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Random effects growth models provide a powerful and flex-
ible statistical tool to behavioral researchers for the study
of individual differences in stability and change over time.
Within the hierarchical linear modeling {HLM) framework,
the functional form of the relationship between the repeated
measures and time is specified in the level 1 model. Indi-
vidual variability in initial levels and in rates of change may
then be modeled as a function of one or more predictor vari-
ables specified in the level 2 model. In growth models, the
inclusion of a main—effect predictor at level 2 represents an
implicit “cross—level” interaction with the level 1 predictor,
time. While this relation is clearly recognized within the
HLM literature, cross-fevel interactions are not often more
closely investigated using classical techniques such as test-
ing of simple slopes and computing regions of significance.
Here we demonstrate that methods for testing and probing
interactions in the standard regression model can be general-
ized to a broad class of hierarchical linear models. Within the
growth model, these techniques provide essential information
for interpreting specifically how the relationships of predic-
tors to the repeated measures change over time. This ap-
proach extends naturally to the examination of multiplicative
interactions between level 2 variables, which then constitute
three—way cross—level interactions with time. We present an-
alytical developments and illustrate the use of these meth-
ods using an empirical example drawn from the Longitudinal
Study of Optimal Aging.
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4.1 Introduction

The basic premise behind growth modeling is that a set of repeated
measures observed on a given individual can be used to estimate
an unobserved trajectory that is believed to have given rise to the
set of repeated measures. Once estimated, these trajectories then
become the primary focus of analysis. Although easy to describe,
growth models can be remarkably vexing to compute. Early ex-
amples of modeling individual trajectories include Gompertz (1825);
Palmer, Kawakami, and Reed (1937); and Wishart (1938). Although
both ingenious and well ahead of their time, these early attempts
were limited by significant statistical and computational problems.
Important recent developments in statistical theory and high-speed
computing have allowed us to overcome many of these earlier limi-
tations. Thanks to the work of Bryk and Raudenbush (1987); Gold-
stein (1986); McArdle (1988, 1989, 1991); Meredith and Tisak (1984,
1990), D. R. Rogosa and Willett (1985), and many others, there are
now several statistical approaches that can be used to estimate a
broad class of random effects trajectory models.

Within the social sciences, the two primary approaches to mod-
eling longitudinal trajectories are based on the structural equation
modeling (SEM) and the hierarchical linear modeling (HLM) frame-
work. The SEM approach defines the repeated measures to be mul-
tiple indicators of one or more latent factors that are believed to rep-
resent the unobserved underlying random trajectories (e.g., Meredith
& Tisak, 1984, 1990). In contrast, the HLM approach considers the
repeated measures to be nonindependent observations nested within
each individual and thus treats this as a hierarchically nested data
problem (e.g., Bryk & Raudenbush, 1987). It has been shown that
under some conditions, the SEM and HLM approaches to modeling
trajectories are analytically equivalent, whereas in others they are
not {MacCallum, Kim, Malarkey, & Kielcolt~Glaser, 1997; S. Rau-
denbush, 2001; Willett & Sayer, 1994).

Our topic of interest here is the testing and probing of higher—
order interactions in the analysis of individual trajectories from the
HLM perspective. It has long been known that a HLM with a single
level 1 predictor and a single level 2 predictor results in a “cross—
level” interaction in the reduced form model (e.g., Equation 2.21,
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S. W. Raudenbush & Bryk, 2002). Such cross-level interactions are
quite common in many HLM applications, especially models of indi-
vidual trajectories. Despite the fact that cross-level interactions arise
from the hierarchical nature of the model, this interaction is of the
very same multiplicative form as occurs in the usual ordinary least
squares (OLS) regression model (e.g., Aiken & West, 1991). In OLS
regression, it has become standard to test and probe such higher—
order interactions; however, there is limited evidence of widespread
use of these same methods within HLM in general, and in the HLM
approach to trajectory modeling in particular.

We are aware of a small number of examples in which probing
of cross-level interactions has been used to aid in the interpretation
of results from an HLM analysis (e.g., Bryk & Raudenbush, 1987,
p. 154; Singer, 1998, p. 345; Willett, Singer, & Martin, 1998, p.
423). However, even in these important examples of probing cross—
level interactions, the simple slopes of the probed relations were used
more descriptively and were not formally tested as is typically done in
OLS regression models. We believe that routinely incorporating such
probing techniques in HLM would allow researchers to more fully
capitalize on the information available from the models and would
strengthen inferential tests of theoretically derived hypotheses.

It is not clear why these techniques are not more widely used in
HLM applications. One reason may be that, to our knowledge, it has
not yet been clearly demonstrated that methods developed in OLS
regression can be generalized to the HLM setting. Our first moti-
vating goal is thus to demonstrate that the methods used for testing
and probing interactions in standard OLS regression can indeed be
generalized directly to HLM as well. Further, although the methods
we describe here apply to a broad class of HLMs, our second goal is
to focus explicitly on the analysis of individual trajectories. We argue
that the testing and probing of interactions is not only of great use
when interpreting complex model results, but such techniques should
almost always be used when considering the effects of predictors of
individual change over time. Finally, we will augment our analytical
developments with the presentation of a fully worked empirical ex-
ample in hopes that applied researchers might consider using these
techniques in practice.
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Although we focus here exclusively on the HLM approach to mod-
eling individual trajectories, all of our developments and conclusions
generalize directly to the SEM approach as well. We detail these ex-
tensions to SEM in Curran, Bauer, and Willoughby (2004). Because
of the analytical overlap in the SEM and HLM approaches, there is
logically much corresponding overlap between the work we discuss
here and that which we presented in Curran et al. (2004). The core
differences between the 2004 paper and this chapter is that here we
focus exclusively on the HLM approach to modeling trajectories and,
in the spirit of the topic of this book, we present a detailed worked
example drawn from the empirical study of aging. Please see Curran
et al. (2004) for a presentation of these ideas as manifested within
the SEM approach, and for the detailed explication of an alternative
empirical example.

We begin with a brief introduction to the empirical data set we
will use to demonstrate our various modeling strategies. We then in-
troduce the unconditional trajectory model followed by a conditional
trajectory model with a single dichotomous predictor and a single
continuous predictor. We show how these conditional models contain
implicit cross—level interactions with time, and we propose methods
for testing and probing these interactions as might be done in the OLS
regression model. We then extend this conditional HLM to include
higher—order interactions within level 2 and similarly demonstrate
how to test and probe the cross—level interactions of the level 2 inter-
action terms with time. We conclude with a discussion of potential
limitations and directions for future research.

