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A core assumption of the standard multiple regression model is independence of residuals,
the violation of which results in biased standard errors and test statistics.  The structural
equation model (SEM) generalizes the regression model in several key ways, but the SEM
also assumes independence of residuals.  The multilevel model (MLM) was developed to
extend the regression model to dependent data structures.  Attempts have been made to
extend the SEM in similar ways, but several complications currently limit the general
application of these techniques in practice.  Interestingly, it is well known that under a
broad set of conditions SEM and MLM longitudinal “growth curve” models are
analytically and empirically identical.  This is intriguing given the clear violation of
independence in growth modeling that does not detrimentally affect the standard SEM.
Better understanding the source and potential implications of this isomorphism is my
focus here.  I begin by exploring why SEM and MLM are analytically equivalent methods
in the presence of nesting due to repeated observations over time.  I then capitalize on this
equivalency to allow for the extension of SEMs to a general class of nested data structures.
I conclude with a description of potential opportunities for multilevel SEMs and directions
for future developments.

The structural equation model (SEM) is a flexible and powerful
analytical method that has become a mainstay in many areas of social
science research.  The generality of this approach is evidenced in the ability
to parameterize the SEM to estimate well known members of the general
linear modeling (GLM) family including the t-test, ANOVA, ANCOVA,
MANOVA, MANCOVA, and the multiple regression model.  However, the
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SEM can be expanded to allow for the estimation of measurement error
through the use of multiple indicator latent factors, the testing of complex
mediational mechanisms through the decomposition of effects, and the
testing of moderational mechanisms through the estimation of multiple group
analysis, just to name a few.  Unquestionably, the SEM is a significant and
indispensable tool to empirical researchers.

Of course the SEM is not without limitations.  The most widely used
method of estimation is maximum likelihood (ML).  Under the general
assumptions of sufficiently large sample size, proper model specification,
and residuals that are independent and normally distributed, ML provides
asymptotically unbiased, consistent, and efficient parameter estimates and
standard errors (Bollen, 1989).  However, these asymptotic properties are
commonly violated in practice, and recent developments have led to
improved estimators in the presence of non-normality (e.g., ADF estimation;
Browne, 1984), categorical dependent variables (e.g., WLS; Muthén, 1984),
misspecified models (2SLS, Bollen, 1995, 1996) and small sample size (e.g.,
Yuan & Bentler, 2001).  Despite these improvements, one of the most vexing
challenges remains proper model estimation of SEMs in the presence of
dependent data.

The assumption of independence implies that the residuals for a given
dependent variable are mutually uncorrelated.  However, there are many
situations in which this assumption is violated in practice, whether it be
explicitly introduced by design (e.g., children nested within classrooms) or
may arise more subtly during data collection (e.g., interviewees nested
within interviewer).  Regardless of source, it has long been known that
violation of the assumption of independence leads to biased test statistics,
standard errors, and even parameter estimates due to the inappropriate
aggregation across levels of analysis (Hox, 1998; Raudenbush & Bryk, 2002;
Snijders & Bosker, 1999).  Although much work has focused on expanding
the SEM for application with dependent data structures using both true ML
(Bentler & Liang, 2003; du Toit & du Toit, in press; McDonald & Goldstein,
1989) and pseudo-ML (e.g., Muthén, 1989, 1994) estimation, there remain
limitations with each approach.

Yet here lies a curiosity.  A classic source of dependency in data structures
arises from the repeated assessments of individuals over time.  Despite this
clear two-level nesting of time within individual, it has long been known that
two-level random effects growth models can be fully estimated within the
standard SEM framework (MacCallum, Kim, Malarkey, & Kielcolt-Glaser,
1997; Meredith & Tisak, 1984, 1990; Willett & Sayer, 1994).  Indeed, under
many broad conditions the SEM growth model is analytically equivalent to that
of the traditional multilevel model (MLM), an approach that is explicitly
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designed for evaluating nested data structures.  This raises two interesting
questions.  First, exactly what characteristics of the two-level random effects
growth model allow for the equivalent estimation in SEM and MLM? Second,
might we be able to capitalize upon these characteristics to extend the standard
SEM for novel uses in more general complex data structures? Exploring these
two questions is my goal here.

