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Testing Main Effects and Interactions in Latent Curve Analysis

Patrick J. Curran, Daniel J. Bauer, and Michael T. Willoughby
University of North Carolina at Chapel Hill

A key strength of latent curve analysis (LCA) is the ability to model individual variability in
rates of change as a function of 1 or more explanatory variables. The measurement of time
plays a critical role because the explanatory variables multiplicatively interact with time in the
prediction of the repeated measures. However, this interaction is not typically capitalized on
in LCA because the measure of time is rather subtly incorporated via the factor loading
matrix. The authors’ goal is to demonstrate both analytically and empirically that classic
techniques for probing interactions in multiple regression can be generalized to LCA. A
worked example is presented, and the use of these techniques is recommended whenever
estimating conditional LCAs in practice.

Random-effects growth models have become increasinglypot (e.g., MacCallum, Kim, Malarkey, & Kiecolt-Glaser,
popular in applied behavioral and social science researcl1997; Willett & Sayer, 1994).
The two primary approaches used for estimating these mod- Even under the conditions in which the HLM and LCA
els are the hierarchical linear model (HLM; Bryk & Rau- approaches provide equivalent results, there are subtle but
denbush, 1987; Raudenbush & Bryk, 2002) and structuramportant differences in model estimation and interpretation
equation-based latent curve analysis (LCA; Meredith &that arise from the different incorporation of time. These
Tisak, 1984, 1990).The variable measuring the passage ofgifferences are primarily manifested when conditional
time plays a critical role in both the HLM and LCA ap- growth models—that is, models that include one or more
proaches, although the way in which this measure is inCorgyogenous variables that predict the random growth curve
porated into the model is quite different. The HLM ap- o ameters—are considered. In both the HLM and LCA
proach explicitly incorporates the measure of time as an, o, hes main effect predictions of the random trajecto-

exogenous predictor variable within the Level 1, or PErSONyag imply that the exogenous variables interact with time in

level, equation. In contrast, the LCA approach incorporate%he prediction of the repeated measures. In HLM, both the

the measure of time by placing specific restrictions on the "~ = . . .
i . redictors and time are treated as exogenous variables in the
values of the factor loading matrix that relate the repeate(%}Odel and the interaction between them is explicitly re
measures to the underlying latent growth factors. In many t’ q level int " P g kp&
situations these two approaches to growth modeling areeSented as a cross-level interaction (see, e.g., Bry

analytically equivalent, whereas in other situations they argaudenbush, 1987; Curran, Bauer, & Willoughby, in press;
Willett, Singer, & Martin, 1998). This representation has

facilitated the occasional use of plotting interactions to aid
in the interpretation of complex HLM growth model results
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conveyed through the factor loading matrix.? Thus the pa-
rameterization of the growth model in LCA, though analyt-
ically equivalent to the HLM in many cases, tends to ob-
scure therole of time as a predictor in the model. In fact, we
are aware of no published applications that have explicitly
investigated the interaction between exogenous predictors
and time within the LCA framework (but see Choi &
Hancock, 2003, for an initia discussion of this possibility).

We argue in this article that time can and should be
treated as a predictor in the LCA growth model just asit is
in the HLM framework even though time is incorporated
through the factor loading matrix. When viewed in thisway,
main effect predictors of the growth factors are seen to
interact with timein the prediction of the repeated measures.
Further, two-way interactions between predictors of the
latent curve factors are, in turn, three-way interactions with
time, as are all higher order interactions. We demonstrate
that these interactions can be explicitly evaluated within
L CA by reconceptualizing the indirect effects of the predic-
tors on the repeated measures through the factor loading
matrix as multiplicative interactions with time. By doing
this, we can bring to bear techniques for testing and probing
interactions that allow us to exploit the richness of these
models in a way that would not otherwise be possible. Our
motivating goal for this article is to analytically extend the
use of traditional techniquesfor exploring interactive effects
to the LCA framework and to demonstrate the benefits of
their use with an empirical example.

We begin our article with a brief review of the estimation
and interpretation of the standard unconditional and condi-
tional latent curve model. Next, we discuss the importance
of closely considering conditional effects whenever testing
exogenous predictors of the latent growth factors. We then
describe methods for estimating and testing simple slopes
associated with both categorical and continuous exogenous
predictors, and we extend these tests to calculate regions of
significance and confidence bands. We then generalize all of
these methods to include higher order interactions among
two or more exogenous predictors of the latent growth
factors. We briefly consider another method for exploring
interactions that makes use of the unique features of the
structural equation model (SEM)—namely, the multiple-
groups model. We present an empirical demonstration of
our proposed methods using data from a cohort-sequential
longitudinal sample of children with unbalanced data, and
we conclude with potential limitations and directions for
future research.

The Unconditiona Latent Curve Model

The latent curve model is, at its core, a factor analysis
model. Early work in this area involved principal-compo-
nents analysis of the sums of squares and cross products of
the repeated measures (e.g., Rao, 1958; Tucker, 1958).
Meredith and Tisak (1984, 1990) later demonstrated the

advantages of a confirmatory factor analysis (CFA) model
for estimating patterns of individua growth. This model
was further expanded in important ways by McArdle (1988,
1989, 1991), Muthén (1991, 1993), and others.

We can define y;; to represent a continuous repeated
measure of construct y assessed on a sample of i = 1,
2,..., Nindividuds at t = 1, 2,..., T, time points. In
matrix notation, the measurement model of the CFA takes
the form

y=v+An+e, (@D}

wherey isaT; X 1 vector of repeated measures for indi-
vidual i, »is T, X 1 vector of measurement intercepts, A is
aT, X kmatrix of factor loadings, n is ak X 1 vector of
latent curve factors, and e isaT; X 1 vector of time-specific
residuals. Because v = 0 for identification purposes in the
class of models discussed here, we do not consider this
vector further.

In most factor analysis models the elements in A are
freely estimated from the data. However, in latent curve
models these elements are often fixed to predetermined
values to specify a particular functional form for the growth
process (although other nonlinear forms are possible; see,
e.g., Browne, 1993; du Toit & Cudeck, 2001). For example,
the elements of Equation 1 for a linear latent curve model
for T; measurement occasions are

Vi1 1 0 €i1
i l 1 Qi i
Yo | _ | = . [ n ] + €i2 )
: : : MNp; .
yiT\ l Ti - l SiT\

The measure of time is thus entered into the model via the
factor loading matrix A. This is highlighted in the scalar
expression of Equation 2 for individual i,

Vit = Mo T MpAic + i ©)

indicating that the observed score on measure y for individ-
ua i at timet is an additive function of the intercept of the
trgjectory for individua i (e.g., m,), the slope of the trajec-
tory for individual i multiplied by the value of time for
individual i at time t (e.g., mgA;), and an individual- and
time-specific residua (e.g., &;). This corresponds to the

2 One might wonder about the possibility of using methods for
decomposing direct and indirect effectsin more standard structural
equation models (e.g., Ballen, 1987) for probing interactions in
LCA. Although these same methods can be applied here, no new
information is available in the most common LCA application in
which the factor loadings are fixed to predefined values (and thus
do not have associated standard errors). Some interesting tests of
indirect effects can be conducted when one or more of the factor
loadings are freely estimated from the data, but given space con-
straints, we do not pursue these here.
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typical “Level 1" equation in hierarchical linear modeling.
If al individuals are assessed at the same time periods (i.e.,
a “balanced” longitudinal design is used), then the value of
time at assessment t is A, for dal i; if the design is not
balanced, then A;; represents the value of time at t that is
specific to individual i. All of the methods we describe here
apply to the use of either A, or ;.. Thus, for simplicity, we
drop the i subscript and simply use A, hereafter.

Because the latent factors in n are random, these can be
expressed as

n=p, +¢ 4)

where p, isak X 1 vector of latent variable means and £
isak X 1 vector of individual deviations from these means.
For the linear latent curve model, the elements of Equation

4 are
R I S B

with corresponding scalar expressions

oq: a+ i
Na = Ma T & ©)

Mg = Mg T g

Thus, Equation 6 indicates that the individual-specific in-
tercept and individual-specific slope are an additive function
of the mean intercept and slope and an individual-specific
deviation from these mean values. This corresponds to the
typical “Level 2" expression in hierarchical linear
modeling.