4.1.1 Motivating Empirical Example

To demonstrate our proposed methods, we fit a series of models to
data drawn from the Longitudinal Study of Optimal Aging (LSOA;
see Bisconti & Bergeman, 1999, and Wallace & Bergeman, 1997, for
further details). Briefly, the LSOA was designed to follow the health
outcomes of older adults and consists of two subsamples of partici-
pants. At the first wave of assessment, the first subsample consisted
of 250 participants over 65 years of age. Three follow—up assessments
were conducted, spaced approximately 3 years apart. The second sub-
sample consisted of 301 participants over age 55 who were followed for
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a total of three waves of data collection, again spaced approximately
3 years apart. The maximum age at assessment between the two
subsamples was 96 years of age. The high level of variability in age
of assessment suggested that HLM would be an optimal data anal-
ysis approach. Our analyses include respondents who had complete
data at their first wave of assessment, with possible missing data at
later time periods (N = 439). Up to four repeated measures were
obtained on a physical health scale scored as the sum of five items
which ranged from 0 to 14 with higher values indicating worse health.
Here we consider two predictors: the sex of the participant (where 0
denotes female and 1 denotes male) and perception of social support
received from relatives scored as the sum of eight items which ranged
from 8 to 34 with higher scores indicating greater support from rela-
tives. Social support was grand mean centered for all analyses. The
substantive questions of interest center on the trajectories of change
over time in reported physical health problems and whether individ-
ual trajectories systematically vary as a function of (a) subject sex,
(b) perceived social support from relatives, and (c) the interaction
between sex and perceived social support.

4.1.2 The Unconditional Random Trajectory Model

The random effects trajectory model can be thought of as a two-level
model: The first level estimates a model within individual across time
(i.e., intraindividual change), and the second level estimates a model
across individuals (i.e., interindividual differences in intraindividual
change). The population level 1 (or within person) equation for the
standard linear growth model is

Vit = o + Biaq + &, (4.1)

where y;; is the dependent measure assessed on individual i = 1,2, ...N
at timepoint ¢ = 1,2,...T, a; is the measure of time that is allowed
to vary over individual 4 and is typically coded a;; = 0,1,...,T; — 1,
and ¢;; is the random residual error for individual i at timepoint ¢.1+2

! Although our netation differs substantially from the standard HLM notation
used by S. W. Raudenbush and Bryk (2002), we retain our current notational
scheme to correspond to similar models used in the SEM trajectory model.

2There are many different strategies available to code the passage of time, but
we do not explore these in detail here. Throughout this discussion, we utilize a
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Given this formulation, o; and §; represent the individual specific
intercept and slope of the trajectory of y: over time for person i.
These individually varying intercepts and slopes are then treated as
random variables and can be expressed as a population level 2 model
such that

Q; = fa+ A.Dﬁ. Ahmv
Bi B+ Cpi-

The level 1 and level 2 distinction is for heuristic value only, and
the level 2 equations can be substituted into level 1 to result in the
“reduced form” equation

Vit = (B + pp0it] + [Ca; + aitlp, + cit)- (4.3)

From this, the population mean of y at time ¢ can be expressed as

Hy, = fo + ppat. (44)

The expected values (or fixed effects) of the intercept and slope
are E(o;) = po and E(f;) = pg, respectively, and these values rep-
resent the mean intercept and mean slope of the trajectory pooling
over all individuals in the sample. The variances (or random effects)
of the intercept and slope are VAR(;) = 1, and VAR(B;) = g,
respectively, with covariance COV(a;3;) = Yag, and these values
represent the degree of individual variability around the mean inter-
cept and slope values. Finally, the variance of the level 1 residual
is VAR(ey) = o, highlighting the standard (but not required) as-
sumption of homoscedasticity of residuals over individual and time.
This value represents the degree of error that exists in the estimation
of the trajectory parameters. The analytical goal of the model is to
estimate these parameters from our observed data.

To demonstrate the model in Equations 4.1 and 4.2, we fit an un-
conditional HLM to the four repeated measures of health perceptions
from the LSOA. Time (i.e., ai) was measured in years and centered

time coding scheme that begins with zero and allows for the intercept factor to be
interpreted as the beginning of the trajectory. See Biesanz, Deeb—Sossa, Aubrecht,
Bollen, and Curran (2004) and Metha and West (2000) for further discussion of
these important issues.
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at age 55 (i.e., aix = agey — 55) so that that intercept of the trajec-
tory was defined as the model-implied value of health status at age 55
(the youngest observed age in the sample at the initial assessment).
As expected, the mean of the individual intercepts (fia = 1.74) was
significantly different from zero (¢(438) = 6.15, p < .0001), indicat-
ing a significant level of health concerns even at age 55. The mean
of the individual slopes (fig = .143) was also significantly different
from zero (¢(540) = 9.90, p < .0001) indicating that, on average,
reported health problems increased linearly? between age 55 and 96.
The model-implied mean trajectory is presented in Fig. 4.1. Further,
there was significant variability in both the intercept and slope tra-
jectory components indicating the presence of meaningful individual
differences around the mean trajectory. Thus, although the mean
trajectory of health problems is increasing over time, there is sub-
stantial individual variability around this trajectory over time. We
would next like to move toward predicting this individual variabil-
ity as a function of sex and social support to better understand the
developmental process of perceived health problems.

Figure 4.1: Model-implied mean trajectory for entire group.

15T
Poor
Health 125

101

Age - 55

3We also tested for the presence of a nonlinear component by adding a
quadratic term to our level 1 model, but the addition of this curvilinear effect
did not result in a significant improvement in model fit. We thus focus on the
linear model for the remainder of the analyses.
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4.1.3 A Single Dichotomous Predictor of the Random
Trajectories

We again consider the level 1 and level 2 model presented in Equa-
tions 4.1 and 4.2, but we now incorporate a single categorical predic-
tor ¢ within the level 2 equations where ¢ = 0 denotes membership
in group 1 (e.g., females) and ¢ = 1 denotes membership in group
2 (e.g., males). The level 1 equation remains as before (e.g., Equa-
tion 4.1), but now we express the intercept and slope as a function
of the categorical predictor ¢ such that

Q= po+ 76+ Cy, (4.5)
Bs Hp +v2ci + (g,

Here, c represents a direct effect in the prediction of the intercept and
slope components. We can again create a reduced form expression
of the model, and with simple rearrangement of terms, the relation
between c and y can be expressed as an additive function of v and
the product of ya.

