CHAPTER

The Best of Both Worlds

Combining Autoregressive and Latent
Curve Models

Patrick J. Curran
Kenneth A. Bollen

here are various approaches to both the theoretical conceptualization and

the statistical analysis of panel data. Two analytic approaches that have re-

ceived a great deal of attention are the autoregressive model (or “fixed effects
Markov simplex model”) and random coefficient growth curve miodels. Research-
ers have attempted to identify the conditions under which the growth curve
and autoregressive approaches do or do not provide useful results when applied
to empirical longitudinal data (see, e.g., Bast & Reitsma, 1997; Curran, 2000;
Kenny & Campbell, 1989; Marsh, 1993; and Rogosa & Willett, 1985). This
critical comparative approach has tended to foster a polarization of views that
has led many proponents of one modeling approach to reject the methods of
the other, and vice versa.

However, what has become increasingly apparent is that there is not nec-
essarily a “right” or “wrong” approach to analyzing repeated-measures data over
time. The proper choice of a statistical model varies as a function of the theo-
retical question of interest, the characteristics of the empirical data, and the
researchers own philosophical beliefs about issues such as causation and
change. Despite the more tempered view that different analytic approaches can
teveal different things about the same data, the autoregressive and growth
curve modeling approaches remain competing analytic viewpoints. A moderate
position sees these two models as equally viable options in which the autore-
gressive model is more appropriate under some conditions and the growth
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curve model works best under other conditions. Although this approach tends
to be less adversarial than the correct—incorrect distinction, the result still re-
mains an either—or scenario; that is, one adopts the autoregressive approach or
the growth modeling approach, but not both.

Given that the autoregressive and growth curve models are each associated

with certain key advantages and disadvantages, it seems logical to work toward
synthesizing these approaches into a more unified general framework. If suc-
cessful, this would allow for drawing on the strengths of both approaches that
might provide even greater information than either approach taken alone. Our
goal is to work toward developing such a synthesized longitudinal model of
change.

In this chapter, we present an extended empirical example to illustrate our
ongoing efforts to synthesize these models. Although we provide the basic equa-
tions and assumptions for the models that we estimate, our emphasis here is
on the application of these techniques to an empirical example. A more tech-
nical treatment of our models is presented elsewhere (Bollen & Curran, 1999,
2000). We open this chapter with a description of a theoretical substantive
question that motivates the development of the synthesized model. This is fol-
lowed by a brief introduction to the data for the empirical example. We then
present a review of the univariate and bivariate autoregressive simplex models
followed by a general description of the univariate and bivariate latent curve
models. In the next section, we propose the synthesis of the simplex and latent
curve model for both the univariate and bivariate cases. The simplex, latent
curve, and synthesized models are then systematically applied to the empirical
data set to evaluate a series of questions relating to the developmental relation
between antisocial behavior and depressive symptomatology in children over
time. We conclude with model extensions on which we are currently working
as well as directions for future research.

Developmental Relation Between Antisocial Behavior
and Depressive Sympiomatology

There has been a great deal of interest in the developmental relation between
antisocial behavior and depressive symptomatology over time, both in terms of
predictors ‘of change in these constructs and potential bidirectional relations
between them over time. Better understanding of these complex developmental
processes are important not only for establishing the etiology of these disorders
but also for helping inform prevention and intervention programs targeted at
internalizing and externalizing symptomatology. Recent empirical evidence sug-
gests that antisocial behavior and depressive symptomatology in childhood are
related to one another, both cross-sectionally (e.g., Capaldi, 1991) and longi-
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tudinally (e.g., Capaldi, 1992). Despite these important findings, the specific
nature of this developmental relation remains unclear. Specifically, it is not clear
if the continuous underlying developmental trajectories of these constructs are
related to one another or if instead the underlying trajectories are rather inde-
pendent of one another but the time-specific levels of symptomatology are
related over time.

For example, it may be that a steeply increasing developmental trajectory
of antisocial behavior across time may influence the corresponding underlying
trajectory of depressive symptomatology. Thus, the time-specific measures of
these behaviors do not relate directly to one another but instead the relation is
solely at the level of the continuous trajectory. Alternatively, these two under-
lying developmental trajectories may be relatively independent, but an elevated
level of antisocial behavior at a particular time point might be associated with
a subsequent elevation of depressive symptomatology at a later time point. In
this case, there are two sources of influence on the repeated measures over
time. The first is the influence from the underlying growth trajectory for that
particular construct (e.g., antisociality), and the second is the. influence from
the time-specific preceding measures on the other construct {(e.g., depression).
So the time-specific observed measures of antisocial behavior are due to a com-
bination of the continuous underlying developmental trajectory of antisociality
and time-specific influences of depressive symptomatology.

Although it is rather straightforward to hypothesize a theoretical model
such as this, current statistical methods are not well suited for empirically eval-
uating this model using sample longitudinal data (Curran & Hussong, in press).
It is ironic that there are two well-developed anatytic approaches that can be
used to examine one component of the theoretical model or of the other but
not of both. The Markov simplex modeling approach is well suited for exam-
ining the time-specific relations between two constructs over time, and the
growth modeling approach is well suited for examining relations in individual
differences in continuous developmental trajectories over time. At this point,
there is no well-developed strategy for examining both of these components
simultaneously (but see chapter 5, by McArdle and Hamagami, ih this volume,
for an important alternative approach to dealing with a similar type of problem).
The development of such a model serves two key purposes. First, this technique
allows for a comprehensive empirical evaluation of the developmental relation
between antisocial behavior and depressive symptomatology over time. Second,
this technique can be generalized and applied to many other types of longitu-
dinal settings to evaluate similar types of questions.