We can substitute Equation 4 into Equation 1 to express
the reduced-form equation for y such that

y = (Ap,) + (AL + #), ()

where the first and second parenthetical terms are often
referred to as the fixed- and random-effect components of
the model. The model-implied covariance structure of y as
a function of model parameters in vector 0 is

3(6) = AWA’ + O, )

where @, represents the T X T covariance matrix of the
residuals for the T repeated measures of y and W represents
the k X k covariance matrix of the k latent curve factors.
Finally, the model-implied mean structure of the latent
curve model is

n(0) = Ap,, 9)

where p(0) isaT X 1 vector of means of y and where p,,
and A are defined as before. Of importance, again consid-
ering the linear trajectory model, Equation 9 alows us to
express the model-implied mean of y at time t as

Ky = Mo+ Hphe (10)

This equation highlights that the relation between the re-
peated measures and the latent curve factors operates
through the factor loading matrix. We capitalize on this
relation extensively later in the article.

The Conditional Latent Curve Model

The unconditional latent curve model allows for impor-
tant inferences to be made about the mean trajectory for the
group (i.e, the fixed effects) and variability in individua
trajectories around these mean values (i.e., the random
effects). A common next step is to incorporate one or more
exogenous predictors of these random trajectories. We can
expand Equation 4 to include one or more exogenous pre-
dictors of the latent curve factors such that

n=pm,+Ix+{ (11)

where x isap X 1 vector of exogenous predictorsand I is
ak X p matrix of fixed regression parameters between the
k latent curve factors and the p exogenous predictorsin x. A
path diagram with two exogenous predictors of a linear
latent curve model for T = 4 ispresented in Figure 1. Given
the regression of m on x via I', m, now contains the
intercepts of the latent curve factors (e.g., the mean of the

! ! } l

—

Figurel. Pathdiagram of aconditional linear latent curve model
for four repeated measures and two correlated exogenous predictor
variables; m, and n, represent the latent intercept and latent slope
of the trgjectory, respectively.
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latent curve factors at x = 0) and ¢ contains the individually
varying residuals.

We can again create a reduced-form expression by sub-
stituting Equation 11 into Equation 1 such that

y = (Am, + AI'X) + (AL + &). (12)
The model-implied covariance matrix for y is then given as
3(0) = AT®I" + WA’ + 0O, (13)

where @ represents the p X p covariance matrix of the p
exogenous predictors in x and the other matrices are defined
as earlier. The expected value of this reduced-form expres-
sion is

m(0) = (Ap, + Al'py), (14)

where u, represents the p X 1 vector of means of exoge-
nous measures. Without loss of generality, we can set p, =
0 (i.e., al exogenous measures are mean deviated), and
Equation 14 simplifies to Equation 9. We make use of this
simplification later.

The Importance of Assessing Conditional Effects
in LCA

Why is it important to consider main effect predictors of
the dlope factors as interactions with time? Consider the
following example. Say that we estimated an unconditional
latent curve model that reflected a significant negative tra-
jectory over time. Further say that we regressed this slope
factor on a continuous predictor and found a significant
positive regression coefficient. Thiswould imply that higher
values of the predictor variable are associated with larger
values of the slope of the trgjectory. However, as the value
of the predictor increases, the corresponding increase in the
value of the slope factor may imply conditional slopes that
are negative and significantly different from zero, near zero
but not significantly different from zero, or positive and
significantly different from zero. The significant positive
regression coefficient between the predictor variable and the
slope factor is necessary but not sufficient information to
explicate these more complex effects. Only through the
further probing of this effect can we fully understand the
nature of this relation.

To highlight this, consider the simple case in which the
intercept and linear slope factors are regressed on a single
time-invariant exogenous variable denoted x; (which may be
categorical or continuous). The scalar expressions for these
regressions (presented in matrix form in Equation 11) are

T’m = Mo + 71Xi + ga.i

Mg = Mg T ¥X + g, (15)

and the scalar reduced-form expression (presented in matrix
form in Equation 12) is

Yie = (o + g + y2X + Y2AX) + (Lo + LpAi T &)
(16)

Of importance, Equation 16 highlights that a 1-unit
change in the exogenous predictor x is associated with a
v,-Unit change in the expected value for the tragectory
intercept and a +y,-unit change in the expected value of the
slope of the trajectory. However, the increment to the slope
factor in turn influences the repeated observations of y via
A That is, the magnitude of the influence of x in the
prediction of y depends on the particular point intime A,. In
the SEM tradition, y,A; would normally be conceptualized
as acompound coefficient reflecting the indirect effect of the
predictor on the repeated measures. However, this concep-
tualization may obscure the specia role of time as a pre-
dictor in LCA because time is not represented explicitly as
a variable influencing the repeated measures and instead
appears only in the factor loading matrix. Given that A, isa
proxy for the time variable, we may view v, as the coeffi-
cient of the multiplicative interaction of the predictor with
time.

Reconceptualizing the effects of exogenous predictors as
multiplicative interactions not only explicates the role of
timein the latent curve model but also encourages the use of
available methods for further probing this interaction in
important ways. By probe, we mean the cal culation of point
estimates along with standard errors and confidence inter-
valsthat provide inferential tests of the relation between the
repeated measures and time conditioned on one or more
exogenous predictor variables. There are three procedures
that are of particular importance here: tests of simple slopes
(Cohen & Cohen, 1983), Johnson—Neyman tests of regions
of significance (Johnson & Neyman, 1936; Pothoff, 1964,
Rogosa, 1980, 1981), and computation of confidence bands
for the conditiona effects (Rogosa, 1980, 1981). Although
these tests are well developed for standard regression mod-
els (see Aiken & West, 1991), we are not aware of any prior
work that has extended these tests to the latent curve mod-
eling framework. This is our goal here.

Estimating and Testing Simple Slopes

Asastarting point, let us again consider the case in which
we have a single predictor x of the intercept and slope of a
linear latent curve model. The reduced-form equation for
the model isthen given in Equation 16. Taking expectations
of this expression shows that the conditional mean of y
varies as a function of both x and A; such that

Vvy[|>< = Mo T MpAi T YIX + YoAX an

If we treat A, as a proxy for the variable time, then we can
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clearly see that this equation is parallel in form to a regres-
sion model including an intercept, main effect of time, main
effect of x, and interaction between time and x. To highlight
the role of A, as a moderator of the regression of y on x, we
can rewrite this equation as

V“y¢|m = (Mo + MB)\t) + (y1+ Y2A) X, (18)

so that the effect of x is clearly expressed as a function of
time (y; + v,A). Of course, given the symmetry of the
interaction, we might also be interested in the role of x in
moderating the value of the expected trajectory slope (or
fixed effect of time), which is highlighted by rewriting this
equation as

Bylx = (o + ¥1X) + (g + XA (19)

In standard regression models, one tool used to better
understand conditional relationships of this sort isto plot the
effect of one predictor at specific levels of the moderating
variable (Cohen & Cohen, 1983). Referring to these condi-
tional effects as simple slopes, Aiken and West (1991)
showed the utility of not only plotting simple slopes but also
testing their statistical significance. These same tests of
simple slopes can be extended directly to the latent curve
model.

The only difference between the simple regression case
and the latent curve model is that there are additional
variance components in the LCA—that is, individual vari-
ability about u, and wg. However, the additional variance
components associated with these random effects impact
minimally on the computational formulas for the simple
slopes and their standard errors because we are operating at
the level of the fixed effects (i.e., our concern is with u,|,,
not v;,). In fact, the only impact of these additional variance
componentsisin the estimation of the standard errors of the
parameter estimates, which in turn influence the standard
errors and tests of significance of the ssimple slopes.