I will show that the general rule for using the SEM in the analysis of
longitudinal data is that the values of the level-1 predictor variables are
incorporated into the SEM via the factor loading matrix.  This is of course
well known given the coding of the measure of time in the SEM, but I will
demonstrate that this strategy can be extended for any number of level-1
predictors.  I will then demonstrate that the standard SEM can be used to
evaluate a variety of models in the presence of nested data structures that
arise from sources other than longitudinal data.  Finally, I will argue that for
some types of questions the SEM approach to nested data will provide
certain advantages over the standard MLM approach, whereas in some
situations the opposite will hold.

Prior Explorations into the Intersection between MLM and SEM

I am far from the first person to explore the increasingly porous
boundaries between multilevel and structural equation models.  Of course
Meredith and Tisak (1984, 1990) had early insights into using the SEM
framework to fit what was to become more widely known as multilevel
models.  McArdle and Hamagami (1996) used a multiple group SEM to
estimate a particular subset of MLMs.  Rovine and Molenaar (1998, 2000,
2001) explored the intersection between SEM and MLM using separate
structures for the fixed and random effects to stay maximally consistent with
the Laird and Ware (1982) expressions.  Newsom (2002) explored a creative
variant of these models to use the SEM framework to estimate a MLM for
dyadic data.  When discussing potential applications of SEMs in nested data
structures using Mx, Neale, Boker, Xie, and Maes (1999) noted “...this type
of modeling is equivalent to Hierarchical Linear Modeling (HLM) as
specified by Bryk and Raudenbush (1992) and others.  This aspect of Mx has
not received much attention...” (p. 33).  And most recently, Bauer (in press)
expanded upon an idea presented in Bauer and Curran (2002) to pursue a
rigorous development and application of multilevel SEMs to test complex
factorial measurement in three-level nested data structures.  Thus, although
my goal is to make several unique contributions here, I have drawn upon the
creativity and insights of this body of work in the development and
articulation of my own thoughts on this matter.  I am particularly inspired by
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the work of my colleague Dan Bauer, and much of his original thinking is
reflected in my work here.

The Standard Structural Equation Model

There are two fundamental equations that define the general SEM: the
measurement equation and the structural equation.  The measurement
equation is given as

(1) y = � + �� + εεεεε,

where y is a p × 1 vector of p-observed variables, � is a p × 1 matrix of
measurement intercepts, � is a p × k matrix of factor loadings relating the
p-observed variables to the k-latent factors, � is a k × 1 matrix of latent
factor scores, and εεεεε is a p × 1 vector of residuals.  The structural equation
is then defined as

(2) � = � + �� + �,

where � is defined as before, � is a k × 1 vector of latent factor means and
intercepts, � is a k × k matrix of regression coefficients among the latent
factors, and � is a k × 1 vector of residuals.

Finally, we can substitute Equation 2 into Equation 1 to express the
reduce form expression for y such that

(3) y = � + �(� + �� + �) + εεεεε,

and with simple rearrangement

(4) y = (� + ��) + (���) + (�� + εεεεε),

which highlights the parameterization of the means and intercepts, the factor
loadings and factor regressions, and the disturbances and residuals.

Importantly, the covariance and mean structure of y can be expressed
in terms of the model parameters.  The covariance structure implied by
Equation 4 is

(5) �(�) = �(I – �)-1	(I – �)-1��� + 
εεεεε,

where �(�) represents the p × p covariance matrix of y expressed as a
function of the model parameters in �, 	 is the k × k covariance matrix
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among latent factors, 
εεεεε is the p × p covariance matrix of residuals, I is a
k × k identity matrix, and all else is defined as earlier.  Further, the mean
structure implied by Equation 4 is

(6) �(�) = � + �� + ���,

where �(�) represents the p × 1 vector of means of y expressed as a function
of the model parameters in �, and all else is defined as earlier.