Data for an Applied Example

The empirical data come from the National Longitudinal Survey of Youth
(NLSY). The original 1979 panel included a total of 12,686 respondents, 6,283
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of whom were women. Beginning in 1986, an extensive set of assessment in-
struments was administered to the children of the original NLSY female re-
spondents and was repeated every other year thereafter. The data used here are
drawn from the children of the NLSY female respondents, and three key criteria
determined inclusion in the sample. First, children must have been 8 years of
age at the first wave of measurement, a sampling design that helps control for
developmental heterogeneity. Second, children must have data on all measures
we use for all four waves of measurement. Finally, the sample includes only
one biological child from each mother. On the basis of these three criteria, the
final sample consisted of 180 children (57% were male).

Although there are a variety of powerful options currently available for
estimating models with missing data (e.g., Arbuckle, 1996; Graham, Hofer, &
MacKinnon, 1996; Little & Rubin, 1987; B. O. Muthén, Kaplan, & Hollis,
1987; L. K. Muthén & Muthén, 1998), for purposes of simplicity we ignore
this complication to better focus on the proposed models. Of the initial 282
cases that met the selection criteria with valid data at Time 1, 29 (10%) were
missing at Time 2; 76 (27%) were missing at Time 3; 79 (28%) were missing
at Time 4; and 102 (36%) were missing one or more assessments at Times 2,
3, and 4. Thus, the final sample consisted of 180 (64%) of those children
eligible at Time 1 and with complete data at Times 2, 3, and 4, and subsequent
modeling results should be interpreted with this in mind.

Children’s antisocial behavior and children’s depressive symptomatology are
the two constructs we consider. Antisocial behavior was operationalized using
the mother’s report on six items that assessed the child’s antisocial behavior as
it had occurred over the previous 3 months. The three possible response options
were “not true” (scored (), “sometimes true” (scored 1), or “often true” (scored
2). We summed these six items to compute an overall measure of antisocial
behavior that ranged from 0 to 12. Depressive symptomatology was operation-
alized using the mother’s report on five items that assessed the child’s internal-
izing and depression symptoms having occurred over the previous 3 months
using the same response options as for antisocial behavior. We summed the five
items to compute an overall measure of depressive symptomatology with a
range from O to ten. The means, standard deviations, and correlations for the
four repeated measures of antisocial behavior and depressive symptomatology
are presented in Table 4.1.

The Longitudinal Markov Simplex Model

One of the most important approaches developed for the analysis of panel data
is the autoregressive or Markov simplex model. Its earliest development dates
back to the seminal work of Guttman (1954), who proposed a mode!l to ex-
amine the simplex structure of correlations derived from a set of ordered tests.

Autoregressive and Latent Curve Models

m

TABLE 4.1

d Four Repeated

.

ances, and Correlations for Four Repeated Measures of Antisocial Behavior an

ari
Measures of Depressive Symptomatology

Means, Variances, Covi

MEASURE

0.659

0.929
1.278
1.900
1.000
1.567
1.654
3.583
0.317

0.592

1.240
0.789
0.903
1.278
3.208
0.477

1.628
2.437
2.979
5.605

1.390 1.698
2,781

4.257

2.926

1. Time 1 antisocial

0.949
1.731

1.890
1.419

0.394
0.466

2. Time 2 antisocial

4.536
0.591

0.633
0.499

3. Time 2 antisocial

4.

2.420

1.004
1.706
3.994

0.402

Time 4 antisocial

0.988
1.170
1.146
3.649

0.237 0.301
0.333

0.214

0.405

5. Time 1 depression

0.212

0.458

0.173
0.287
0.202

6. Time 2 depression

0.471 0.223 0.462 0.437

0.327
0.241

7. Time 3 depression

0.535 0.289 0.306
2.178

2.322

0.426
1.978

8. Time 4 depression

2.294 2.222

2.489

1.928

1.750

180.

Note. Correlations are below the diagonal, covariances are above the diagonal, and variances are on the diagonal. All statistics are based on

N
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Anderson (1960), Humphreys (1960), Heise (1969), and Joreskog (1670, 1979)
further developed these univariate panel data models. The key characteristic of
the simplex model is that correlations decrease in magnitude as a function of
distance from the diagonal of the correlation matrix. When applied to longi-
tudinal data, this means that later measures have progressively lower correla-
tions with earlier measures as a function of increasing time. Furthermore,
change in the construct over time is an additive function of the influence of
the immediately preceding measure of the construct plus a random disturbance.
The path diagram for the model is presented in Figure 4.1. The equation for
the measured variable y at initial time period t = 1 is

Ya=oy + &, 4.1
and for subsequent time periods is
Yu = O + Pr—1Yi—1 + &, AA‘NV

where E(g,) = 0 for all i and ¢t and COV(g,, y;,-) = O forall i and t = 2, 3,
..., T. Furthermore, the variance of the measured y for all i at the initial time
period is

V(ya) = 8, (4.3)
and at subsequent time periods is
V(o) = pri-i V(- + 6, 4.9
with the expected value for the initial time period
E(ya) = o, 4.5)

and for subsequent time periods
E(yi) = o + pi @iy (4.6)

Each measure is only a function of the immediately preceding measure plus

FIGURE 4.1
Univariate Markov simplex model.
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a random disturbance. This is the source of the term autoregressive—the mea-
sure at each time point is regressed onto the same measure at the previous time
point. Variables assessed at times earlier than the immediately prior time have
no direct impact on the current value. An implication of this model is that the
correlation between time t and time t + 2 is zero when controlling for the
effects of time ¢ + 1; the influence of the measure at time t on the measure at
time t + 2 is entirely mediated by the measure at time ¢t + 1.