For the one-predictor case, we can express the simple
slope of the regression of y on x (e.g., the effect of x at a
specific value of A) as

3’1| T Y1+ YA (20)

Standard errors for 7] A, Can be derived using standard
covariance algebra, resulting in

SE(¥1),) = [VAR(¥1) + 2ACOV (¥4, ¥2)
+ AVAR(%2)]"%, (21)

where VAR and COV represent the appropriate variance and
covariance elements from the asymptotic covariance matrix
of parameter estimates (see the Appendix for further de-
tails).3 If we use a z distribution for large samples, the test
statistic is then

3’1|)\[
Z, = e AT - 22
i T SE(v) @
However, given the symmetry of the interaction, we may
be equally (if not more) interested in the estimated val ues of
the simple intercept and slope of the latent trajectory at
specific values of x:

I:"’a|>< = I:La + ;i’lxi
gy = fug + F2X. (3

Consistent with our interest in model-implied trajectories,
we refer to these terms collectively as the simple trajectory
at the chosen level of x. Standard errors for these sample
estimates can be derived using covariance algebra, resulting
in

SE(fiax) = [VAR(fio) + 2XCOV(fiqs ¥1)
+ XVAR(¥1) ]V,

SE(figl) = [VAR(jig) + 2XCOV(fig, 3,)
+ Xx*VAR(¥,) 1Y%,  (24)

where VAR and COV again represent the appropriate vari-
ance and covariance elements from the asymptotic covari-
ance matrix of parameter estimates. Note that these ele-
ments explicitly take into account the presence of the
random effects in the model via the estimation process.
Further, with the standard errors in hand, significance tests
of the intercepts and slopes of the simple trajectories can be
conducted in the usual way. If we use a z distribution for
large samples, the test statistics are

i
e = SE(R])
llﬁ|><
Z: = —— . 25
= SE(Ryl) (29

These point estimates, standard errors, and z tests apply to
any main effect predictor x. We next briefly explicate the
specific applications of these methods for categorical and
continuous covariates.

Categorical Covariates

Suppose that our predictor is a dummy-coded categorical
variable in which x = 0 and x = 1 denote membership in
one of two discrete groups (e.g., gender, treatment condi-

3 Note that we are referring to the sample estimate of the
asymptotic covariance matrix of parameter estimates for all of our
developments and applications.
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tion). We could write the simple trgjectories for each of the
two groups as

I-Ly1|x:0 = I‘La + IJ'B)\U

Bylxer = (o + ¥2) + (mp + v2)A, (26)

where the first parenthetical term in each expression is the
intercept of the simple trajectory and the second term is the
slope of the simple trgjectory within that specific group.

Equation 26 highlights several important aspects of the
conditional latent curve model. First, w,, and ug represent
the intercept and slope of the simple trajectory when the
predictor equals zero (i.e., the mean intercept and slope for
group x = 0). Further, vy, reflects the difference between the
mean intercept for group X = 1 compared with group x = 0,
and vy, reflects the difference between the mean slope for
group x = 1 compared with group x = 0. Thus, although we
have aformal test of the difference in mean slopes between
the two groups, we do not yet have a point estimate or
standard error for the conditional trajectory within the sec-
ond group. Our goal is to compute the point estimates and
corresponding standard errors for the simple trajectory
within group x = 0 and the simple trajectory within group
x=1

One way of doing so isto apply the Equation 24 directly.
However, we can equivaently compute these point esti-
mates and standard errors using any standard SEM software
package. To see this, note that for x = 0, Equation 24
simplifies to

SE(fiulco) = VAR(j1)"2
SE(figlo) = VAR(f1) "2 (27)

indicating that the point estimates and standard errors for
the simple trgjectory in the group denoted x = 0 are the
intercept terms for the intercept and slope equations. We can
capitalize on this to compute the point estimates and stan-
dard errors for the group x = 1 without recourse to the
computational formulas above. To do so, we simply reverse
the dummy coding of group membership and reestimate the
model. Of course, the overall fit of the second model will be
identical to that of the first, but the resulting point estimates
for {1, and fig and their standard errors will represent the
estimated simple trgjectory of the second group and will be
equivalent to those calculated by the formulas given above.
(See Aiken & West, 1991, for a more detailed discussion of
this approach as applied to the standard regression model.)

Continuous Covariates

The only difference between categorical and continuous
predictors is that in the continuous case there are typically
no natural levels at which to assess simple trgjectories.
Cohen and Cohen (1983) suggested choosing high, medium,

and low values of the predictor, often defined as the mean
and the mean *1 standard deviation. Using these values, we
can then apply Equation 24 to obtain the standard errors for
any given value of x. However, just as in the dichotomous
case, these same point estimates and standard errors can be
obtained using any standard SEM software package by
rescaling the predictor and reestimating the model. This is
facilitated by using centered predictors, because the initial
model estimation will then produce the estimates and stan-
dard errors for the simple trajectory at the mean. First, we
create two new variables that are linear transformations of
the original predictor, such that X, 4, = X — SDy and X, =
x + SD,, where D, is the standard deviation of x. (As a
brief aside, note that it is correct that 1 SD is subtracted to
compute X,ig, and that 1 SD is added to compute Xq,,. This
is because we take advantage of the fact that the intercepts
of the regression equations predicting the intercept and
dlope factors represent the model-implied mean when all
predictors are equal to zero. When we add 1 SD to al x
scores, avalue of zero on x represents 1 SD below the mean,
and vice versa.) Finaly, we estimate two separate modelsin
which we use X4, and X4, in place of our origina x; the
parameter estimates and standard errors for the intercept
terms of the intercept and slope equations are equal to the
values that would be obtained using Equations 23 and 24.

Regions of Significance

Using the above procedures, we can evaluate the simple
slopes of the effect of x predicting y for specific points in
time (eg., Equation 20), or we can evauate the simple
trajectories of the effect of time predicting y for specific
levels of x (e.g., Equation 23). We now show how we can
gain even further information about the conditional effects
of x and time by computing regions of significance, a
technique originally applied in regression models by John-
son and Neyman (1936) with subsequent extensions by
Pothoff (1964) and Rogosa (1980).* Regions of significance
will allow us to assess at precisely what periods of time the
simple slopes of x predicting y pass from significance to
nonsignificance. Similarly, regions of significance will a-
low us to assess at precisely what points on the scale of x
(when x is continuous) the simple trgjectories of time pre-
dicting y pass from significance to nonsignificance. We
address each of these in turn.

We begin by asking the question, Over what range of time
is the effect of x predicting y significant? Our interest isin

4 Pothoff (1964) distinguished between simultaneous and non-
simultaneous regions of significance. For ease of presentation we
only focus on nonsimultaneous regions here, although the compu-
tation of simultaneous regions is easily obtained (see Pothoff,
1964, Equation 3.1). The same distinction applies in the subse-
quent discussion of confidence bands, and again we focus on
nonsimultaneous confidence bands.
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finding the specific values of time, where time is treated as
a continuous variable, for which the simple slope of the
effect of x is significantly negative, nonsignificant, or sig-
nificantly positive. To determine this, we reverse the pro-
cedure for computing the significance of the simple slopes.
Specifically, when testing simple slopes, we choose a spe-
cific value of A;, compute the point estimate and standard
error for the smple slope at that value of A,, and then solve
Equation 22 for z, | . When computing regions of signifi-
cance, we instead choose a specific critical value for the test
statistic, say =1.96 for o = .05, and then solve Equation 22
for the specific values of A, that yield this critical value.
These values of A, indicate the pointsin time at which z; | ;
passes from significance to nonsignificance, thus demarcat-
ing the regions of significance.

This is accomplished computationally by substituting the
critical value of £1.96 for z;, , in Equation 22 and also
substituting Equations 20 and 21 for [, and SE(¥4,),
respectively. Squaring this expression and performing afew
algebraic rearrangements (see the Appendix), we have

[ZgritVAR(:i’Z) - ’3/2])%2 + {2[ ZiritCOV('S'ly '3’2) - 3’13’2]})%
+[Z:VAR(Y) — 7] =0, (28)

where z_;; is the critical value for the z statistic (e.g.,
+1.96). We can then solvefor theroots of A, that satisfy this
equality using the quadratic formula,

p o TREAD—dac 29)
2a
where
a = [ZVAR(¥) — ¥, (30)
b = {2[ Z;,COV(1, %) — %1%}, (31)
¢ = [ 22 VAR() — #il. (32)

The resulting roots indicate the boundaries of the regions of
significance of x predicting y over all possible vaues of
time.