The analytic goal is to estimate the model parameters in � via the
minimization of a suitable discrepancy function F.  Although there are a
variety of methods available, the most common is the maximum likelihood
(ML) estimator.  This fit function is denoted F

ML
 and can be expressed as

(7) F
ML

 = {ln|�(�)| – ln|S| + tr[�-1(�)S] – p} – {[ y  – �(�)]��-1(�)[ y  – �(�)]},

where �(�) and �(�) are defined as before, S is the sample covariance
matrix and y  is the observed mean vector.  Under the assumptions of
sufficient sample size, correct model specification, no excess multivariate
kurtosis, and independence of residuals, the parameter estimates in �̂  are
asymptotically unbiased, efficient and consistent (Bollen, 1989).  Further, under
these same assumptions, the test statistic defined as T = MLF̂ (N

T
 – 1) (where

MLF̂  is the sample minimum of the discrepancy function and N
T
 is the total

sample size) is distributed as a central-�2 with df = {[p(p + 1)/2] + p} – t where
t is the number of free parameters in �.  The test of T provides an evaluation
of the null hypothesis that the covariance matrix and mean vector in the
population are equal to those implied by the model (e.g., as defined in
Equations 5 and 6).  The implications of violating each of the assumptions
underlying ML have been studied extensively.  Further, post hoc adjustments
and alternative methods of estimation have been developed that are more
robust to many types of violations.  However, the assumption of
independence of observations poses a particularly salient challenge when
estimating SEMs under maximum likelihood.

The Assumption of Independence of Observations in SEM

Independence is a standard assumption within the entire general linear
model (GLM) and thus of course applies directly to the SEM as well.  It is well
known that violation of the independence assumption introduces predictable
sources of bias into the estimation of the SEM.  Specifically, standard errors
tend to be too small, test statistics tend to be too large, and biased coefficients
may result from inappropriate aggregation across levels of nesting (Hox, 1998;
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Raudenbush & Bryk, 2002; Snijders & Bosker, 1999).  Further, failure to
explicitly model the nested structure of the data may significantly preclude our
ability to test certain questions of interest (e.g., simultaneous disaggregation of
child effects from teacher effects from school effects).  Given the many
advantages associated with the SEM in general, attempts have been made to
incorporate nested data structures into the SEM.

The first approach was to incorporate a true full information ML (FIML)
estimator for multilevel SEMs.  Seminal work in this area was presented in
Goldstein and McDonald (1988), McDonald and Goldstein (1989), and
McDonald (1993, 1994).  Although analytically elegant and ahead of its time,
this FIML approach was limited in application given the need to invert a large
number of high dimension matrices and the reliance on specialized software
packages.  Recent efforts to overcome these challenges have been
presented by Bentler and Liang (2003) and du Toit and du Toit (in press), but
these new methods have not yet been closely studied.  An alternative to the
FIML approach is a pseudo-ML estimator that is a drastically simplified
version of FIML given the imposed assumption of a fully balanced design
(e.g., equal numbers of level-1 observations nested within all level-2 units).
This method has primarily been described by Muthén (1989, 1994) who drew
on the developments of McDonald and Goldstein (1989) and McDonald
(1993) and referred to this as Muthén’s ML (MUML) estimator.  MUML is
not a true ML estimator under the realistic condition of unbalanced designs
and is also limited to the estimation of random intercepts only.  Although both
FIML and MUML estimators provide certain advantages, there are still a
number of limitations that reflect the difficulty of extending the general SEM
for application with nested data structures.

Multilevel Modeling

Through the seminal work of Burstein (1980), Goldstein (1986), Laird
and Ware (1982), Longford (1987), Mason, Wong and Entwisle (1983), and
many others, the general linear model has been expanded to allow for
complex nested data structures.  The multilevel model (MLM) can
heuristically be expressed as a set of equations operating at two levels.  For
a continuous measure y assessed on individual i nested within group j, the
level-1 equation can be expressed as

(8) 0
1

P

ij j pj pij ij
p

y x r� �
=

= + +∑ ,
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where �
0j
 is the level-1 intercept within group j, �

pj
 is the regression of y

ij
 on

the pth variable x within group j, and r
ij
 is the residual for individual i within

group j.  Given that the intercept and slope coefficients vary randomly over
group, these can be regressed upon one or more level-2 variables denoted w
such that