Another term for this autoregressive model is the univariate simplex model
because of the focus on only a single variable. This model can be directly
extended to the multivariate case with two or more distinct variables over time.
These panel data models that include additional explanatory variables received
considerable attention and development from several sources (e.g., Bohrnstedt,
1969; Campbell, 1963; O. D. Duncan, 1969; Heise, 1969; Joreskog, 1979). We
extend Fquation 4.2 to include both the autoregressive parameters and the
crosslagged coefficients that allow for influences across constructs (see Figure
4.2). These crosslags represent the longitudinal prediction of one construct from
the other above and beyond the autoregressive prediction of that construct from
itself. The initial measures remain as before, but subsequent measures on y are

Ve =0y T Ppp1Vie1 T PanaaZis T &y, 4.7)

indicating that the measure of y at time ¢ is a function of an intercept, the
weighted influence of y at time t — 1, the weighted influence of z at time
t — 1, and a random time-specific error, €, , that has a mean of zero and is
uncorrelated with y,,-, and z,.-,. An analogous equation holds for z,, and the
disturbances for these two equations are allowed to correlate. The substantive
interpretations of the crosslagged parameter is that an earlier measure of z

FIGURE 4.2
Bivariate Markov simplex model with correlated disturbances.
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predicts a later measure of y above and beyond the previous measure of y. This
is often referred to as an autoregressive crosslagged model.

Latent Curve Analysis

The preceding autoregressive univariate and bivariate models consider change
over time in terms of each variable depending on its immediately prior value
but not on its values for earlier periods. In addition, the autoregressive and
crosslagged effects are the same for each individual. Although advantageous in
many settings, this approach can be somewhat limiting when studying theo-
retical questions about individual differences in continuous developmental tra-
jectories over time. Growth models approach the question of change from a
different perspective. Instead of examining the time-adjacent relations of anti-
social measures, we use the observed repeated measures to estimate a single
underlying growth trajectory for each person across all time points. We can
think of this as fitting a short time series trend line to the repeated measures
for each individual. The x variable is time (where x ‘equals 0, 1, 2, 3 in the
case of four waves), the y variable is antisocial behavior, and we consider only
1 participant at a time. This line of best fit is an estimate of the individual’s
growth trajectory of antisociality over time. When a trajectory is fit to each
individual in the sample, a researcher can compute an average intercept and
average sicpe (sometimes called fixed effects) as well as the variability around
these averages (sometimes called random effects).

Such developmental trajectories have long been hypothesized from sub-
stantive theory, but it has historically been quite difficult to properly estimate
these trajectories statistically. There are several different approaches available for
the estimation of these types of models, and one important example is latent
curve analysis. Latent curve analysis is a direct extension of the structural equa-
tion model (SEM) that is common in the social sciences. The SEM approach
simultaneously estimates relations between observed variables and the corre-
sponding underlying latent constructs, and between the latent constructs them-
selves (Bentler, 1980, 1983; Joreskog, 1971a, 1971b; Joreskog & Sérbom,
1978). However, unlike the standard SEM approach, latent curve analysis ex-
plicitly models both the observed mean and covariance structure of the data
(McArdle, 1986, 1988, 1989, 1991; McArdle & Epstein, 1987; Meredith &
Tisak, 1984, 1990; B. Muthén, 1991).

From the SEM framework, the factor analytic model relates the observed
variables y to the underlying latent construct m such that

y=v+ An + &, (4.8)

where v is a vector of measurement intercepts, A is a matrix of factor loadings
(or measurement slopes), and € is a vector of measurement residuals. The latent
variable equation is
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n=a+ B+ (4.9)

where a is a vector of structural intercepts, B is a matrix of structural slopes,
{ is a vector of structural residuals, and V({) = ¥ represents the covariance
structure among the latent factors. The model-implied mean structure is given
as

Ey) =p=v+ Al - B)a, (4.10)
and the covariance structure is given as
V() =2 = A0 - B0 - BVA + O, (4.11)

Given that latent curve models are a direct extension of SEMs, one can use
standard software such as AMOS, EQS, LISREL, or MPlus to estimate these
models.

To estimate the variance components associated with the random growth
coefficients, the latent curve analysis imposes a highly restricted factor structure
on m through the A matrix. Consider an example in which there are T = 4
yearly measures of antisocial behavior collected from a sample of children. Two
latent factors are estimated, one representing the intercept of the antisocial
behavior growth trajectory (n,), and the second representing the slope (mp).
This model is presented in Figure 4.3. The factor loadings relating the four
antisocial measures to the intercept factor are fixed to 1.0 to define the intercept
of the antisocial growth trajectory. The factor loadings relating the observed
repeated measures to the slope factors are a combination of fixed and free
loadings that best capture the functional form of the growth trajectory over the
four time points. The initial approach is to fix the factor loadings to 0, 1, 2,
and 3 to represent straight-line growth. The estimated mean of the intercept
factor () represents the initial status of the antisocial growth trajectory aver-
aged across all individuals; the estimated variance of the intercept factor ()
represents the individual variability in initial levels of antisociality. Similarly, the
estimated mean of the slope factor (jug) represents the slope of the antisocial
trajectory averaged across all individuals, and the estimated variance of the slope
factor (ss) Tepresents individual variability in rates of change in antisociality
over time. Finally, the covariance between the intercept and slope factors is
denoted ,g. Thus, the observed repeated measures are expressed as