We next ask the question, Over what range of the pre-
dictor x is the effect of time predicting y significant? To
answer this, we apply regions of significance to the intercept
and slope estimates for the simple trajectories across values
of x. This procedure will generally only be useful when x is
a continuous covariate, as it isin this case that we might be
interested in a range of values for x over which the smple
trajectories are significantly different from zero. The proce-
dures we follow to define the regions of significance for the
simpletrajectories are precisely the same asthoseillustrated
above for the simple slopes of x predicting y as a function of
time. Namely, we select avalue z;; and solve for the values
of x that yield z;, in the formulas of Equation 25. This will

again result in a quadratic equation that can be solved using
the quadratic formula (see the Appendix for detail). The
resulting roots will indicate the specific regions of x over
which the intercepts and slopes of the simple trgjectories are
or are not significantly different from zero. This is a sub-
stantial improvement over the arbitrary selection of high,
medium, and low values at which to assess the simple
trajectories, as the regions indicate the significance of the
simple trgjectories over al possible values of x.

Confidence Bands

Both tests of simple slopes and regions of significance are
based on traditional null hypothesis-testing procedures.
However, the usefulness of this approach to statistical in-
ference has been questioned repeatedly over the decades,
culminating in the APA task force report emphasizing that
the construction of confidence intervals is often better than
simple null hypothesis tests (Wilkinson & American Psy-
chological Association Task Force on Statistical Inference,
1999). One reason for this recommendation is that confi-
dence intervals provide more information than null hypoth-
esis tests. For instance, the same test of the null hypothesis
is accomplished by determining whether the confidence
interval encloses zero. More important, there is no need to
establish a specific value (usually zero) for the null hypoth-
esis, as one can select any values of interest and see imme-
diately whether they lie within or without the confidence
interval. Further, the breadth of the confidence interval
conveys the degree of certainty in our point estimate of the
population parameter, often indicating considerable impre-
cision even when very small probability values are obtained
from simple null hypothesistests. It is for these reasons that
we present a third technique for evaluating conditional
effects: confidence bands.

We begin with the standard formula for a confidence
interval for a given parameter estimate 6 where

Cl = 0 = 2, [SE(D)]. (33)

In most cases we are interested in a single effect estimate
and so simply compute the confidence interval for this
estimate. However, in the case of conditional effects, both
the effect estimate and its standard error vary as a function
of the moderating variable. As such, we cannot plot just one
confidence interval; instead we must plot the confidence
interval at each level of the moderating variable, what are
known as confidence bands.

To compute confidence bands for the effect of x condi-
tional on A, we substitute Equations 20 and 21 for the
corresponding terms in Equation 33:

CB;

Yl

= (J1+ ¥2A) * Zeid[VAR(1) + 20,COV(¥1, ¥2)
+ MVAR(1,)1V%. (34)



TESTING INTERACTIONS IN LCAS 227

Similar procedures yield the confidence bands for the inter-
cept and slope estimates of the simple trajectories

CBi., = (fio + ¥1X) = Zei VAR(fL,)
+ 2xCOV(fi,, 1) + XZVAR(%)JUZ,

CBfLﬁ\x = (I:Lﬁ + i/ZX) * Zcrit[VAR(llB)
+ 2XCOV(jig, 32) + XVAR(,)]V2.  (35)

Asisthe case with standard confidence intervals, confidence
bands convey the same information as null hypothesis tests
of simple slopes and/or regions of significance. Specificaly,
the points where the confidence bands cross zero are the
boundaries of the regions of significance and so also indi-
cate which ssmple slopes are significant or not significant.
More important, the confidence bands also convey our cer-
tainty in our simple slope estimates and how that certainty
changes as we progress across the range of our moderating
variable. Typically, we will have much greater precision of
estimation for medium values of the moderator, with in-
creasing imprecision as we move to the extreme ends of the
scale. Analyticaly, thisistrue because the confidence bands
expand hyperbolically around the conditional effect
estimate.

Evaluating Interactions Between Exogenous
Predictors of the Latent Curve Factors

We just described how a main effect predictor of alatent
slope factor can be conceptualized as a two-way interaction
between the predictor and time. Given this, then a two-way
interaction among exogenous predictors of a slope factor
can in turn be conceptualized as a three-way interaction
with time and should be treated as such. If we designate the
first predictor as x;;, the second predictor as x,;, and the
multiplicative interaction as X;;X,;, then intercept and linear
slope equations are given as

No = Mo T YXa + VX + ¥aXeXa + Lo
Mg = Mg T VaXa + vsXa + YeXoXa + L (36)

Further, we can write the reduced form for the conditional
mean of vy, as a function of x; and x, as

(o + y1Xe + ¥2Xp + YaXiXo)

+ (Mts + v+ ysXo + YeXiX) A (37)

IJ"yx|X1,X2 =

We have arranged this equation in the same form as Equa-
tion 19 to illustrate how the intercepts and slopes of the
simple trgjectories (the first and second terms above) de-
pend on the two predictors and their interaction. Further,
this highlights that the interaction x;x, itself interacts with

time A; (via yg). We could equivalently rearrange the equa-
tion to show how the effect of x, depends on the interaction
of x, and A, or how the effect of x, depends on the inter-
action of x; and A,. We now show how to compute and
conduct tests of the simple slopes, followed by a discussion
of the use of regions of significance and confidence bands
with higher order interactions.

Estimating and Testing Smple Sopes

Unlike computing the simple slopes of main effect pre-
dictors, when exogenous variables interact in the prediction
of the trajectory factors, we must evaluate the time-specific
effect of one predictor at various levels of the other. Spe-
cifically, the simple slope for x,, defined as the effect of x;
ony at a specific point in time A; and a specific level of x,,
can be expressed as

3’1|><2,)\I = Y1+ YaXo T Ve + YeXoAe. (38)

To probe this conditional effect, we must then calculate and
test the effect of x, a various points in time within our
observational window and, if x, is categorical, for each
group defined by x,, or, if X, is continuous, for high,
medium, and low values of x,. The standard errors needed
to test the simple slopes are obtained by covariance algebra
in much the same way as before. Because the expression for
the standard error involves many terms, we do not present it
here (see the Appendix for greater detail). Rather, we sim-
ply note that we could again obtain these standard errors by
recoding X, and A, to place their origins at the desired values
and then reestimating the model as described above for
two-way interactions. The only additional complication is
that to probe higher order interactions, more models have to
be estimated to evaluate each possible combination of se-
lected values for x, and A,. With these standard errors in
hand, the critical ratios of each estimate to its standard error
can be formed and compared with a z distribution to obtain
tests of statistical significance for the simple slopes. Parallel
procedures would be used to evaluate the simple slopes of
X, for specific values of x; and A,.

Although tests of the simple slopes of x; and x, can be
highly informative, our primary interest islikely to be in the
simple trajectories defined at various levels of the exoge-
nous predictors. In this case, we would obtain point esti-
mates for the intercepts and slopes of the ssimple trajectories
by selecting values of x; and x, and then computing the
conditional intercept and slope at those values:

Ralxe = Mo+ F1X0 T YXo + YaXiXa,
f’«ﬁ|x1,><z = fbg + YaXy + YsXo T VeXiXo (39)

The standard errors again involve many terms so are not
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presented here (see the Appendix for greater detail). The
significance of these estimates can be tested in the same way
as the two-way interaction model, with the exception that
we would now need to evaluate the simple trajectories at
different levels of x; and x,. If both predictors were
continuous, and we selected high, medium, and low val-
ues of each to evaluate the simple trajectories, crossing
these values would result in nine simple trajectories. If
one or both were categorical, we would evaluate the
simple trgjectory for each group present in the analysis at
selected levels of the other predictor. Finally, we could
recode the predictors to place their origins at the selected
values and reestimate the model to obtain the same point
estimates, standard errors, and significance tests afforded
by the equations.

Regions of Sgnificance and Confidence Bands

Similar to the computation of simple slopes, the use of
regions of significance and confidence bands relies on the
more complex standard error expressions for conditional
effects. However, unlike the computation of simple slopes,
regions of significance and confidence bands are most use-
ful when examined on a single dimension, that is, where the
estimate and standard error vary as a function of a single
variable at atime as was the case with main effect predictors
of the trajectory parameters.® When interactions between
exogenous predictors are added to the model, the two vari-
ables cannot be examined in isolation with respect to one
another, and thus both dimensions have to be considered
simultaneously. Regions of significance would be two-di-
mensional regions on the plane defined by the two interact-
ing predictors, and confidence bands would evolve into
confidence surfaces. This additional complexity quickly di-
minishes the appeal and interpretability of these procedures.

