn = 200 and higher. For example, for the moderate mis-
specification of Model 1 atn = 200, 82 percent of the sample
80 percent CIs and 96 percent of the 95 percent CIs coveredε. Sim-
ilarly, for the severe misspecification of Model 3 atn = 200, 81
percent of the sample 80 percent CIs and 95 percent of the sam-
ple 95 percent CIs coveredε. At sample sizes less thann = 200,
the expected nominal rates were uniformly underestimated by any-
where from 5 to 20 percent at the smallest sample size ofn =
50. This underestimation was somewhat more pronounced for the
80 percent CIs compared to the 95 percent CIs, and this held
across all three model types. Finally, as was found with the 90
percent CIs, none of the coverage rates of the CIs corresponded
to the expected nominal coverage rates for the uncorrelated vari-
ables model for any of the three model types for either the 80 or
95 percent CIs.

DISCUSSION

The goal of our studywas to empirically evaluate a set of theoretically
generated research hypotheses about the finite sampling properties of
the RMSEA.We usedMonte Carlo computer simulations to generate
data corresponding to three population model types across a variety
of experimental conditions commonly encountered in applied social
science research. Up to 500 replications were generated for each of
7 sample sizes and 15 model specifications, and we examined the
sampling characteristics of both the RMSEA point estimates and the
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associated confidence intervals. The results were largely consistent
with the proposed hypotheses.

RMSEA POINT ESTIMATES

Consistent with Fan et al. (1999) and Hu and Bentler (1998), we
found that for the properly specified conditions of all three model
types, the mean of the simulated sampling distribution ofε̂ substan-
tially overestimated the correspondingε at the smaller sample sizes,
but this positive bias became negligible at sample sizes ofn = 200
and higher. There are two likely sources of this overestimation. First,
it is well known that the likelihood ratio test statistic is inflated at
smaller sample sizes under correct (e.g., Boomsma 1983; Anderson
and Gerbing 1984) and incorrect (e.g., Curran et al. 1996) model
specification; this test statistic plays an integral role in the compu-
tation of ε̂, and thus the inflation plays a role here as well. Second,
ε under proper specification is zero, andε̂, the sample estimates of the
RMSEA, vary around this value.However, given that the computation
of the RMSEA is, by definition, fixed to zero when the sample esti-
mate falls below zero, the mean of the estimates is positively biased
due to the fixing to zero of these negative values. This explains why
we found evidence for decreased bias inε̂ with increasing sample
size, given the corresponding decrease in sampling variability; sim-
ilar results were described by both Hu and Bentler (1998) and Fan
et al. (1999).
Our results further indicated that the overestimation of the

RMSEA relative to the corresponding population value decreased
with increasing model misspecification. That is, the means of the
simulated sampling distributions ofε̂ were systematically larger than
the corresponding population values at smaller sample sizes, but this
overestimation was attenuated by increasing misspecification. This
attenuation of bias was further highlighted in that the severely mis-
specified null independencemodel showed no overestimation even at
thesmallest sample size. Ingeneral, though, someevidenceof positive
bias was found for the less severe misspecifications at sample sizes
of less thann = 200. As before, the decreasing bias associated with
increasing sample size is due in part to the associated decrease in sam-
pling variability of the point estimates. Similarly, the decreasing bias
associated with increasing misspecification is due in part to the larger
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corresponding population values of the RMSEA and subsequently
fewer sample estimates that were negative and thus fixed to zero.
In sum, themeans of the simulated sampling distributions ofε̂were

generally unbiased across allmodel types and allmodel specifications
at sample sizes ofn = 200 and greater. Overestimation of the corre-
spondingεwas evidenced at samples less thann = 200 across all but
the null independence model, and this overestimation was oftentimes
substantial. Finally, there was no evidence of overestimation for the
uncorrelated variables model for any model type at any sample size.
It is important to note, however, that all of the findings we have sum-
marized thus far only relate to the sample estimates of the RMSEA.
A second critical piece of information to consider is the accuracy of
the associated confidence intervals.

RMSEA CONFIDENCE INTERVALS

Although computation of the 90 percent CIs is standard in com-
mercial SEM packages, there is no reason to limit ourselves to this
particular coverage rate. We thus examined CIs for the RMSEA for
coverage rates of 80, 90, and 95 percent to examine potential depar-
tures in finite sampling behavior as a function of nominal coverage.
Results were nearly identical across all three coverage rates, and we
will thus focus on the 90 percent rate with the understanding that
these results directly generalize to the other two rates as well.
In general, the CIs were remarkably accurate across many of

the experimental conditions studied here. For example, the sample
90 percent CIs coveredε, the RMSEA parameter value, within
2 percent of the nominal rate across all sample sizes for the properly
specified condition of Model 1, as well as at sample sizes ofn = 200
and above for Models 2 and 3. This same degree of accuracy held for
the three misspecified conditions as well, again at all sample sizes
for Model 1 and at sample sizes ofn = 200 and above for Models 2
and 3. This was impressive accuracy, especially given that we consid-
ered several of these conditions to be severely misspecified (but note
that we have not yet discussed the null independence model). It thus
appears that, at least at sample sizes ofn = 200 or greater, the CIs are
characterized by accurate coverage rates under the very conditions in
which they are most needed: a moderately to severely misspecified
model that we might consider to be theoretically tenable.
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However, for sample sizes less thann = 200 for the properly
specified and three misspecified conditions of Models 2 and 3, the
CIs systematically covered the expected value of the RMSEA below
the expected nominal rates, sometime substantially so. For several
conditions at the smallest sample size, the estimated 90 percent CIs
only coveredε 75 percent of the time. Closer examination of the data
indicated that for every single case that did not coverε, the CI was
overestimated. That is, in every case, the lower bound of the CI was
aboveε, and under no condition was the error made as a result of
the upper bound falling below this value. In general, theε̂ estimates
were unbiased at sample sizes ofn = 200 and above; similarly, the
CIs were coveringε at the expected nominal rate at sample sizes of
n = 200 and above. The only exception to this pattern of findings
is the accurate coverage of the CIs at smaller sample sizes across all
specifications for Model 1.
It is not immediately clear as to why the CIs showed little cov-