Yit = [pa + aitiis] + [v1 + m2aitles + [Co; + aieCa, + €l (4.6)

We can factor our measure of time out of the equation to highlight
that the model-implied mean of y at time ¢ now includes information
about group membership c such that

Hye = [Ba +71€] + [1g + Y2clas. (4.7

Here, c interacts with time in the prediction of the repeated measures.
The influence of group membership c is seen both as an increment to
the intercept of the trajectory (via 1) and an increment to the slope
of the trajectory (via ;). To stress, although c is a main effect pre-
dictor of the intercept and the slope components (i.e., Equation 4.5)
¢ multiplicatively interacts with time in the prediction of the wm@mmdmm
measures (i.e., Equation 4.7). Thus, the single dichotomous predictor
¢ must be treated as a two~way interaction with time.

This is more clearly expressed by considering the model-implied
mean of y at time ¢ within each of two levels of ¢ such that

t@ﬁ_cuo = _t& + ?&mm Tm.mv
My, _nHH TsQ + QL + _t\m + Qm_ﬁu.
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Equation 4.8 highlights several important aspects of the condi-
tional HLM. First, in the conditional HLM, u, and pg represent the
mean intercept and mean slope of the trajectory when the predictor
equals zero (i.e., the mean intercept and slope for group ¢ = 0). Fur-
ther, -y reflects the difference between the mean intercept for group
¢ = 1 compared to group c = 0, and 7 reflects the difference between
the mean slope for group ¢ = 1 compared to group ¢ = 0. Although
we have a formal test of the difference in mean slopes between the
two groups, we do not yet have an estimate of the trajectory within
group ¢ = 1.

To highlight this, we regressed the intercept and slope parameters
of the health trajectories onto the single dichotomous predictor, sex,
where a value of 0 denotes female and a value of 1 denotes male. Of
key interest is the finding that sex significantly predicted both the
intercept parameter (§; = —2.17; t(437) = —3.22, p = .0014) and the
slope parameter (52 = .074; £(539) = 2.18, p = .0296), indicating that
women reported higher levels of health problems at age 55 and smaller
slopes over the following 40 years when compared to men. Thus, the
test of 49 indicates that the magnitude of the rate of change of y over
time varies as a function of participant sex. However, this test does
not inform us about the characteristics of the trajectories within each
of these two groups. For this, we turn to the estimation and testing
of simple slopes.

Aiken and West (1991) defined a simple slope within the OLS
regression model to be the conditional relation between a predictor
z and a criterion y at a given value of a second predictor z. This
same definition applies to the use of a single dichotomous predictor
in HLM. However, we will refer to these conditional relations between
the repeated dependent measures of y and time at a given value of
the predictor as simple trajectories, given our interest in the model-
implied trajectory within each group.

Why is consideration of the simple trajectories so important?
Without considering simple trajectories within each group, we could
easily find ourselves in a situation in which the simple trajectories be-
tween the two groups differ significantly from one another (i.e., the %
or 4, is significantly different from zero), but one or even both simple
trajectories within each group might itself not differ from zero. Fig-
ure 4.2 depicts three hypothetical situations in which there is precisely
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the same difference between model-implied intercepts and slopes for
males versus females, but the simple trajectories reflect fundamen-
tally different relations within each group. The top panel reflects
that the two simple trajectories are both increasing over time; the
middle panel reflects that the female simple trajectory is not chang-
ing, but the male simple trajectory is increasing over time; finally, the
bottom panel reflects that the female simple trajectory is decreasing
over time, whereas the male simple trajectory is not changing at all.
It is important to stress that for all three of these conditions, pre-
cisely the same parameter estimates hold for the regression parame-
ters relating subject sex to the random trajectories in the conditional
HLM. That is, all three have the same difference between intercepts
and the same difference between slopes, yet the simple trajectories
within each group are fundamentally different. It is critically impor-
tant that we probe these simple trajectories further in order to gain
a full understanding of the relation between time and change in y as
a function of group membership.

4.1.4 Probing Simple Trajectories with a Single
Dichotomous Predictor

"The conditional HLM with a single dichotomous predictor provides a
formal test of the magnitude of the difference between mean intercept
and mean slope for group ¢ = 1 compared to group ¢ = 0. Our goal
here is to compute the point estimates and corresponding standard
errors for the simple trajectory within group ¢ = 0 and the simple
trajectory within group ¢ = 1. There are two ways in which we can
accomplish this. First, we can derive the standard errors for the sim-
ple trajectories within each group as a quadratic weighted function
of the standard errors of the regression parameters predicting the
random trajectories (i.e., the standard errors of 4; and 47). Alterna-
tively, we can estimate two models using any standard HLM software
package, and by simply recoding group membership for the two anal-
yses, we can obtain precisely the same point estimates and standard
errors for the simple trajectories as would be derived analytically.
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Figure 4.2: Three possible simple trajectories all corresponding to pre-
cisely the same 4, and 4o regression parameters predicting intercepts

and slopes.
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Computation of point estimates and standard errors for
simple trajectories

To maintain notation consistent with that of more complicated mod-
els to be presented later, we will consider the simple trajectory be-
tween y and time at different conditional values of ¢, denoting the
conditional values as cv.. A value of cv. = 0 denotes the simple tra-
jectory conditioned on membership in group 1 and cv. = 1 denotes
the simple trajectory conditioned on membership in group 2. Thus,
the intercept and slope of the simple trajectory for conditional value
ey, is

Glev. = o+ 100 (4.9)
%“oen = bm.TnxmmeQ

&}muo &|cy, and G|ey, represent the sample estimates of the population
intercept and slope values of the simple trajectory at ¢ = cv.. The
standard errors of these sample estimates are

SE(&|cy,) = [VAR(fio) +2c0.COV (fia, 1) +  (4.10)
) vV AR(31)]*
SE(Ble) = [VAR(fg) +2c0.C0V (g, 92) +

cvZV AR(32)]'/?,

where VAR and COV represent the appropriate variance and covari-
ance elements from the asymptotic covariance matrix of parameter
estimates (see Bauer & Curran, in press, and Curran et al., 2004, for
further technical details).* The ratio of the sample estimate to the
standard error follows a t distribution and allows for usual tests of
significance. Note that for cv. = 0, Equation 4.10 simplifies to

SE(8)cy.) = VAR(jio) (4.11)

SE(Blw.) = +/VAR(isg),

which are simply the standard errors for the intercept terms of the
intercept and slope trajectory equations when regressed on the di-

4 . .
All of the point estimates, standard errors, and regions of significance can be
computed using online calculators at www.unc.edu/ curran.
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chotomous predictor.’> When cv, = 1, the additional variance and
covariance terms in Equation 4.10 are needed to compute the appro-
priate standard errors for the simple trajectories within group 2.