To overcome this difficulty, we propose combining these
techniques with the simple slopes approach of selecting
specific values of one predictor at which to evaluate the
effect of the other. Thus, for instance, to evaluate the
conditiona effect of x, over time at a specific level of x,, we
could rewrite Equation 38 as

3’1’&)\( = (Y1 + ¥X) + (Y4 + YeX)Are (40)

Note that this equation is now paralel in form to Equation
20, where the conditional effect has both an intercept (the
first parenthetical term) and a slope (the second parenthet-
ical term). Thus, if we choose specific valuesfor x, at which
to evauate this relationship (i.€, X pigh X2 mediums aNd
X2 10n), the conditional effect of x, is alinear function of A,
just as in Equation 20. We can compute the variances and
covariances of the point estimates for the intercepts and
slopes in Equation 40 using the following expressions (see
the Appendix for greater detail):

VAR(Y: + ¥3%,) = VAR(Y1) + 2X,COV (¥4, ¥3)
+ XgVAR(:)\/3)5

VAR(Y; + YeX2) = VAR(Y,) + 2X,COV(74, ¥6)

COV(y1 + ¥sXo Va + YeXo)
= COV(¥1, ¥4) + %COV(¥3, Va)
+ X,COV(¥1, ) + X5COV(¥s, Y6).  (41)

We now have al the information we need to compute
regions of significance and plot confidence bands for the
effect of x, over time at each selected level of x, using
Equations 28 and 34. We would simply substitute the values
computed in Equations 40 and 41 for their corresponding
termsin Equations 28 and 34. Alternatively, we could avoid
these calculations atogether by recoding x, so that the
origin is at the desired level and reestimating the model
(e.g., for the centered predictor x, reestimating the model
With X, hign = X, — SD, to probe the effect of x, as a
function of time at 1 standard deviation above the mean).
The point estimates for 4, and ¥, and their estimated
variances and covariance can then be used directly in Equa-
tions 28 and 34. We could, of course, equivalently examine
regions of significance and confidence bands for the
effect of x, over time at each of the three selected levels
of x;. Or, if either predictor is categorical, we could
examine regions of significance and confidence bands
within each group.

The last possibility is to examine regions of significance
and confidence bands for the intercepts and slopes of the
simple trajectories. Here again we would recommend com-
puting these within levels of one of the two predictors. For
instance, choosing a specific value for x, at which to eval-
uate the influence of x, on the slope of the simple trajecto-
ries, we would write

f‘«ﬁ|xl,><z = (fug + ¥sX2) + (Y4 + YeXo) X4, (42)

which is again a linear expression of x;. To compute the
regions of significance and confidence bands, we then need
only the variances and covariance of the intercept (first
parenthetical term) and slope (second parenthetical term) of
this expression, given as

S Thisistrue even if there are multiple main effect predictors, as
the conditional effects can still be examined one predictor at a
time, where the interest is in the unique effect of that predictor
controlling for other predictors in the model.
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VAR(fig + ¥sXo) = VAR(fig) + 2X,COV(fig, ¥s)
+ X§VAR(:)\/5)!

VAR(Y; + YeX2) = VAR(Y,) + 2X,COV(74, ¥s)
+ XVAR(%),

COV(fag + YsXa, ¥4+ YeXo)
= COV([:LB, 3’4) + XZCOV(;)\/SV 3’4)
+ X.COV(jig, ¥e) + X3COV(¥s, o). (43)

Similar derivations could be performed to compute regions
of significance and confidence bands for the simple inter-
cepts or to examine the conditional effect of x, at specified
levels of x;.

Multiple-Group LCA

There are situations in which we would like to test inter-
actions between a continuous or categorical predictor and a
categorical variable denoting membership in two or more
discrete groups. An implicit assumption that we have made
thus far is that, athough the magnitude of the relation
between an exogenous predictor and the trajectory factors
may vary as a function of another predictor, all other model
parameters are invariant across group membership. Al-
though often tenable, in some situations this may not be a
reasonable assumption. For example, it might be expected a
priori that individual trajectories will differ in form and
function across a treatment and a control group; across
males and females; or across Blacks, Hispanics, and Cau-
casians (see, e.g., McArdle, 1989; Muthén, 1989; Muthén &
Curran, 1997). Instead of assuming invariance of model
parameters across groups, we may instead want to empiri-
caly evauate the validity of this assumption. Multiple-
groups SEM is a powerful analytic tool that allows for the
estimation and testing of model invariance across two or
more discrete groupings, and we can make use of this
approach here.

Briefly, the multiple-group SEM is based on the same
model equations as described earlier, but these parameters
have the potential to vary in magnitude from one group to
another. The fundamental latent curve equations can thus be
expressed as

y? = A + &9, (44)
00 = p + T+ 8, (45)
whereg = 1, 2, ..., G represents membership in one of G

discrete groups. Given this, the group-specific covariance
and mean structure are defined as

3(0)° = AYTDTY + WHAY + @Y,  (46)

r(0)° = (A°m) + AT p3), (47)

highlighting that all model parameters and model-implied
moment structures can potentially vary across groups. If
all matrices are defined to be invariant over groups, then
the results simplify to a standard single-group analysis of
the pooled sample. If all matrices are defined to vary over
groups, then the results correspond to a standard single-
group analysis estimated within each group separately.
Typically, some combination of variant and invariant
matrices are defined such that some parts of the model are
equal over groups and other parts are not (see, eg.,
Bollen, 1989).

We can make use of this model formulation to test a
subset of the interactions described earlier. Specifically, we
can consider interactions between a discrete categorical
variable with G levels and any other type of exogenous
variable (categorical or continuous). For example, consider
the conditional LCA with a single dichotomous predictor in
Equation 26. This could be equivaently estimated as a
two-group SEM with equality constraints imposed on all
parameters except the latent factor means. The difference
between the two intercept factor means and between the two
slope factor means is equal to ¥, and ¥, from Equation 26,
respectively. However, the two-group framework in addi-
tion allows us to test the invariance assumptions by esti-
mating a series of nested models in which equality con-
straints are removed and evaluated. If there are meaningful
differences in the covariance structures of the errors or the
latent factors across the two groups, these can be incorpo-
rated into the model prior to evaluating group differencesin
factor means.

We could further extend this two-group framework to test
the interaction between discrete group membership and one
or more continuous or categorical predictors. For example,
consider the conditional LCA with a two-way interaction
presented in Equation 36 in which X, is dichotomous and x,
is continuous. This model could be equivaently estimated
by regressing the intercept and slope factors on the single
continuous predictor x, in the two-group LCA where group
is defined by x,;. A significant difference between the factor
means across group reflects amain effect of x,, a significant
regression of the growth factors on x, (where the magnitude
of thiseffect is held equal over groups) reflects amain effect
of X, and a significant difference in the magnitude of the
regression estimates between the two groups (assessed
when the equality constraint on the regression coefficientsis
removed) would imply the presence of an interaction be-
tween x; and X,. Again, equality constraints could be used to
empirically test the appropriateness of assuming equal pa-
rameters over group. Depending on the outcomes of these
tests, group differences in model parameters could be in-
corporated prior to testing the relations between the exog-
enous predictors and the latent growth factors within each

group.
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In one sense this approach is limited in that testing
interactions between nondiscretely distributed covariates
are not currently possible using this framework (e.g., a
continuous by continuous interaction). However, in another
sense thisis a particularly powerful approach given that not
only can we explicitly test for mean differences as a func-
tion of group membership (as we did before), but we can
also explicitly test differences in variances and covariances
of residuals (®9), latent curve factors (W9), or exogenous
predictors (®9). Thus, we need not assume that these co-
variance structures are invariant over group but can explic-
itly estimate and test for these differences. This may be
particularly salient here given the role of these parameter
estimates in the computation of standard errors for simple
trajectories. Given space constraints, we do not pursue this
powerful approach in greater detail here, but see Curran and
Muthén (1999), McArdle (1989), and Muthén and Curran
(1997) for further discussion.