Y= Mo, T AMg, + E¢, (4.12)

where A, =0, 1, 2, 3 and
Moy = Mo T Lo, (4.13a)
Mp, = Kg + L. (4.13b)
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FIGURE 4.3
Univariate latent curve model,

€ €2 €3 €4

Substituting Equations 13a and 13b into Equation 12 leads to

v\w = AT_.R + v!t.mv + Aﬁf + v!ﬁm. + m..\_nv. AA..HA\V

where the first parenthetical term represents the fixed effect and the second
term represents the random effect. The variance and expected value can then
be expressed as

V(¥ = $a + Nibg + 20ag + 0, (4.15)
E(yi) = o + Apip. (4.16)

The latent curve model described above is considered univariate, given that
growth in a single construct is considered. However, this model can easily be
extended to a multivariate situation to consider change in two or more con-
structs over time. Technical details of this procedure were presented by
MacCallum, Kim, Malarkey, and Kiecolt-Glaser (1997) and McArdle (1989), and
sample applications include Curran and Hussong (in press); Curran, Stice, and
Chassin (1997); S. C. Duncan and Duncan (1996), and Stoolmiller (1994).
Conceptually, the multivariate growth model is simply the simultaneous esti-
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mation of two univariate growth models. A researcher estimates growth factors
for each construct, and typically the relation between changes in the construct
over time is modeled at the level of the growth factors. That is, we allow
covariances among the factors across constructs, or, alternatively, one growth
factor might be regressed onto another growth factor to examine unique pre-
dictability across constructs. Regardless of how an analyst estimates these, it is
important to note that the relations across constructs are typically evaluated at
the level of the growth trajectories, not at the level of the repeated measures
over time.

Fach of these modeling approaches is uniquely suited to examining a par-
ticular form of change over time. The autoregressive simplex explicitly models
the time-specific relations within and between repeated measures of one or
more constructs, whereas the latent curve model explicitly models these rela-
tions strictly at the level of the continuous trajectory believed to underlie these
same repeated measures. It would be valuable in many areas of applied research
to be able to simultaneously take advantage of the strengths of each of these
approaches. Furthermore, it also would be useful to know whether the auto-
regression, the latent curve model, or some combination of these models best
describes the data. To address these issues, we now work toward combining
the autoregressive simplex and latent curve modeling strategies into a single
comprehensive model of change over time.

Combined Autoregressive Latent Curve Model

This synthesis proceeds in a straightforward manner, and we begin with the
univariate case presented in Figure 4.4. The mode! includes a random intercept
and slope factor from the latent curve model to capture the continuous under-
lying growth trajectories over time. It also incorporates the standard autore-
gressive simplex parameters to allow for the time-specific influences between
the repeated measures themselves. Whereas the means and intercepts are part
of the repeated measures in the simplex model, the mean structure enters solely
through the latent growth factors in the synthesized model. This param-
eterization results in the expression of the measure of construct y for individual
i at time point t as

Yu= Mo, + AN, T PV T & (4.17)

which highlights that the time-specific measure of y is an additive function of
the underlying intercept factor, the underlying slope factor, a weighted contri-
bution of the prior measure of y, and a time-specific random error term that
has a mean of zero and that is uncorrelated with the righthand side variables.
Viewing the model from this equation one sees that the simplex and latent
curve models are not necessarily in competition as to which is proper or im-



118 CURRAN AND BOLLEN

FIGURE 4.4
Univariate simplex latent curve model.
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proper, but instead each is a restricted variation of a more comprehensive
model.

Some implications of Equation 4.17 that are not immediately obvious con-
cern the “factor loadings” of y,; on m, and mj,. In the usual latent curve model
these loadings are fixed to 1 and 0, respectively. However, in the presence of
an autoregressive structure for y, this is no longer true. The reason is that
implicit in this model is that y;, depends on y,, which in turn depends on
¥ -1, on back to the earliest possible value of y. Furthermore, each of these
earlier (unavailable) ys would be influenced by m,, and n,. Figure 4.5 represents
these omitted earlier measures of y and their positions in the model in gray
and the positions of the observed measures in black. As a result of these omitted
ys, the factor loadings of y, on m, and on mg, depart from their values in a
standard latent curve model. More specifically, the factor loading for y at time
t=1onm,is

1

Mo = ——
la H_,l“u,

and the factor loading for y at time t = 1 on my is

|l|lvl
A = 1 - vvwv, (4.19)

(4.18) .

FIGURE 4.5
Univariate simplex latent curve model with omitted measures preceding
Time 1.
Yo | —beoeoos Yo — Yy — <N <u v <A

for which we assume that the autoregressive parameter is equal for all ¢ (p, ,—;
= p) and that |p| < 1. As p — 0, then A, —> 1 and X\,;, — 0, which corresponds
precisely to the values imposed in the standard latent curve model. However,
as the value of p departs from zero, then fixing these factor loadings to 1.0 and
0 becomes increasingly restrictive and likely leads to bias elsewhere in the
model. The technical developments that lead to these results are presented in
Bollen and Curran (2000) in which we also propose a form of this model that
treats the y, as “predetermined” so that these nonlinear constraints are not
needed.