An equivalent method can be used to compute these same values
using any standard HLM software package. Because Equation 4.10
simplifies to Equation 4.11 for cv, = 0, the estimated intercept terms
and associated standard errors of the intercept and slope trajectory
equations from the conditional HLM represent the simple trajectory
for group 1. The model can be re—estimated with group 2 coded as
cve = 0 and group 1 coded as cv. = 1, and the intercept terms of the
intercept and slope equations now represent the simple trajectory for
group 2. These point estimates and standard errors will be identical
to those computed using equations 4.9 and 4.10.8

To demonstrate the estimation and testing of the simple trajec-
tories, we probed the simple trajectories of health over time as a
function of sex. The resulting simple trajectory for the women was
fiy. = 2.23 + .128a; and for the men, [y, = .06 + .202a;. These
model-implied trajectories are presented in Fig. 4.3. Importantly,
only the intercept of the simple trajectory for women significantly
differed from zero (£(437) = 7.13, p < .0001). The intercept for the
male trajectory was nonsignificant (¢(437) = .10, p = .92), implying
that at age 55, men reported, on average, good overall health. The
slopes from the female and male trajectories were both increasing at
a significant rate (p < .0001). It is critical to note that only through
the probing of the simple trajectories can we make these conclusions.

Regions of significance for simple slopes

Although we can explicitly test the simple trajectories within each of
the two groups (i.e., &|cy, and flc,), this can be extended one step

51t is important to distinguish between the intercept of the random trajectory
and the intercept terms of the equations that regress the random intercepts and
slopes on the explanatory variable. When probing the simple trajectories across
specific levels of the predictors, we are always referring to the intercept terms of
the regression equations.

6There are other ways of testing these within software packages, including the
use of two dummy vectors without an intercept term and the calculation of specific
contrasts (e.g., the “estimate” command in MIXED). Here we only describe the
method of multiple programs for maximal simplicity.
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Figure 4.3: Model-implied simple trajectory of poor health as a function
of gender.
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further to derive the precise point in time when the difference between
the two simple trajectories is nonsignificant. To accomplish this, we
used methods originally developed by Johnson and Neyman (1936)
and extended by Pothoff (1964) and D. Rogosa (1980). The middle
term of Equation 4.6 highlights that the difference in {1y, (denoted
Ay) as a function of ¢ at any time point a; is given as

Ay =+ mar. (4.12)

We can test the magnitude of the sample estimate of this difference

by calculating the ratio of the estimate to the corresponding standard
error such that

VVAR() + 20,00V (4, %) + a2V AR(3,)

in which this ratio follows a ¢ distribution. As with t tests, an ob-
tained value exceeding an absolute value of about 1.96 would imply
a significant difference on the repeated measure y at time a; as a
function of group c (for large df). However, we can set the left side of
Equation 4.13 to any desired critical ¢ value (e.g., t = 1.96 to define
a = .05) and then solve for a;. This will identify the specific points in
time at which p,, does and does not significantly differ as a function
of group membership ¢. This is called a region of significance.”

wbe

(4.13)

7 P
. wonwn..m (1964)) distinguishes between simultaneous and nonsimultaneous re-
gions of significance. For ease of presentation, we only focus on nonsimultaneous

TESTING INTERACTIONS IN HLMs 113

Equation 4.13 is a quadratic expression, the solution of which in-
volves two roots (see Curran et al., 2004, for further details). The
lesser and greater roots reflect the lower and upper time points at
which p,, significantly differs as a function of ¢, respectively. (See D.
Rogosa, 1981, for a clear discussion of these calculations and inter-
pretations within the standard regression model.) Applying Equa-
tion 4.13 to our empirical data showed that the mean of y; signifi-
cantly varied (p < .05) as a function of membership ¢ when a, < 21.88
and a;, > 129.84. Because our coding of time ranges from 0 to 41
(corresponding to the age range of 55 to 96), these results imply
that women report significantly worse health than men only between
ages 55 and 76.88 and that there are no statistically significant sex
differences thereafter.

4.1.5 A Single Continuous Predictor of the Random
Trajectories

In the conditional trajectory model presented in Equation 4.7, the
random intercepts and slopes are regressed onto a single dichoto-
mous measure ¢ in which values were equal to either 0 or 1. There
are many situations, however, in which we would like to examine the
relation between a continuously distributed predictor and the ran-
dom trajectories. To accomplish this, we make a simple change to
Equations 4.5, 4.6, and 4.7 to include a single continuous predictor x
instead of the dichotomous predictor ¢ used earlier. Specifically, we
can express the model-implied mean of y; at time a; as a function of
continuous predictor z as

By, = [pta + N12) + [pg + Yoz]ay, (4.14)

in which all else holds as before, but now z is a continuously dis-
tributed predictor variable.®

Although the extension of the conditional HLM from a categorical
to a continuous predictor is analytically trivial (i.e., Equation 4.7 vs.

regions here, although the computation of simultaneous regions are easily obtained

(see Pothoff, 1964, Equation 3.1).
8 Although we are focusing on predictors that are continuously distributed, just
as in multiple regression, we are not concerned about the shape of these exogenous

distributions.
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4.14), the corresponding interpretations are not. Whereas we were
able to express the conditional equations for the simple trajectories
at each of the two discrete values ¢ = 0 and ¢ = 1, = encompasses
a range of infinite potential values, with each value resulting in a
uniquely different simple trajectory describing the relation between
yt and time. That is, there is an entire family of simple trajectories
between y; and time across all levels of . Although choosing specific
values of z on which to compute the simple trajectory is often arbi-
trary, it has been recommended in standard regression to select values
at one standard deviation above and below the mean of (Aiken &
West, 1991, p. 13). We will utilize thése same guidelines here, al-
though we stress that any value of might be chosen depending on
the theoretical question of interest.

Recall from the dichotomous predictor model that the intercept
terms in the regression of the random trajectories on the dichotomous
measure c (i.e., u, and up in Equation 4.7) represented the model-
implied means of the random trajectories when the predictor variable
was equal to zero. In the presence of a continuously distributed pre-
dictor, the intercept term similarly reflects the mean of the random
trajectories when the predictor equals 0, although the value 0 may
or may not be interpretable with respect to the raw metric of (i.e.,
a value of 0 may lie outside the logical range of ). We can “center”
our predictor x so that the mean of z is equal to 0, thus increasing
the Eﬂmggg_&:@ of several of our model parameters. By center-
ing, we simply deviate each individual = from the mean of z, such
that o = z; — Z where z; represents the measure on variable z for
individual ¢, Z represents the mean of z over all individuals, and ]
is the centered z. Given Tz} = 0, then # = 0. Because the mean
of a centered variable is by definition zero, the intercept terms of the
random trajectories when regressed on the centered z} represent the
model-implied mean initial value and mean slope of y;; assessed at
the mean of the predictor variable z;. There are interpretive and
sometimes computational advantages to using centered predictors in
conditional trajectory models. Because of this, we will assume that
all continuous predictor variables are mean centered. For ease of
notation, we will refer to the centered, continuous predictor as z;.