We now conclude with an empirical examplein which we
test acategorical by continuous interaction in an unbal anced
latent curve model with missing data over time using the set
of techniques described above.

Empirical Example

Datawere drawn from the National Longitudinal Study
of Youth; specific details of sample selection and mea-
sures were presented in Curran (1997).° Selection criteria
resulted in a subsample of children (n = 405) ranging in
age from 6 to 8 years at Time 1 (49% female). Children
were interviewed at least once and up to four times at
approximately 24-month intervals. All 405 children were
interviewed at Wave 1, 374 were interviewed at Wave 2,
297 were interviewed at Wave 3, 294 were interviewed at
Wave 4, and 221 were interviewed at all four assessment
waves. Given the age variability at Wave 1, the approx-
imate 2-year spans between assessments, and the partic-
ipant attrition over time, this can be considered an un-
balanced design with missing data.” To simultaneously
model the complex characteristics of this data while
retaining all observed cases, we used a cohort-sequential
design (e.g., Miyazaki & Raudenbush, 2000) with raw
maximum-likelihood estimation (e.g., Neale, Boker, Xie,
& Maes, 2002; Wothke, 2000). This alowed for the
incorporation of both missing data and individually vary-
ing time between assessments.

There were three measures of interest for the current
example. At Wave 1, the gender of the child was assessed
and coded; a value of O denoted female and a value of 1
denoted male. A measure of emotional support of the child
in the home was assessed at Wave 1, and this was a
continuous measure that ranged from 0 to 13, where higher
values reflected higher levels of emotiona support of the
child at home; emotional support was centered about the
mean. Finally, up to four repeated measures of antisocial

behavior in the child were assessed; this was a continuous
measure representing the sum of six items assessing child
antisocial behavior over the previous 3 months. Values
ranged from O to 12, where higher values reflected higher
levels of child antisocia behavior; antisocial behavior was
not centered about the mean.

There were three motivating questions of interest. First,
what is the optimal functional form of the mean develop-
mental trajectory of antisocial behavior over time? Second,
is there evidence for meaningful individual variability in
trajectories around these mean values? Findly, is there an
interaction between gender and emotional support in the
prediction of the tragjectories such that the magnitude of the
relation between emotional support varies for boys and
girls? The conditional cohort-sequential latent curve model
is presented in Figure 2. It can be seen that the raw maxi-
mum-likelihood estimator is significantly advantageous in
that although no single child provided more than four re-
peated measures, we can estimate a trajectory spanning 10
years of development. The factor loadings are coded as A;;
= age; — 6, where 6 was the youngest child in the sample
at the first assessment and age was rounded to the nearest
year; this alows for the intercept to be defined as the
model-implied value of antisocial behavior for the youngest
age in the sample.

We first estimated an unconditional latent curve model
(thus omitting the three covariates shown in Figure 2) to
establish the optimal growth function over time.® We began
by estimating a linear model with all time-specific residual
variances set to be equal over time. Because of the unbal-
anced nature of the data (and, more specifically, the zero
covariance coverage for some elements of the sample co-
variance matrix precluding the estimation of a saturated
model), there are no standard stand-al one chi-square tests or
incrementa fit indices available, just as there are not in
traditional HLMs. However, we can obtain a chi-square
difference test between two nested models. Using this
method, we first tested the adequacy of the equal error
variances over time and found that there was not a signifi-
cant decrement in model fit associated with this restriction,

© All raw data and computer code are available on the Web for
download (http://www.unc.edu/"curran).

” There are important assumptions made about the mechanism
that gave rise to the missing data, but a full discussion of thisis
beyond the scope of the current article. Please see Allison (2001),
Arbuckle (1996), and Wothke (2000) for excellent discussions of
this topic.

8 Although we estimated all of our latent curve modelsin Amos
(Arbuckle, 1999), these analyses can be fully replicated with any
SEM software package that allows for full-information maximum-
likelihood estimation with missing data.
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Figure 2. Path diagram of 10 time-point cohort-sequential conditional linear latent curve model
regressed on the main effect of gender, the main effect of emotion, and the interaction between
gender and emotion; m,, and m, represent the latent intercept and latent slope of the trajectory,

respectively.

and we retained the equal residuals over time.° We next
tested the improvement in model fit with the inclusion of a
quadratic latent curve factor to capture potential nonlinear-
ity over time, and this too did not result in a significant
improvement in model fit and was thus not retained.

To evaluate the overall fit of the final model, we consid-
ered the magnitude of the standardized parameter estimates
and squared multiple correlations, the presence of large and
significant modification indices, and the magnitude and
distribution of residuals between the observed and model-
implied covariance and mean structures. The stability of the
model was also checked by examining the number of iter-
ations needed to converge, the sensitivity of the solution to
variations in start values, and the potential impact of influ-
ential observations. Space constraints preclude a detailed
presentation of all of thisinformation, but all of these results
suggested that there was an excellent and stable fit of the
linear latent curve model with equal residua variances over
time to the observed data.

We then regressed the latent intercept and linear slope
factors on the main effects of gender and emotional support
and the multiplicative interaction between these two mea-
sures. Evaluating the same criteria as described above, there
was again an excellent fit of the hypothesized model to the
observed data. The parameter estimates and standard errors
for this model are presented in Table 1. Of greatest impor-
tance to our discussion here is the significant regression of

the latent slope factor on the multiplicative interaction be-
tween gender and emotional support (¥ = —.029, p = .05).
This implies that the strength of the relation between emo-
tional support and developmental trajectories of antisocial
behavior varies as a function of child gender. However, as
we highlighted above, given the parameterization of timein
the factor loading matrix, we must explicitly probe this
two-way interaction between exogenous variables as a
three-way interaction with time. To accomplish this, we
used the methods described above to calculate the point
estimates and standard errors for the model-implied trgjec-
tories of antisocial behavior at low, medium, and high levels
of emotional support within boys and girls (as in Equation
39; see Figure 3).

First, within boys (see the top panel of Figure 3), although
all three simple trajectories are increasing over time, the
magnitude of increase is significantly larger with decreasing
levels of emotional support in the home. Of importance, the

® We identified a Heywood case for the residual variance at the
final time point. However, this was small in magnitude and the
Wald test was nonsignificant, suggesting this was not due to model
misspecification (Chen, Bollen, Paxton, Curran, & Kirby, 2001).
Further, there were no Heywood cases with the equality constraints
imposed, and thisimposition did not lead to decrement in model fit
and was thus retained.
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Table 1

Parameter Estimates and Standard Errors From the Main
Effects and Two-Way Interaction Predicting the Intercept
and Sope Factors

Intercept factor Slope factor
Parameter SE = Parameter SE

Predictor variable

Child gender 0.829 .161 0.013 .035
Time 1 emotional support  —0.194  .048 0.012 .010
Gender by support

interaction 0044 070 -—0.029 .015
Intercept term of the

prediction equation 1217 114 0.066 .024

Note. Model results are based on N = 405 assessed at Time 1, but sample
size varied at Times 2, 3, and 4.

slopes of the simple trajectories of antisocial behavior are
significantly positive at low and medium levels of support
but are not significantly different from zero at high support.
In comparison, whereas the simple tragjectories are diverging
for boys over time, they are converging for girls (see the
bottom panel of Figure 3). The ranking of the simple tra-
jectoriesis similar over gender (e.g., low emational support
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Figure3. Simple trajectories of antisocial behavior development
for male and female adolescents plotted as a function of home
support (home) with trgjectories shown at the mean of home
support (medium) and at the mean =1 standard deviation of home
support (high and low).

is associated with the greatest antisocial behavior over
time); however, the ssimple trgjectories are significantly in-
creasing for girls at medium and high levels of support but
are not significantly different from zero at low levels of
support. Note that these complex conditional relations are
not apparent without further probing of the interactive
effect.