(9) 0 00 0 0
1

Q

j q qj j
q

w u� � �
=

= + +∑ ,

(10) 0
1

Q

pj p pq qj pj
q

w u� � �
=

= + +∑ ,

where the �s represent the fixed coefficients for the regression of the
random intercepts and slopes from the level-1 equation (e.g., �

0j
 and �

pj
) on

the level-2 predictor w
j
, and u

0j
 and u

pj
 represent the associated level-2

residuals.
This two-level expression is for heuristic purposes only, and the level-2

equation may be substituted into the level-1 equation to create the reduced
form expression.  In matrix terms we can generally express the level-1 and
level-2 equations as

(11) y
j
 = X

j
�

j
 + r

j
,

(12) �
j
 = W

j
� + u

j
,

with reduced form

(13) y
j
 = X

j
W

j
� + X

j
u

j
 + r

j
,

where y
j
 is the response vector for group j = 1, 2, ..., J, X

j
 is the design matrix

for the set of level-1 predictors (including a column vector of 1s for the
intercept), W

j
 is the design matrix for the set of level-2 predictors (also

including a column vector of 1s for the intercept), � is the vector of fixed
regression coefficients, and u

j
 and r

j
 are the vectors of level-2 and level-1

residuals, respectively (see Raudenbush & Bryk, 2002, pp. 42-45 for more
detail).  Importantly, it is assumed that the random effects and residuals are
independent and multivariate normally distributed as

(14) ( )jj 0, ,N rr ��
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(15) u
j
 ~ N(0, T).

The covariance matrix of the random effects T is typically unstructured
while the residuals are constrained to be homoscedastic and independent
(i.e., 

j

2
jN�=r I� ), although these specific forms of T and 

jr�  are often for
convenience and are typically not required.

The MLM provides a powerful and flexible analytic framework for
testing a variety of interesting questions in the social sciences.  Because the
nesting in the data is explicitly modeled through the disaggregation of the
level-1 and level-2 covariance structures, under general assumptions the
model results in accurate standard errors and unbiased coefficients.
Importantly, disaggregated effects may be estimated by including predictors
in either the level-1 or level-2 parts of the model.  These advantages combine
to make the MLM an important analytic tool for the applied researcher.

SEM and MLM Approaches to Growth Curve Analysis

A comparison of the reduced form expressions and corresponding
assumptions of the multilevel and structural equation models leads one to
believe that these are fundamentally different methods of analysis.  The
assumption of independence of observations is highlighted in the standard
estimation of the SEM in that the discrepancy function is based on a single
aggregate sample covariance matrix that allows for covariance structures
only at a single level of analysis; the covariance structure within any other
level of nesting is assumed to be null.  In contrast, the estimation of the MLM
explicitly incorporates complex data structures through the simultaneous
disaggregation of covariance structures among lower (e.g., individuals) and
higher (e.g., classrooms) levels of data hierarchy.  Accordingly, whereas
nested data structures pose a significant problem to standard ML estimation
in SEMs, the estimation of the MLM explicitly allows for these dependent
data structures.

Despite the seemingly radical differences between the SEM and MLM, we
are left with the curious isomorphism between these approaches when
estimating a broad class of random effects growth curve models.  More
specifically, when a two-level data structure arises from the repeated
observations of a set of individuals over time (such that time is hierarchically
nested within individual), under a broad set of conditions the SEM is analytically
equivalent to the MLM (MacCallum et al., 1997; Raudenbush, 2001; Willett &
Sayer, 1994).  Thus, despite the key differences between the estimation
procedures in the SEM and MLM, these two approaches provide analytically
identical solutions within the two-level growth model.  It is helpful to consider
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the specific parameterization and estimation of the MLM and SEM growth
models to better see the subsequent relations between the two approaches.

Multilevel Growth Models.  Bryk and Raudenbush (1987)
demonstrated that the MLM provides a powerful method for estimating
random effects growth models by approaching the problem from a nested
data perspective.  That is, if the data were considered to be dependent such
that the repeated measures are nested within individuals, the level-1 model
captured the within-person relations over time (intra-individual change) and
the level-2 model captured the between-person relations (inter-individual
differences in intra-individual change).