To demonstrate these modeling strategies, we regressed the inter-
cept and slope trajectory components of the perceived health prob-
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lems on a single continuous measure of social support (from rela-
tives) that had been centered around the mean. In contrast d.o our
expectations, the effect of relative support was nonsignificant in the
prediction of both intercepts (%, = .01; t(437) = .17, p = .87) E.a
slopes (42 = —.002; £(539) = —.81, p = .42). Thus, there is no statis-
tical evidence that social support provided by relatives meaningfully
predicts either initial levels of health or changes in health over time.

Because no main effect of social support was found in the predic-
tion of the random trajectories, there is of course no need to probe
this effect further. If such a main effect had been identified, it could
have been probed further in precisely the same way as with the di-
chotomous predictor. In the next section, we describe how such a
main—effect predictor of the trajectories would be further probed,
but we do not demonstrate these procedures given the lack of a sig-
nificant effect associated with social support. However, at the risk
of spoiling the surprise, we do find an effect associated with social
support in the presence of gender, and we demonstrate how to probe
this in greater detail later.

4.1.6 Probing Simple Trajectories with a Single
Continuous Predictor

As we described earlier, regarding the simple trajectories of y; re-
gressed on time within discrete group ¢, we can mb&%ﬁmm:% derive
point estimates and standard errors for simple trajectories of y; at
specific values of z. Again, we can use standard HLM mgégm m.u@o.w-
ages to compute these estimates, and we can derive regions of signif-
icance for the simple trajectories across levels of .

Computation of standard errors for simple slopes

Equation 4.14 expressed the model-implied mean of y; as a function
of z. If using a centered predictor, z = 0 represents the Emmﬂs of z,
and thus fi, (the intercept term of the intercept equation) and fig (the
intercept term of the slope equation) in Equation 4.14 represent the
model-implied simple trajectory at the mean of z. Although there
is an infinite number of simple trajectories defined at every value
of z, we will focus on the simple trajectories that exist for specific
conditional values of z (denoted cv;). The sample estimates of the
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model-implied intercept and slope of the simple trajectory at z = cu,
is

Glov, = fia+H1004 (4.15)
Q_G.CH - \w.\w l_l \w\wgﬁ

with standard errors

SE(8lw,) = [VAR(fa)+2c0:COV (o, 1) +  (4.16)
iV AR(%))1/2)

SE(Blew,) = [VAR(g) + 2c0,COV (fig,42) +
iV AR(%:))1/2),

where VAR and COV again represent the appropriate variance and
covariance elements from the asymptotic covariance matrix of sample
parameter estimates. As before, the ratios of these point estimates to
their corresponding standard errors follow a ¢ distribution allowing
for formal tests of significance of the intercept and slope of the simple
trajectory at any given cv,,.

Using Equations 4.15 and 4.16, the sample estimates and corre-
sponding standard errors for the simple trajectories can be computed
for any desired cv,. As in the dichotomous case, however, these same
point estimates and standard errors can be obtained using any stan-
dard HLM software package. To accomplish this, we would create
new variables based on our original = variable at each specific cvy of
interest such that z,e, = 2 — cv,. For example, when using centered
predictors, our new measure of z at one standard deviation above the
mean is Tpigp =  — (lsdy), at the mean is Zmedium =" — (0sdy), and
at one standard deviation below the mean is Tiow = &~ (—1sd;).> We
then simply estimate three separate conditional HLMs, one regressing
the random trajectories on Zhigh, ON€ ON Tmedium, and one on Ijy,,.
As in OLS regression, each of these models will fit the data precisely
the same, but the intercept terms and associated standard errors for

“Note that it is correct that one SD is subtracted to compute ;.4 and that
one SD is added to compute 7;,,,. This is because we take advantage of the fact
that the intercepts of the regression equations predicting the intercept and slope
factors represents the model-implied mean when all predictors are equal to zero.
Thus, by adding one SD to all scores, a value of zero on z represents one SD
below the mean, and vice versa.
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each of the trajectory equations represent the simple trajectory of y
on time at the given level of eq. As before, the resulting parameter
estimates and standard errors are equal to the values that would be
obtained using Equations 4.15 and 4.16.

Regions of significance for simple slopes

Just as we did for the dichotomous predictor, we can calculate re-
gions of time over which the effect of the continuous predictor is or is
not statistically significant. To demonstrate this, we can choose any
arbitrary levels of the continuous predictor, say zpig, and 4, and
determine the model-implied mean levels of y as a function of time:

Byelz=znign = (B + MThign) + (kg + VThign)ar  (4.17)

Byelo=ztpw = (Mo +NTiow) + (ks + M2Tiow)ar.  (4.18)

By simple subtraction, we can calculate the difference in these simple
trajectories as

Ay = (Zhigh — Tiow) (71 + 7201) (4.19)
We can then test the magnitude of the sample estimate of this dif-
ference by calculating the ratio of the estimate to the corresponding
standard error such that

A&:s..nb - QFEVAU«H + \w\wbuv

tx = === =,
& (@nigh — 102 (VAR(G) + 20:COV (31, %) + a?V AR(32))
(4.20)
which simplifies to
N+ Yea . (4.21)
wbe

~ VARGL) + 2000V (n,42) + 2V AR(32)

This is equivalent to Equation 4.13 and illustrates that the arbitrarily
chosen values of the predictor (i.e., Zpign and zioy) are unimportant
for the test because they simply cancel out of the test of significance.

As before, we can set the left side of Equation 4.20 to any desired
critical ¢ value (e.g., t = 1.96 to define o = .05) and then solve for a;.
This will identify the specific points in time at which the continuous
predictor  does and does not significantly affect p,,. Equation 4.13
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is a quadratic expression, the solution of which jnvolves two roots
(see Curran et al., 2004, for further details). The lesser and greater
roots reflect the lower and upper time points at which iy, significantly
differs as a function of z, respectively.

Again, because the interaction of social support with time was not
significant in predicting health perceptions, we do not demonstrate
these methods here. However, we will demonstrate these techniques
in the next section when we probe the interaction of social support
with gender in the prediction of health perceptions over time.