The above tests show that the simple trgectories are
significantly increasing over time at some values of emo-
tional support, but not at others. To identify the exact values
of emotional support at which the slope of the simple
trajectory moves from nonsignificant to significant, we cal-
culated the regions of significance and plotted the associated
confidence bands (see Figure 4). The nonshaded area in the
figure reflects the range of emotional support for which the
slopes of the simple trajectories were significantly different
from zero, and the shaded area reflects the range for which
the simple trajectories were not. It can be seen that for boys,
the simple trajectories are significantly positive between
—15.6 and 1.42 units on the scale of support, but not outside

N\ Male

| Female 7

Conditional Mean of the Simple Trajectory Slopes

-0.21 -

041, 7

Home Support

Figure4. The conditional mean of the simple trajectory slopesas
a function of home support by gender. Dashed lines represent
nonsimultaneous 95% confidence bands for the function. The
points at which the confidence bands cross zero demarcate the
nonsimultaneous regions of significance. Regions of home support
over which the slope parameter is significantly different from zero
are nonshaded, whereas regions over which the slope parameter is
nonsignificant are shaded.
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of this range. Given support is centered around the mean,
this reflects that simple slopes are not significant at 1.42
units (or 0.61 SD) above the mean. In contrast, for girls, the
simple trajectories are significantly positive between —1.15
and 7.04 units on the scale of support, but not outside of this
range. This implies that slopes are nonsignificant when
support values are less than —1.1 (or 0.50 SD) below the
mean or when support values are greater than 7.0 (or 3.05
D) above the mean. Note that the overlap of nonshaded
area between boys and girls (i.e., between —1.15 and 1.42)
suggests the range of emotional support in which simple
trajectories operate similarly across gender (although we do
not formally test this here).

In Figure 4 we plotted the relation between emotional
support (on the x-axis) and the model-implied value of the
slope of the simple trgjectory (on the y-axis). In contrast, we
can dternatively plot the relation between time (on the
x-axis) and the magnitude of the effect of home support on
antisocial behavior (on the y-axis) and compute regions of
significance and confidence bands for this effect (as in
Equation 40; see Figure 5).2° It can be seen that emotional
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The Effect of Home Support on Antisocial Behavior
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Figure 5. The effect of home support as a function of time by
gender. Dashed lines represent nonsimultaneous 95% confidence
bands for the function. The points at which the confidence bands
cross zero demarcate the nonsimultaneous regions of significance.
Regions of time over which the effect of home support is signif-
icantly different from zero are nonshaded, whereas regions over
which the effect of home support is nonsignificant are shaded.

support exerts a significant negative influence on antisocial
behavior in boys across all ages under study. In contrast,
emotional support similarly exerts a significant negative
influence on antisocial behavior in girls, but only up to
about age 13 (recall that time was coded as child age minus
6); after this age, there is not a significant relation between
support and antisocial behavior in girls. This helps clarify
the differential relation between simple trajectories of anti-
social behavior and emotional support for boys and girls
presented in Figure 3. More specifically, emotional support
is consistently negatively associated with antisocial behav-
ior, but the magnitude of this effect strengthens with in-
creasing age for boys but weakens with increasing age for
girls. Only by calculating the regions of significance can we
identify these complex conditional relations over time.

The above models were al estimated pooling boys and
girls into a single group and estimating gender differences
by including a dummy-coded covariate to denote gender.
However, as we noted earlier, thisimposes a strong assump-
tion that the covariance structures of the random growth
processes and time-specific residuals are invariant over gen-
der. This assumption is not testable in the single group
model but can be explicitly evauated using a two-group
latent growth model. We estimated a series of two-group
latent curve models in which a variety of eguality con-
straints were imposed both within and across gender. Given
space constraints, we do not fully explicate these results
here. However, the empirical resultsindicated that there was
no evidence of meaningful gender differencesin the covari-
ance structure of the random growth or residual model
components. We thus concluded that it was appropriate to
test these models by pooling data from boys and girls and
assuming other model parameters were invariant over
gender.

Limitations and Future Directions

Although we have discussed a number of potentially
useful conditions under which these techniques can be ap-
plied, there are several topics that we did not explore in
greater detail. First, we did not detail the case in which an
exogenous variable interacts with itself such that there is a
curvilinear relation between the exogenous variable and the
trajectory parameters. However, the methods we have de-
scribed here easily generalize to include such curvilinear

1% Note that there is a critical difference between Figures 3 and
5. Although both figures dencote time on the x-axis, in Figure 3 the
y-axis represents antisocial behavior, whereas in Figure 5 the
y-axis represents the magnitude of the effect of support in the
prediction of antisocial behavior. In other words, Figure 3 repre-
sents the simple trajectories of antisocial behavior over time at
three specific levels of support as afunction of gender, and Figure
5 represents the magnitude of the relation between support and
antisocial behavior over time as a function of gender.
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interactionsin LCA. Second, although we only considered a
linear latent curve model here, our proposed methods would
directly apply to higher order polynomial functions as well.
For example, al interactions would be one order higher if a
quadratic growth factor were estimated, given that this
function is in part defined by the interaction of time with
itself. Third, an important assumption underlying all of the
models that we have presented here is that the exogenous
manifest variables are fixed and measured without error
(e.g., Bollen, 1989). It is well-known that measurement
error in the exogenous predictors can serve to both bias
parameter estimates and decrease statistical power. Multiple
indicator latent factors could be used to explicitly model
measurement error, although additional complexities arise
when one is estimating interactions among latent variables
(e.g., Bollen, 1996; Li, Duncan, & Acock, 2000). However,
the methods that we have described for probing interactions
can al be applied to these more complex measurement
models as well.

One direction for future research is to further explore the
correspondence between multiplicative interactions of di-
chotomous and continuous predictors with a multiple-group
SEM approach. Although we briefly addressed this issue
here, much interesting work is yet to be done in extending
the above methods in a multiple-group framework to allow
for explicit tests of heterogeneity in covariance structures
prior to testing group differences in conditional means (for
examples of this approach, see Curran & Muthén, 1999;
Muthén & Curran, 1997). Further, as we noted earlier, we
have only focused on the interactions between two or more
exogenous variables in the prediction of the latent growth
factors. New methods are becoming increasingly available
to estimate interactions among the latent factors themselves,
and these techniques could be applied in interesting ways in
the latent curve model (see, e.g., Li et a., 2000, 2001).
Finally, in all of our methods described here it is assumed
that the factor loadings are fixed to specific values and not
estimated from the data. There are several powerful variants
of the latent curve model that include one or more loadings
that are freely estimated from the data and thus have asso-
ciated standard errors (e.g., Browne, 1993; du Toit & Cu-
deck, 2001; McArdle, 1989); future developments could
extend our methods to account for these estimated |oadings
and standard errors.

Conclusion

Our goal here was to analytically develop and empirically
demonstrate methods for testing and probing main effects
and interactionsin LCA. We have argued that it is useful to
reconceptualize the indirect effect of an exogenous predic-
tor on the repeated measures as mediated via the factor
loading matrix as an implicit multiplicative interaction be-
tween the predictor variable and time. We have anaytically
demonstrated that classic techniques for testing interactions

can be generalized to a broad class of conditiona latent
curve models. Further, we have empirically demonstrated
that these methods alow for the extraction of much greater
information from the model than is typically considered.
The methods described here not only provide a mechanism
for more fully understanding the influence of main effect
predictors of the latent curve factors but also directly extend
to the testing and probing of higher order interactions. We
believe that these methods can be exploited to gain a clearer
and more comprehensive understanding of potentially com-
plex model results, and we recommend these methods be
considered whenever predictors are tested within the latent
curve framework.
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Appendix

Technica Details

Derivation of Standard Errors for
Conditional Effects

Here we provide the derivation of the effect estimates and
standard errors for the conditional effect of one predictor at spec-
ified levels of another. These standard errors are critical for con-
ducting tests of simple slopes, computing regions of significance,
and constructing confidence bands. Each procedure relies on the
general formula for calculating the variance of a linear composite
of random variables (see Aiken & West, 1991, pp. 25-26; Morri-
son, 1990, p. 83). SAS code and a Web-based interface can be
accessed at http://www.unc.edu/"curran that automate the calcula-
tion of al of the results described below.