We can extend this univariate combined model to the multivariate case to
examine these relations both within and across constructs. Here, the measure
of y at time t for individual i is composed of the influence from the growth
factors underlying y, the prior measure of y, and now the prior measure of,
say, z. This leads to

Vi = Na, + AN, + PyiVimr T Pru—1Zia T B (4.20)

This combined bivariate autoregressive latent curve model is presented in Figure
4.6, in which the omitted lagged measures described above are portrayed in
gray and the observed measures are portrayed in black. This model highlights
that a given measure of y is an additive combination of the continuous growth
process underlying y, the weighted influence of the preceding measure of y,
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FIGURE 4.6

Mutltivariate simplex latent curve model with omitted measures
Time 1.

preceding
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the weighted influence of the preceding measure of z, and a time-specific ran-
. 1 .

dom disturbance. The model simultaneously and explicitly incorporates the

strengths of both the autoregressive simplex and the latent curve model and

'Several colleagues have suggested that instead of modeling autoregressive structur
among the observed measures we instead model these effects directly among the QEM
specific residuals. We do not pursue this strategy given our desire to Bozm explicitl
combine the autoregressive (simplex) and growth curve modeling traditions. mmmﬁmo_nw

stein, Healy, and .
residuals y, and Rasbash (1994) for an example of autoregressive structures among
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allows for a more comprehensive evaluation of change in one or more con-
structs over time.

To demonstrate this approach, we will now apply a series of simplex
and latent curve models to an empirical data set to evaluate the develop-
mental relation between antisocial behavior and depressive symptomatology
over time.

An Applied Example of the Autoregressive, Latent
Curve, and Synthesized Models

We now incrementally illustrate the univariate and multivariate models that we
presented in the previous sections. We apply these to the relation between
antisocial behavior and depressive symptomatology in the sample of N = 180
eight-year-old children.

Tests of Equality of Means Over Time: Antisocial Behavior

Although the summary statistics presented in Table 4.1 suggest that both the
means and variances of antisocial behavior are increasing as a function of time,
a more formal test of this relation is necessary. There are a variety of methods
for executing such a test (e.g., paired t test, repeated-measures analysis of var-
iance), but we evaluate the mean structure using an SEM approack.. The ad-
vantage of this technique is that an extension of this mean difference model
allows the estimation of both the simplex model and the latent curve model.
We fit this model of equal means to the four antisocial-behavior measures. We
did not constrain the variances and covariances of the repeated measures, and
we placed no equality constraints on the means of the four measures. This
model is just identified and thus has a chi-square value of zero. Next we im-
posed equality constraints on the four means, which resulted in x°(3, N =
180) = 11.1, p = .011; incremental fit index (IFI) = .96, root mean square error
of approximation (RMSEA) = .12, 90% confidence interval (CI) = .05, .20 (see
Steiger & Lind, 1980, and Browne & Cudeck, 1993, for a description of the
RMSEA; and Bollen, 1989, for a description of the IFI). On the basis of this
poor model fit (e.g., although the IF1 exceeded .95, this was in the presence of
a significant chi-square and an RMSEA exceeding .10), the null hypothesis that
all means are equal over time is rejected. In a moment, we will use a latent
curve model to examine the patterning of these means as a function of time.

The Simplex Model With Means: Antisocial Behavior

We now fit the univariate simplex model to the four repeated measures of
antisocial behavior. Given the findings of the mean difference model, we begin
by including means in the simplex model. Although in the traditional simplex
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modeling approach the mean structure is usually omitted, this is not necessary.
The baseline simplex model has each variable at a given time regressed onto
its immediately preceding variable value. We estimate the mean and variance
for the Time 1 measure and the intercepts and disturbance variances for the
Times 2, 3, and 4 measures without any equality constraints. The model fit the
data quite poorly, x*(3, N = 180) = 29.04 p < .001; IFl = .88; RMSFA = .22;
90% Cl = .15, .30. Next we include a series of equality constraints starting with
the three autoregressive parameters, then on the variances of the three distur-
bances and, finally, on the three intercepts. None of these constraints led to
statistically significant decrements in model fit relative to the baseline model,
yet the final model still fit the observed data poorly, x(9, N = 180) = 40.58,
p < .001; IF1 = .86, RMSEA = .14, 90% CI = 10, .19, These results
strongly suggest that the simplex model does not provide an acceptable repro-
duction of the observed covariances and mean structure of antisocial behavior
over time.

The One-Factor Latent Curve Model: Anfisocial Behavior

Given the clear rejection of the autoregressive simplex structure of the relations
among the four antisocial measures over time, we turn to a one-factor random
intercept model. This one-factor model is an intercept-only latent curve model
and is functionally equivalent to a one-factor repeated-measures analysis of
variance with random effects (Bryk & Raudenbush, 1992). Unlike the simplex
model, in which each later measure is influenced only by the immediately
preceding measure, the random-intercept model hypothesizes that all repeated
measures are equally influenced by a single underlying latent factor and that it
is this shared influence that is responsible for the observed covariance and mean
structure. This model also implies that there is a stable component underlying
the repeated measures over time that is not changing as a function of time,
Given the earlier rejection of the equal-means model, we do not expect this
model to fit well. Consistent with this prediction, the one-factor intercept model
fit the observed data poorly, x*(8, N = 180) = 41.8, p < .001; IFI = .85; RMSEA
= .15, 90% CI = .11, .20). The latent intercept was characterized by both a
significant mean (ji, = 1.96) and variance W, = 2.12), suggesting an important
underlying stable component of the four measures. However. given the poor
model fit, additional components of growth are likely necessary.