4.1.7 Categorical by Continuous Interactions in the
Prediction of the Random Trajectories

Up to this point, we have only considered the estimation and testing
of a single categorical or a single continuous predictor variable within
the conditional HLM. We could easily extend this model to include
two or more correlated predictor variables. The resulting regression
parameters would be interpreted in precisely the same fashion as pre-
viously done, but these parameters would represent the unique effect
of that predictor and not the influences of all other predictors. Our
ultimate goal here, however, is not to simply estimate main effects
in the prediction of the random trajectories, but to estimate higher—
order interactions among our explanatory variables. We will begin by
exploring the two~way interaction between a single dichotomous vari-
able and a single continuous variable in the prediction of the random
intercepts and slopes. Given that we just described how a main—effect
predictor of random slopes should be treated as a two-way interac-
tion with time, an interaction between two predictors of slopes should
then logically be treated as a three-way interaction with time.

To estimate interactions between two level 2 exogenous variables
in the prediction of the random intercepts and slopes, the level 1 equa-
tion (i.e., Equation 4.1) remains as before. Whereas we incorporated
Jjust main effects in the previous level 2 equations (Equation 4.7 for a
dichotomous predictor and Equation 4.14 for a continuous predictor),
we now add higher—order terms to represent these interactions. For
example, say that we were interested in estimating the two—way inter-
action between a dichotomous measure ¢ and a continuous measure
in the prediction of the random intercepts and slopes. We would ex-
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pand the level 2 equations to contain these higher-order interactions
such that

A = po+ M6+ 12T + V36T + o (4.22)
Bi = pp+vaci+ 5z + vecixi + (g,

Just as we substituted the level 2 equations into the level 1 equa-
tion to derive the reduced form expressions earlier, we can do this
same substitution here. The reduced form equation, however, is be-
coming an increasingly unwieldy expression in scalar terms, and we
will thus not present this here. The important point to recognize is
that although we are estimating a two-way interaction between ¢ and
z in the prediction of 3;, we substitute this level 2 equation back into
the level 1 equation in the prediction of y. Thus, the entire equation
for f; is multiplied by time, resulting in the three-way interaction
term ~gcix;ai. This, of course, is the standard cross—level interac-
tion in general HLMs. It is important to remember, however, that the
two—way interaction between the level 2 variables in the prediction of
the random trajectories must be treated as a three-way interaction
between the level 2 variables and time.

As with our usual regression model, we test the interaction be-
tween our two predictors by examining the unique contribution of
the multiplicative term above and beyond the contribution of the
two corresponding main effects (see Cohen, 1978, for a detailed ex-
position on this). If the interaction between ¢ and x is significant,
it must be probed to fully understand the nature of this relation.
Given that this two—way interaction itself interacts with time, we
must probe this effect as we would with a standard three-way in-
teraction. The statistical question that we are asking is, “What is
the relation between y; and a; as a function of x within group ¢?”
The corresponding substantive question that we are asking is, :.Uo
trajectories of perceived health status vary over time as a function
of social support, and does the magnitude of this relation depend on
whether the individual is male or female? To answer these ques-
tions, we must extend the methods for probing simple trajectories to
incorporate these higher—order interactions.

Conceptually, this extension involves probing the relation between
a continuous measure z and the random trajectories (as we discussed,
but did not demonstrate, earlier), but we are now going to probe
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these effects within each group c. So, there will be one set of simple
trajectories between y; and at across levels of & for ¢ = 0, and one set
of simple trajectories between Y and a; across levels of z for ¢ = 1.
The model-implied mean of y at time ¢ is thus

Hue = (Ha + 710 + 922 + Y302) + (45 + ac + 5 + Yocx) az. (4.23)

Expansion and rearrangement of terms highlights that the simple
trajectories between y, and a; as a function of z within group c are

Byle=o = (ko + 7o) + (ug +757) 0z (4.24)
Hyle=t = ((ba+71) + (v 4 713) 2) +
(18 +72) + (%5 + 76) 2) a.

Note that within group ¢ = 0, the relation between y, and a; varies
as a function of z in precisely the same way as expressed in Equa-
tion 4.14. However, in group ¢ = 1, additional influences are incorpo-
rated (ie., 1, v3, v4, and Y6) to account for the interaction between x
and time as a function of membership in group ¢ = 1. In other words,
there is a two—way interaction between z and time in the prediction
of 3, and this interaction itself interacts with group membership c.
Our goal now is to test and probe this three-way interaction.

The formal test of the interaction is simply the test of v3 and s.
The significance of these terms implies that the relation between z
and the growth trajectories depends, in part, on group membership
c¢. To demonstrate this, we regressed the intercept and slope param-
eters of the health trajectories on three predictors: the dichotomous
variable sex; the centered, continuous measure of social support from
relatives; and the multiplicative interaction between these two mea-
sures. Importantly, the two-way interaction between sex and social
support from relatives significantly predicted both the intercept and
slope parameters (p< .05). These parameter estimates are presented
in Table 4.1. We must now probe this interaction further to bet-
ter understand the nature of this effect, bearing in mind that this
two—way interaction itself interacts with time in the reduced form
equation and must thus be treated as a three-way interaction.

"To formally probe these effects, we need to compute the sample
estimates for the intercept and the slope of the model~implied simple
trajectories of y on a; at the conditional level of z (i.e., cv,) within the
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Table 4.1: Parameter Estimates From the Main Effects and Two-Way
Interaction Predicting the Random intercepts and Slopes.

Random  Random

: .abl
Predictor Variable Intercept Slope

Sex —2.31 .082
Time 1 Support From Relatives 043 I%Mm
Sex by Relative Support . —.342 .Hw»
Intercept Term of the Prediction Equation 2.289 .

Note: Model results are based on n = 439. All effects are significant at p < .05
except for the two parameters presented in bold.

conditional level of group c (i.e., cv.). Wm{mxwmmmmgm mﬁ:mﬁow 4.23,
given conditional values of cu, and cv,, results in the sample estimates
of the intercept and slope of the simple trajectory as

= DD + \wﬁodo + \w\wﬁca + \w\wﬁenn@s A%va

mw_o.cu ,CUc
Q»An.c?ndn - \wu + \wﬁnee + \)v\mﬂ\ca + \wmgonﬁeq

respectively. The standard errors for these point estimates are o.on
plex and are presented in Curran et al. (2004). >m. _om.mog,. the ?&Sn 0
the point estimate to standard error follows a ¢ distribution allowing
for the usual tests of significance.