Asymptotic Variance of a Linear Composite

Consider the general linear composite

v=az, + -+ agZ, (A1)
wherez,, z,, . . ., z; are normally distributed random variables and
a;, a, ..., 8, are the fixed coefficients associated with each

variable. Note that we may view all of the conditional effect
estimates described in this article as linear composites of other
estimated parameters (i.e., Equations 20, 23, 38, and 39, aswell as
the terms within Equations 40 and 42). In each case, the fixed
coefficients are the selected (or fixed) values of the predictors that
we use to evaluate the conditional effects, and the normally dis-
tributed random variables are the parameter estimates for the
model. The parameter estimates are viewed as random variables
because they would be expected to change from one replication to
the next, varying about the true population value. The assumption
of normality for the sampling distribution of these estimates is
assured asymptotically by the properties of the maximum-likeli-
hood estimator.

To further evaluate this conditional effect, we must estimate the
variance of its sampling distribution and take the square root of
this quantity, the standard error. Although we cannot directly
measure the standard error of the conditional effect, we can esti-
mate this value. To do so, we make use of a general property of
linear composites, that the variance of a linear composite of
normally distributed random variables is

VAR(v) = VAR(@'Z) = a'Ca, (A2)

where aisaq X 1 column vector containing the a,, &, ..., a,
fixed coefficients and C is the g X q covariance matrix for z,,
Zy, . .., Zq To use this formula, we simply insert into the a vector
specific values for the predictors and insert into C the estimated
asymptotic covariance matrix of the estimated effects of these
predictors.

To provide a concrete example, consider Equation 20,

Yila = 1+ Y2A (A3)

which gives the conditional effect (ssmple slope) of the predictor x
on the repeated measures at a given point in time A,. Viewing the
specified value A, as fixed, and the quantities of y, and ¥, as
random variables with a bivariate normal sampling distribution, we
can compute the variance of 7|, by defining

a =[1 Al

[ VARG
c= [ COV(3n, 7,)

where VAR(¥,), VAR(%,), and COV(¥,, ¥,) are obtained from the
asymptotic covariance matrix of the estimates (the inverse of the
information matrix), which can be output from most SEM software
packages. The variance for 9, » Can be derived by applying
Equation A2:

COV(¥, ¥2) } ,

VAR(3,) (A4)

VAR(Y1)

VAR(4],) = [1 )\t][ COVEr. 5 COV(y1, ¥») ][ 1 ]

VAR(Y>) A
= VAR(¥1) + 2ACOV(¥1, ¥,) + A{VAR(¥,).  (AD)

The standard error for #,| » 1S then simply the square root of this
velue, or SE(¥4,) = VAR(S’l‘)\t)llz-

Identical computations can be performed to obtain the variances
for the other conditional effects described in this article (i.e., the
intercepts and slopes of the simple trgectories in Equation 23).
This is true even for conditional effect estimates that involve
interactions among predictors (i.e., Equations 38 and 39). For
instance, if we take Equation 38,

Vilor = Y1+ FoXo + Fahi T YeXoky, (AB)
we can write

a =[1 % A XAl
VAR%,)
COV(}’L }/3)
COV(:/L }’4)
COV(31, %)

COV(y1, ¥3)
VAR(Y3)
COV(¥3, ¥a)
COV(¥3, %)

COV(y1, ¥2)  COV(¥1, %)

COV(¥3, ¥a)  COV(¥3, Ye)
VAR(Y:)  COV(¥4 ¥6)

COV(Ya ¥6)  VAR(¥s)

(A7)

and apply Equation A2 to get the corresponding variance estimate
for 3/1|X2‘ A Thevariance of any other linear composite of estimated
model parameters can be estimated similarly. For instance, though
we do not present this here, Equation A2 can be used to compute
variance estimates for conditional effects in nonlinear latent curve
models where the trajectories are captured by higher order poly-
nomial functions of time.

The variance and covariance estimates for the two terms in
Equations 40 and 42 can aso be viewed as linear composites, and
the variances of these quantities can be estimated in the same way.
However, we also need to identify the covariance of these linear
composites. To do so, we simply note that the formulain Equation
A2 generalizes to systems of r equations by defining v to be a
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column vector containing v,, vy, - - -, v, linear composites of Z,
and A to be amatrix with columns a,, a,, - - -, a, corresponding to
the vector of fixed coefficients associated with each linear com-
posite. The covariance matrix for the linear composites, denoted
3, , can then be obtained by

3, =A'CA, (A8)

where C isagain the covariance matrix of Z. Thus, for instance, for
Equation 40 we have two linear composites of interest, v; = ¥, +
YaXo and v, = Y, + YeXo. TO expressthesein terms of the same set
of parameter estimates Z, we can write them as

01= (1)(¥) + (0)(¥a) + (%) (¥3) + (0)(Fe),

0= (0)(¥) + (1) (3a) + (0)(¥3) + (X2)(¥e).

The fixed coefficients from these two equations then define the
matrix A, and we can define C in the same way as before:

, [ 1 0 x O

A ‘[ 01 0 x }
COVI5,, %)
VAR(Y.)

COV(34, 7)
COV(34, %)

(A9)

VAR(Y,)
COV(¥1, 74)
COV(¥1, ¥3)
COV(¥1, %)

COV(¥1, ¥3)  COV(¥1, %)

COV(¥4, ¥3)  COV(¥a, ¥s)
VAR(Y3)  COV(¥3, Ye)

COV(¥3, %)  VAR(Ye)

(A10)

Then solving Equation A8 will result in the variance and covari-
ance estimates given in Equation 41. Similar procedures can be
used to obtain variance and covariance estimates for the terms in
Equation 42 as given in Equation 43.

Tests of Simple Slopes and Regions of Significance

In conducting tests of simple slopes, we select specific values
for our moderating variable, use the formulas above to identify the
effect estimate and standard error at that specified value, and then
form the critical ratio of these quantities to obtain a z statistic. For
a concrete example, consider Equation 22:

il

Z = aEa T All
= CAN (ALY

We can replace the numerator and denominator of the ratio with
the values obtained from Equations A3 and A5, giving
- Y1+ Y2
T [VAR(3) + 2MCOV(31, 72) + AVAR(Y,) V2"

(A12)

To compute and test simple slopes for the effect of x, we would
choose a specific value for A, and then solve for z; |, .

To compute regions of significance, we reverse the unknown in
this equation, selecting a specific critical value z.;, (i.e., +1.96 for
an alpha level of .05), and then solve for the values of the
moderator that yield z,;;. These values are on the threshold of

significance, indicating the exact points on the scale of the mod-
erating variable where the conditional effect passes from signifi-
cance to nonsignificance (or vice versa). Thus, to compute these
values for our example, we would replace z,, |, with the specified
critical value z;:

o Y1+ Yol
Zit = [VAR(Y,) + 2A,COV(¥, ) + AVAR(Y,) V2"

(A13)

To solve this equation for the values of A, that yield z;,, we first
sgquare both sides

2 (1 + ¥A)?
it VAR(,) + 2MCOV(F1, #2) + A2VAR(3,)

(A14)

then expand the numerator and multiply both sides by the
denominator:

Zgrit\/AR(S’l) + 22§rit)\tcov(3'lv '3’2) + Zgrit)\t2 VAR('S’Z)

=%+ 2A0%. + AF¥;. (A15)
Finally, we can subtract the right-hand expression from both sides
of the equation and collect terms, yielding

[ Z2VAR(Y.) — %A + {2l ZCOV(1, 72) — 1Yt
+ [Z?,mVAR(%) - %] =0 (Al

as given in Equation 28. As noted in the text, given this arrange-
ment of terms, the quadratic formula can be used to solve for the
two roots of A, that satisfy this equality, where these roots demar-
cate the boundaries to the regions of significance. Similar compu-
tations can be performed to obtain the regions for other conditional
effectsin the latent curve model. For instance, to obtain regions on
x for which the intercepts and slopes of the simple trgjectories are
significantly different from zero, we would simply use Equation 25
in place of Equation 22.

In the case in which two exogenous variables interact in the
prediction of the latent trajectory factors, the effect and standard
error expressions will be considerably more complicated. This
three-way interaction with time means that each conditional effect
is afunction of two moderating variables that themselves interact.
However, as we noted within the main text, if we select specific
values for one moderator, then the conditional effect formula can
be reduced to alinear expression with quadratic variance just asin
the simpler case considered above (i.e., Equations 40 and 42).
Once variance and covariance estimates for the terms of these
expressions have been computed using Equation A8, as shown
above, the same algebraic steps can be followed to obtain the
regions of significance.
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