The Two-Factor Latent Curve Model: Anfisocial Behavior

We re-estimated the random intercept model with the addition of a second
latent factor to account for potential systematic change as a function of time.
This second factor is a slope factor in latent curve analytic terms. The addition

Autoregressive and Latent Curve Models dww

of this second factor led to a significant improvement in model fit over the one-
factor model, x*(6, N = 180) = 14.8, p = .022; IF1 = .96; RMSEA = .09; 90%
Cl = .03, .15. The intercept and slope mwnﬁmam had mwmammmsﬁ means (fi, = 1.73
and {ig = .17, respectively) and variances (s, = 1.67 mb,m Py = .No,. «mm@mm?\m_%y
indicating that there not only is evidence for a Bme:mm.E starting point and
positive rate of linear change in antisocial behavior over time but also substan-
tial individual variability in these growth factors.

The Two-Factor Latent Curve Model With Autoregressive Parameters:
Antisocial Behavior

Up to this point, we have treated the autoregressive ﬂEE.mx and latent curve
models as independent approaches to modeling the relations H&dosm the re-
peated measures of antisocial behavior over time. Zoi.mswﬁ given that Goﬁ#
modeling strategies analyze the observed covariance matrix and mean vector, it
seems logical to expect that these apparently separate models may m_‘.pm.qn a com-
mon parameterization. As a first step in working toward the synthesizing of the
autoregressive and latent curve model, we estimated the two-factor latent curve
model with the inclusion of the autoregressive parameters Gwz,\.mms the time-
adjacent measures of antisocial behavior. This model is meant 5 mﬂacymwdmo:m_v\
capture two components of change over time. The latent <m,ﬂm,c_.n parameters
represent individual variability in continuous rates of n.g:mm over time, érmammm
the autoregressive parameters represent group-level influences present m.: the
prior time point. We freely estimated the factor loadings between the Time 1
measure of antisocial behavior and the intercept and slope factors because of
the possibility that the loadings may take on values other %ms 0 and 1 as
described in Equations 4.18 and 4.19.* The mwaamﬁ.ma model <S& the autore-
gressive parameters did not result in a significant improvement in model fit,
(1, N = 180) = 3.12, p = .08; IFI = .99; RMSEA = 11; on* Cl = 0, .25,
beyond that for the latent curve model only Equality constraints on Nw: @:&m
autoregressive parameters did not significantly degrade model fit, x*(3, N tm
180) = 3.3, p = .35, IFI = .99; RMSEA = .02; 90% CI = 0, .13, and none o
the individual autoregressive estimates significantly differed from ano.Q >.10).
On the basis of these results, we concluded that the observed covariance and
mean structure are best captured with the two-factor latent curve model without

autoregressive structure.

igni i f these factor
*In the presence of a significant p parameter, a more formal m.<wEm:ob o M ol
loadings would include the imposition of a nonlinear constraint on \ as a func mow "
p. Given the near-zero estimates of p, we did not proceed with the imposition of the

nonlinear constraints.
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Tests of Equality of Means Over Time: Depressive Symptomatology

Before estimating the full multivariate model, we must repeat the above uni-
variate analyses for the four repeated measures of depressive symptomatology.
We begin by testing for the equality of the means of depressive symptomatology
across the four time periods using the same mode! we used for antisocial be-
havior. The first model had all parameters freely estimated and fit the data
perfectly given the model is just identified. A re-estimated model had an equal-
ity constraint placed on the observed means over the four time points. Unlike
antisocial behavior, the restriction of equal means for the four depression mea-
sures was not rejected, x’(3, N = 180) = 4.89, p = .18; IFI = .99; RMSFA =
.06; 90% CI =0, .15, indicating a single mean estimate for all four time points.

The Simplex Model With Means: Depressive Symptomatology

Next, we estimated the autoregressive simplex model. The baseline model had
no imposed equality constraints and fit the observed data poorly, x*(3, N =
180) = 28.7, p < .001; IFI = .80; RMSFA = .22; 90% CI = .15, .29. Equality
constraints on the regression parameters, then on the disturbances and finally
on the intercepts, did not result in a significant decrement in model fi, although
the final model still fit the data poorly, ¥*(9, N = 180) = 37.7, p < .001; IFi =
77, RMSEA = .13; 90% CI = .09, .18. So even though the means of depressive
symptomatology were equal over time, the simplex model still resulted in a
poor fit to the observed data.

The One-Facfor Latent Curve Model: Depressive Symptomatology

Given the poor fit of the simplex model, we then tested a one-factor latent
variable model in which the factor mean and variance were freely estimated
but all factor loadings were fixed to 1. This mode! fit the data quite well, x*(8,
N =180) = 11.51, p =17, IF1 = 97; RMSEA = .05;90% CIl =0, .11, suggesting
that the observed covariance and mean structure are well replicated given the
presence of a single random-intercept factor. There was a significant mean of
the latent factor, suggesting meaningful levels of depressive symptomatology in
the sample, and there was a significant variance, suggesting meaningful indi-
vidual variability in these levels of depression.

The Two-Factor Latent Curve Model: Depressive Symptomatology

To test if an additional factor was necessary to account for systematic change
over time, we added a linear slope factor to the above model. The addition of
this factor did not significantly improve the overall model fit, and the mean
and variance of the slope factor did not significantly differ from zero. This
suggests that although there is a random-intercept component underlying the
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four depressive symptomatology measures, there is no corresponding random-
slope component. Indeed, this finding is consistent with the initial equal-means
model that suggests that the means did not vary as a function of time. Thus,
there is no evidence to retain the linear slope factor.”