‘We can also compute these point estimates m:.& standard errors
using the computer methods described earlier in this orm%.wma. Specif-
ically, to probe the simple trajectories of y; .mn plus and minus 1 stan-
dard deviation around the mean of x within each of the two groups
¢, we wotuld estimate a total of six conditional HLMs. H.rnmm HLMs
swosE estimate the effect of 1oy, Tmedium, and Trign g:.ﬁp group 1
coded as cv, = 0, and three would repeat the process with m.noE.u 2
coded as cv, = 0. A model would be estimated for each ooEvEmSOb
of conditional main effects and their interaction .?.m; the main mmmom
of cv., the main effect of cv,, and the Eﬁmnmo.aon vonﬁmmn. CUe mbn
cvy). From each of these models, the mwBEo.mmanﬁmm of )ﬁrm Edmuom@ﬁ
terms of the random trajectory equations (i.e., fra and fig) represen
the model-implied simple trajectory and appropriate standard error
for each combination of conditional cv. and cv, values.
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Using this technique, we probed the simple trajectories of health
perceptions one standard deviation above and below the mean of so-
cial support from relatives within each sex. The simple trajectories
for each combination are plotted in Fig. 4.4. Several interesting char-
acteristics are evident. First, for women, we see that family support
appears to have little effect either on intercepts or slopes. That is,
trajectories of health problems are significantly increasing over time,
but the starting point and rate of change does not appear to vary
as a function of family support within females. In contrast, there is
greater evidence that the trajectories of health problems in men do
vary as a function of support from relatives. Specifically, men with
higher levels of social support from relatives showed steeper increases
in self-reported physical health problems than those with lower levels
of social support.

Thus, although there was not evidence for an overall main effect
of family support in the prediction of trajectories of health problems,
evidence was found when considering the interactive effects of family
support and gender. There are two interesting issues here, however.
First, although nonsignificant, the intercepts of two of the simple
trajectories for males are negative, which, given the scaling of the
measure, are impossible values. This might imply some model mis-
fit of the growth trajectory function for males or reflect unreliable
estimation in this part of the trajectory; either way, these negative
intercepts would not have been identified without the further prob-
ing of this relation. Second, it is potentially theoretically inconsistent
to conclude that males reporting higher levels of social support also
report greater increases in health problems when the opposite rela-
tion holds in females. To better understand both of these issues, we
can probe this interaction one step further by computing regions of
significance.

The computational formulae for the regions of significance are
more complex with the additional terms involved, but represent a
direct extension of Equation 4.20, so we do not present them here
(see Curran et al., 2004, technical appendix, for further details). For
females, the lower and upper boundaries of the region of significance
are 21.10 and 35.35. Because our coding of time ranges from 0 to
41 (corresponding to the age range of 55 to 96), these results im-
ply that relative support significantly reduces the perceived health
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Figure 4.4: Model-implied simple trajectories for high, medium, and low
values of social support as a function of gender.
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problems of women between ages 76.10 and 90.35 years of age. After
this point, our estimate of the effect of social support is too imprecise
(i.e., the standard error is too large) to be statistically significant. For
males, the lower and upper boundaries of the region of significance
are -447.09 and 13.14. Given our coding of time, these results imply
that social support significantly reduces the perceived health prob-
lems of men between ages 55 and 68.14 years of age. This additional
information helps us understand the earlier apparent contradiction.
Specifically, higher levels of social support are associated with better
overall health for women later in the aging process, whereas higher
levels of social support are associated with better overall health for
men earlier in the aging process. From the point of view of substan-
tive theory, this is critical information that would not be available
without these additional analyses.

4.1.8 Continuous by Continuous Interactions in the
Prediction of the Random Trajectories

Whereas our previous discussion focused on the interaction between a
continuous predictor z and a dichotomous predictor ¢, we can instead
consider the interaction between two continuous predictors denoted
z and w. In this case, the model-implied mean of y at time ¢ is

My, = (b +M1w+ 7z + y3wz) + (4.26)
(g + Yaw + y52 + Ywz) az.

Whereas previously we probed the simple trajectories at conditional
values of %y, Trmediym, and Zhign, Within each of two groups cv,, we
now consider these same simple trajectories between ¥ and time at
conditional values of z (i.e., cug; namely, Tiow, Tmedium, Thigh) ACTOSS
conditional values of w (ie., cuy; namely, Wiow, Wmedium, Whigh)-
To accomplish this, we modify Equation 4.25 such that the mmhwlm
estimates for the model-implied intercept and slope of the simple
Qg.moﬂoaw at a given conditional value of cv, and CUy, 18

Bleve,co, = fla + A100y + Focug + Y3CU UL (4.27)
Q_nea,ncé = bm + Facvy, + YsCvz + Y6CUwCU
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The standard errors for these sample estimates are similar to those
with a dichotomous—by—continuous interaction and are presented in
(Curran et al., 2004).

As with the earlier case, we can calculate these point estimates
and standard errors using any standard HLM software package. Here,
however, we must estimate nine separate conditional HLMs, three for
each cv; of interest evaluated at each cv,, of interest (e.g., 2y, €val-
uated at Wiow, Wmedium, and Whigh, etc.). The resulting sample esti-
mates and standard errors for the simple trajectories will correspond
to those derived in Curran et al. (2004).

We could extend the results from the two—way interaction in a
number of interesting and straightforward ways. For example, we
could again compute the regions of significance for the simple tra-
jectory between 1; and time across values of x within each group
membership ¢ or across continuous values of w. To accomplish this,
we would create the ratio of the point estimate of the simple tra-
jectory to the appropriate standard error and solve for cug or cuy,.
Further, we could test the equality of intercepts or slopes from any
two simple trajectories taken at any conditional value of cvg, cuy,
or cv.. For example, we might like to formally test the equality of
the slopes of the simple trajectory of perceived health at low levels
of social support for males compared with females. We could easily
include one or more control variables in the model, and all of these
procedures could be directly applied to test and probe simple trajec-
tories above and beyond the influence of covariates. Finally, all of
these values can be computed using online calculators described in
Preacher, Curran, and Bauer (in press).

4.2 Conclusion

Hierarchical linear modeling provides a powerful and flexible method
for testing a variety of theoretical questions about individual differ-
ences in developmental trajectories over time. A set of particularly
intriguing applications is the incorporation of one or more explana-
tory variables used to predict the random trajectory components.
Of course, it has long been known in the HLM literature that the
main—effect prediction of the random trajectories often involves a
cross-level interaction with time. There is less evidence, however,
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that the presence of this interaction has been fully capitalized in
HLM applications. Specifically, we are aware of no published litera-
ture that has drawn on classic methods to test and probe interactions
in HLM that are commonly used in standard OLS regression. Here
we have demonstrated that the methods used to probe interactions
in OLS regression can be generalized directly to HLM as well. Fur-
ther, our empirical example has highlighted what we believe to be
significant advantages associated with the use of these techniques in
practice. Indeed, based on our own experiences with these models,
we recommend these methods be used anytime one or more explana-
tory variables are used in HLM growth models. This will not only
enhance our ability to more fully understand complex models, but
will also allow for the formal testing of additional types of research
hypotheses in ways not possible without the use of such techniques.