erage bias across all sample sizes for Model 1, whereas this lack
of coverage bias was only evident at sample sizes ofn = 200 and
greater for Models 2 and 3. One likely explanation for this relates
to the magnitude of the noncentrality parameter for the misspecified
conditions. Althoughε values were rather similar within specifica-
tion and across model type (e.g., theε for Specification 2 of Model
1 was .027, and Specification 2 of Model 2 was .021), the noncen-
trality parameters were often more discrepant (e.g., the noncentrality
parameter atn = 1,000 for Specification 2 of Model 1 was 16.54,
and for Specification 2 of Model 2, it was 39.58). The reason for
the differences in relative magnitude between the RMSEA and the
corresponding noncentrality parameter is that the RMSEA makes an
adjustment fordf , and these varied greatly across the model (e.g.,
Specification 2 of Model 1 was characterized by 23df compared to
86df forSpecification2ofModel 2).Given that theCIs are computed
based on the noncentral chi-square distribution and then transformed
into the metric of RMSEA (see equation (3)), there may be greater
overestimation of the sample noncentrality parameter for Models 2
and 3 at the smaller sample size given the larger value of the noncen-
trality parameter for those same conditions. That is, although several
of the RMSEA values were comparable across conditions, there are
larger differences in the associated noncentrality parameters, given
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that an adjustment has yet to be made for the modeldf . This is only
a hypothesis, and further work is necessary to better understand this
effect.
Finally, although an applied researcher would rarely if ever desire

a CI for an uncorrelated variables model, it was important to examine
the CIs under this condition, given the prediction that the likelihood
ratio test statistic will not follow the referenced noncentral chi-square
distribution under severe specification error. Results indicated that
theCIs for the uncorrelated variablesmodel were substantially biased
for all three model types across all sample sizes. For example, even
at the largest sample size ofn = 1,000 for the uncorrelated variable
specification of Model 2, only 69 percent of the 90 percent CIs actu-
ally coveredε. Note that these inaccuracies in the CIs were present
even though the mean ofε̂ reflected no bias relative to the corre-
spondingε. This highlights the critical importance of examining both
the mean and variance of a test statistic in simulation studies. (For
a more detailed discussion of this, see Curran et al. 2002.) In con-
clusion, it appears that the degree of misspecification introduced in
the uncorrelated independence model was sufficiently severe that the
resulting test statistic no longer referenced the underlying noncentral
chi-square distribution, and the resulting CIs were not valid.

POTENTIAL LIMITATIONS AND DIRECTIONS FOR FUTURE RESEARCH

The results of any Monte Carlo study are necessarily limited to the
parameterization of the models and conditions under study, and care
should be taken when generalizing our findings presented here. How-
ever, we took great care in the design of our simulation experiment
to maximize external validity, and our selected models and condi-
tions represented an array of SEM applications in the social sciences
that ranged from properly specified to severely misspecified andwere
characterized by a small to large number ofdf . We thus feel that
these findings generalize to many similar types of SEM applications,
although future work will do well to consider additional model types
as well. One set of models that might be of particular interest that
we did not study here are models with a very smalldf . For example,
a three–time point linear latent growth model is characterized by a
singledf , and we have found in our own applied work that result-
ing RMSEA values can be quite large for a model that otherwise
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appears to fit the data well. Further examination of the RMSEA under
conditions such as these could be quite interesting. Finally, we chose
to focus on data drawn from a multivariate normal distribution, and
it is well known that nonnormally distributed data, particularly data
characterized by excess kurtosis, introduce further bias in normal
theory ML estimation (Boomsma 1983; Browne 1984; Curran et al.
1996; Muth́en and Kaplan 1985, 1992).
Ofmost importance, there has beenmuch recent discussion of opti-

mal methods for using the RMSEA in practice to evaluate model fit.
For example, Hu and Bentler (1998) have explored using just the
point estimates of the RMSEA to determine adequacy of model fit,
and MacCallum et al. (1996) have proposed the use of tests of close
fit and not close fit based on the confidence intervals of the RMSEA.
Given that our results presented here provide empirical insight into
the experimental conditions underwhich the point estimates andasso-
ciated CIs are accurately estimated, future work can turn to a more
comprehensive evaluation of how to optimally use these estimates to
judge model fit in applied research. We hope that our findings help
inform the thoughtful consideration of this important question.

NOTES

1. More generally, structural equation modeling (SEM) focuses on reproducing the popula-
tion moments of the observed variable with a specified model. To simplify our discussion, we
focus on the population covariance matrix here, recognizing that the discussion could be easily
generalized to the population mean or other moments.
2. For completeness, all results reported here were reanalyzed for the conditions that were

characterized by higher rates of nonconvergence, including both converged and nonconverged
cases, and no substantive differences in any conclusions were found. Furthermore, although
these nonconverged and improper solution cases were excluded from the present analyses,
these cases are of great interest with respect to other related research questions, and we have
examined these closely in other studies of these data. See Chen et al. (2001) for further details.
3. The 80 and 95 percent confidence intervals were not cross-validated in this way since all

current commercial SEM packages only provide 90 percent CIs.
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