The Bivariate Autoregressive Crosslagged Model: Antisocial Behavior
and Depressive Symptomatology

The motivating goal of these analyses is to empirically examine the relation
between antisocial behavior and depressive symptomatology over time. Now
that we better understand the characteristics of stability and change within each
construct, we can proceed to the simultaneous evaluation of these constructs
across the four time periods. We start by combining the two simplex models
described above; this allows for the introduction of the important crosslagged
parameters across construct and across time. Although this model was built in
a series of sequential steps (see Curran et al., 1997, for more details), only the
final model is presented here, which was found to fit the data poorly, x*(26, N
= 180) = 95.1, p < .001; IFI = .86; RMSEA = .12; 90% CI = .10, .15. The
model includes all impoesed equality constraints with the exception of equalities
on the intercepts within each construct at Times 2, 3, and 4. Findings indicate
that there were large and significant positive regression parameters between
time-adjacent measures within each construct. Furthermore, there were positive
significant covariances of the disturbances within each time across the two
constructs. Finally, whereas earlier depressive symptomatology did not predict
later antisocial behavior, earlier antisocial behavior did significantly and posi-
tively predict later depressive symptomatology. Both of these crosslagged effects
are evident even after controlling for the previous measure of each construct.
For example, Time 1 antisocial behavior predicted Time 2 depressive sympto-
matology above and beyond the effects of Time 1 depressive symptomatology.

These results thus suggest that there is a relation between depressive symp-
tomatology and antisocial behavior over time, but only in that earlier antisocial
behavior predicts later depressive symptomatology, not vice versa. However, two
important issues remain. First, although these crosslagged parameters were sig-
nificant, these are drawn from a model that fits the observed data quite poorly,
and biased parameter estimates and standard errors are likely (e.g., Kap-
lan, 1989). Second, previous analyses indicated that both antisocial behavior

3Given the pattern of means that first increased and then decreased as a function of
time, we estimated an additional model that included three growth factors: an intercept,
a linear slope, and a quadratic slope. However, there was a nonsignificant mean and
variance for the quadratic factor, indicating that there was not 2 meaningful curvilinear
component to changes in depression over time.
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and depressive symptomatology are characterized by one or more random
growth parameters, influences that are not incorporated into this bivariate fixed-
effects simplex model. To address these issues, we will now tum to a bivariate
latent curve model.

The Bivariate Latent Curve Model: Antisocial Behavior
and Depressive Symptomatology

We first estimated our baseline bivariate latent curve model that consisted of
the combination of the two univariate latent trajectory models from above (see
Figure 4.7). Additional parameters included the three covariances among the
latent growth factors and within time covariances for the time-specific residuals.
As expected, this baseline model did not reflect adequate fit, x*(23, N = 180)
= 54.45, p < .001; IFl = .94; RMSEA = .09; 90% CI = .06, .12. We introduced
a series of equality constraints on the variances of the disturbances across time
and within construct, as well as the covariances within time and across con-
struct. None of these equality constraints resulted in a significant deterioration
in model fit, and the final model fit the data moderately well, x*(32, N = 180)
= 629, p < .001; IFI = .94; RMSEA = .07; 90% CI = .05, .10. Parameter
estimates indicated that the three latent factors were positively and significantly
correlated with one another (correlations ranged between .44 and .53), indi-
cating that there was meaningful overlapping variability in the components of
growth underlying the repeated measures of antisocial behavior and depressive
symptomatology. Of greatest interest was the significant positive relation be-
tween the depressive symptomatology intercept and the antisocial slope. This
correlation suggests that individual differences in the stable component of de-
pressive symptomatology are positively associated with increases in antisociality
over time. That is, on average, children with a higher stable component of
depressive symptomatology tended to report steeper increases in antisocial be-
havior relative to children who reported lower stable levels of depressive symp-
tomatology.

This finding has direct implications for our research hypotheses of interest.
Namely, there does appear to be a relation between antisocial behavior and
depressive sympromatology over time. However, this finding highlights one of
the limitations of this model. Although empirical evidence suggests these two
constructs are related over time, this relation holds only for the stable contin-
uous component underlying antisociality and depression over time—that is, it
is difficult to infer temporal ordering or a possible direction of influence; we
can only observe that these two constructs are related in a potentially important
way. To allow for the simultaneous influence of both the random underlying
components of change with the time-specific fixed components of change, we
now combine the crosslagged effects from the simplex model with the growth
factors of the latent trajectory model.
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FIGURE 4.7

Standard bivariate latent curve model without logged effects between
indicators. Dep = depression; Anti = antisocial behavior.
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The Bivariate Crosslagged Latent Curve Model: Antisocial Behavior
and Depressive Symptomatology

We extended the latent curve model by adding crosslagged effects in which
we regressed a later measure of one variable onto the prior measure of the other
variable. These parameters resulted in a significant improvement in model fit,
x*(26, N = 180) = 54.9, p < .001; IFI = .94; RMSEA = .08; 90% CI = .05, .11.
Before interpreting the final model, we imposed additional equality constraints
on the lagged effects, and none of the constraints resulted in a significant dec-
rement to model fit. The final model fit the data moderately well, (30, N =
180) = 55.3, p = .003; IFI = .95; RMSEA = .07; 90% CI = .04, .10, and is
presented in Figure 4.8. All three growth factors were positively and signifi-
cantly correlated with one another. Furthermore, although earlier measures of
depression did not predict later levels of antisocial behavior, earlier levels of
antisocial behavior did significantly predict later levels of depressive sympto-
matology. Note that this prospective lagged prediction is evident after the in-
fluences of the underlying latent growth processes have been partialed out.
Thus, this bivariate latent trajectory model with lagged effects allows for the
estimation of both the stable component of development over time (as captured
in the latent factors) and time-specific differences in antisocial behavior or de-
pressive symptomatology at any given time point. This is an extremely impor-
tant combination of influences that neither the simplex nor the latent trajectory
model allows when taken alone.