4.3 Acknowledgments

This work was funded in part by grant DA13148 awarded to the first
author, grant DA06062 to the second author, and grant MH12994 to
the third author. We would like to thank Ken Bollen, Andrea Hus-
song, and the members of the Carolina Structural Equations Model-
ing Group for their valuable input throughout this project. We are
also indebted to Cindy Bergeman for her generous provision of the
LSOA data, which is supported in part by grant MH53895.

References

Aiken, L. S., & West, S. G. (1991). Multiple regression: Testing and
interpreting interactions. Newbury Park, CA: Sage.

Bauer, D. J., & Curran, P. J. (in press). Probing interactions in fixed
and multilevel regression: Inferential and graphical techniques.
Multivariate Behavioral Research.

Biesanz, J., Deeb—Sossa, N., Aubrecht, A. M., Bollen, K. A., & Cur-
ran, P. J. (2004). The roll of coding time in estimating and
interpreting growth curve models. Psychological Methods, 9
30-52.

Bisconti, T L., & Bergeman, C. S. (1999). Perceived social control as

)

TESTING INTERACTIONS IN HLMs 127

a mediator of the social support/successful aging relationship.
The Gerontologist, 39, 94-103.

Bryk, A., & Raudenbush, S. W. (1987). Application of hierarchical
linear models to assessing change. Psychological Bulletin, 101,
147-158.

Cohen, J. (1978). Partialled products are interactions; partialled
vectors are curve components. Psychological Bulletin, 85, 858
866.

Curran, P., Bauer, D., & Willoughby, M. (2004). Testing and probing
main effects and interactions in latent curve analysis. Psycho-
logical Methods, 9, 220-237.

Goldstein, H. (1986). Multilevel mixed linear model analysis using
iterative generalized least squares. Biometrika, 73, 43-56.
Gompertz, B. (1825). On the nature of the function expressive of the
law of human mortality. 115, 513-580. Philosophical Transac-

tions of the Royal Society of London.

Johnson, P., & Neyman, J. (1936). Tests of certain linear hypotheses
and their applications to some educational problems. Statistical
Research Memoirs, 1, 57-93.

MacCallum, R., Kim, C., Malarkey, W., & Kielcolt—Glaser, J. (1997).
Studying multivariate change using multilevel models and la-
tent curve models. Multivariate Behavioral Research, 32, 215-
253.

McArdle, J. (1988). Dynamic but structural equation modeling of
repeated measures data. In J. Nesselroade & R. Cattell (Eds.),
Handbook of multivariate ezperimental psychology (2nd ed.).
New York: Plenum Press.

McArdle, J. (1989). Structural modeling experiments using multiple
growth functions. In P. Ackerman, R. Kanfer, & R. Cudeck
(Eds.), Learning and individual differences: Abilities, motiva-
tion and methodology (pp. 71-117). Hillsdale, NJ: Lawrence
Erlbaum Associates.

McArdle, J. (1991). Structural models of developmental theory in
psychology. In P. van Geert & L. Mos (Eds.), Annals of the-

oretical psychology (Vol. 7, pp. 139-160). New York: Plenum
Press.

Meredith, W., & Tisak, J. (1984). “Tuckerizing” curves. Paper
presented at the annual meeting of the Psychometric Society,



128 CURRAN, BAUER, & <<.Frocomm<

Santa Barbara, CA.

Meredith, W., & Tisak, J. (1990). Latent curve analysis. Psychome-
trika, 55, 107-122.

Metha, P. D., & West, S. G. (2000). Putting the individual back in
individual growth curves. Psychological Methods, 5, 23-43.

Palmer, C., Kawakami, R., & Reed, L. (1937). - Anthropometric
studies of individual growth II. Age, weight, and rate of growth
in weight, elementary school children. Child Development, 8,
47-61.

Pothoff, R. (1964). On the Johnson-Neyman technique and some
extensions thereof. Psychometrika, 29, 241-256.

Preacher, K. J., Curran, P. J., & Bauer, D. J. (in press). Compu-
tational tools for probing interactions in multiple linear regres-
sion, multilevel modeling, and latent curve analysis. Journal of
Educational and Behavioral Statistics.

Raudenbush, S. (2001). Toward a coherent framework for comparing
trajectories of change. In L. M. Collins & A. G. Sayer (Eds.),
New methods for the analysis of change (pp. 33-64). Washing-
ton, DC: American Psychological Association.

Raudenbush, 5. W., & Bryk, A. (2002). Hierarchical linear models:
Applications and data analysis methods (2nd ed.). Thousand
Oaks, CA: Sage.

Rogosa, D. (1980). Comparing nonparallel regression lines. Psycho-
logical Bulletin, 88, 307-321.

Rogosa, D. (1981). On the relationship between the Johnson-Neyman
region of significance and statistical tests of parallel within
group regressions. Educational and Psychological M easurement,
41, 73-84.

Rogosa, D. R., & Willett, J. B. (1985). Understanding correlates
of change by modeling individual differences in growth. Psy-
chometrika, 50, 203-228.

Singer, J. (1998). Using SAS PROC MIXED to fit multilevel models,
hierarchical models, and individual growth models. Journal of
Educational and Behavioral Statistics, 24, 323-355.

Wallace, K. A., & Bergeman, C. S. (1997). Control and the elderly:
Goodness-of-fit. International Journal of Aging and Human
Development, 45, 323-339.

Willett, J., & Sayer, A. G. (1994). Using covariance structure analysis

TESTING INTERACTIONS IN HLMs 129

to detect correlates and predictors of individual change over
time. Psychological Bulletin, 116, 363-381. .
Willett, J., Singer, J., & Martin, N. (1998). The design and mb&%m._m
of longitudinal studies of development and psychopathology in
context: Statistical models and methodological recommenda-
tions. Development and Psychopathology, 10, 395-426. .
Wishart, J. (1938). Growth rate determinations in nutrition studies
with the bacon pig, and their analysis. Biometrika, 30, 16-28.



Methodological Issues
in Aging Research

Edited by

Cindy S. Bergeman
Steven M. Boker

University of Notre Dame

E LAWRENCE ERLBAUM ASSOCIATES, PUBLISHERS

2006

Mahwah, New Jersey London