Summary of Substuntive Findings Relating to Antisocial
Behavior and Depressive Symptomatology

The series of simplex and latent curve models provides a great deal of insight
into the relations between antisocial behavior and depressive symptomatology
over an 8-year period in this sample of children. First, we found developmental
changes in antisocial behavior to be positive and linear for the overall group.
In addition, there was a significant amount of variability in both the starting
point and the rate of change of antisociality over time; some children were
increasing more steeply, some less steeply, and some not at all. Second, a similar
systematic developmental trajectory over time did not exist for depressive symp-
tomatology. There was a stable component of depressive symptomatology that
was characterized by significant individual variability indicating that some chil-
dren were reporting higher levels of depression over time whereas others were
reporting lower levels or none at all. However, theré was not a significant re-
lation between depressive symptomatology and time. Third, both modeling ap-
proaches indicated that antisocial behavior and depressive symptomatology
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FIGURE 4.8

Bivariate simplex latent curve model including lagged effects between
indicators. Dep = depression; Anfi = antisocial behavior.
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were related over time in important ways. The latent curve model suggests that
children who report higher baseline levels of depression tend to report steeper
increases in antisocial behavior over time. However, the crosslagged models
suggest that earlier levels of antisocial behavior are associated with later levels
of depression but not vice versa.

It was only the synthesized autoregressive latent curve model that allowed
for a simultaneous estimation of both of these stable and time-specific effects.
The latent curve component of the model estimated the portion of variability
in the repeated measures that was associated with a continuous underlying
developmental trajectory of antisocial behavior or depressive symptomatology.
At the same time, the simplex crosslagged effects indicated that, after controlling
for the variability associated with the developmental trajectories, earlier anti-
sociality predicted later depression, but earlier depression did not predict later
antisociality. Taken together, these models provide important information that
helps further our understanding about these complicated developmental issues.

Extensions of the Crosslugged Latent Curve Model

The proposed modeling strategy is expandable in a variety of ways. For ex-
ample, one could regress the latent growth factors onto exogenous explanatory
variables to better understand .individual differences in change over time. In
analyses not presented here because of space constraints, we regressed the
growth factors defining antisocial behavior and depressive symptomatology
onto family-level measures of emotional and cognitive support in the home (see
Curran & Bollen, 1999, for details). The results suggest intriguing relations
between these home support measures and individual differences in develop-
mental trajectories over time. Additional explanatory variables could be incor-
porated to model variability both in the latent growth factors as well as directly
in the repeated measures over time.

A second important extension uses the strength of the SEM framework for
analyzing interactions as a function of discrete groups. An important example
of this would be the examination of potential interactions between a child’s
gender and the relation between antisociality and depression over time. Again,
in additional analyses not reported here, we evaluated gender differences in
these models using a multiple-group estimation procedure, and the results sug-
gest that the relation between antisociality and depression may interact as a
function of gender (see Curran & Bollen, 1999). These techniques could be
extended further by combining the synthesized models discussed here with the
analytic methods proposed by Curran and Muthén (1999) and B. O. Muthén
and Curran (1997), which would allow for the evaluation of whether two de-
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velopmental processes could be “unlinked” from one another over time because
of the implementation of a prevention or treatment program.

A third extension would be to further capitalize on the strengths of the
SEM approach and to use multiple-indicator latent factors to define the con-
structs of interest within each time point. For example, instead of using a single
scale score to measure antisocial behavior or depressive symptomatology, an-
alysts could use latent factors to estimate these constructs and would thus be
theoretically free from measurement error. Given the difficulty of measuring
many constructs in the social sciences, incorporating the presence of measure-
ment error is an important aspect in any modeling approach; Sayer and Cum-
sille (chapter 6, this volume) explore this issue.

Finally, although we found that earlier antisocial behavior was related to
later depressive symptomatology, little is known about precisely why this effect
exists. To better understand the relation between these two constructs over time,
it would be very important to include potential mediators that might account
for this observed effect. For example, it may be that higher levels of antisocial
behavior are associated with greater rejection from positive social groups, and
this social rejection is associated with greater isolation and depression. These
models could be directly extended to include the influences of social rejection
given the availability of appropriate data.

Conclusion

The simplex model and the latent curve model are both important tools for
understanding change over time. However, each approach is limited in key ways
that preclude drawing comprehensive inferences about change and develop-
ment from observed mavin& data. Although these limitations are difficult to
overcome when considering only one modeling approach or the other, we be-
lieve that significant improvements are possible by combining elements drawn
from each analytic approach to create a more general model of development
and change. Of course, there are a variety of situations in which the simplex
model or the latent curve model taken alone is well suited to evaluate the
particular research hypotheses at hand. An advantage of the proposed frame-
work is that under such conditions, the synthesized model directly simplifies
to either the standard simplex model or the latent curve model (Bollen &
Curran, 2000). However, under conditions in which there is interest in both
continuous underlying trajectories and time-specific influences across con-
structs, we believe that the proposed modeling approach provides a powerful
and flexible tool to help elucidate these complex relations over time.
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