The level-1 equation for a linear trajectory is given as

(16) y
ti
 = �

0i
 + �

1i
x

ti
 + r

ti
,

where y
ti
 is the measure of construct y at time t for for individual i, x

ti
 is the

measure of time for individual i, �
0i
 and �

1i
 are the intercept and linear slope

for individual i, respectively, and r
ti
 is the time-specific and individual-

specific residual.  Whereas earlier I used subscripts to denote individual i in
group j, I now modify this to denote timepoint t nested within individual i.
Given this expression, we can write an equation for the random intercept and
slope parameters such that

(17) �
0i
 = �

00
 + u

0i

�
1i
 = �

10
 + u

1i

where �
00

 and �
10

 are the mean intercept and slope values, and u
0i
 and u

1i

are the individual deviations of each observation from these mean values,
respectively.  One or more predictors can be incorporated into either the
level-1 or level-2 equations to evaluate time-varying and time-invariant
predictors of y.  As can be seen, the random effects growth model is simply
a specific parameterization of the general MLM presented in Equation 13.

Structural Equation Growth Models.  Drawing on developments by
Tucker (1958) and Rao (1958), Meredith and Tisak (1984, 1990) proposed
a method for estimating random effects growth models with the structural
equation modeling framework.  Whereas the MLM approaches the analysis
of growth from a nested data perspective, the SEM approaches this through
the use of multiple indicator latent factors.  For the linear growth model the
measurement equation is

,
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(18)
i iit t ity � �

� � �= + + ε ,

and the structural equation is

(19) i i

i i

a� �

� � �

� � �

� � �

= +
= +

,

Equations 18 and 19 are of the same form as the general SEM expressions
given in Equations 1 and 2.  Further, note the similarities between the SEM
Equations 18 and 19 and the multilevel Equations 16 and 17.  Under general
conditions, both analytic strategies are approaching the same problem from
a different perspective.

However, there remains the clear result that the estimation of the SEM
is making an assumption of independence of observations as reflected in the
analysis of a single aggregate covariance matrix, yet the repeated measures
design naturally gives rise to a two-level data structure with time nested
within individual.  The key to overcoming this challenge in the estimation of
the SEM is to incorporate the level-1 measure of time as fixed values within
the factor loading matrix �.  So, whereas time is entered as a predictor
variable in the multilevel model (e.g., x

ti
 in Equation 16), time is entered as

the values of the factor loadings relating the repeated measures to the
underlying latent factors (e.g., �

t
 in Equation 18).  This strategy allows for

the disaggregation of the level-1 and level-2 covariance structures within a
single partitioned covariance matrix S which is then used as the unit of
analysis in the estimation of the SEM.  Once defined in this fashion, the latent
factors underlying the repeated measures reflect the fixed and random
effects associated with stability and change of the repeated measures over
time.

The Isomorphism between SEM and MLM Growth Models

I will begin with the MLM for the balanced condition (i.e., where all
individuals are assessed at the same time), although we will expand this to
the unbalanced condition shortly.  In matrix terms, the level-1 equation for
the unconditional linear multilevel growth model in Equations 16 and 17 is

(20) y
i
 = X�

i
 + r

i
,
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where the first column of the design matrix X contains a vector of 1s to define
the intercept and the second column contains the individual-specific measure
of time (e.g., x = 0, 1, ..., T – 1 for a linear trajectory for T repeated
observations).  Given the design is balanced, the design matrix X is not
further subscripted.  The level-2 equation is

(21) �
i
 = � + u

i
,

in which there is no level-2 design matrix because we are not yet considering
predictors of the random effects.1  The associated reduced form expression is

(22) y
i
 = X� + Xu

i
 + r

i
,

highlighting that the design is balanced (given no subscript on X) and that the
same design matrix holds for both the fixed and random components of the
model.  The covariance structure implied by Equation 22 is

(23) �
yy

 = XTX� + �
r
,

where �
r
 and T are the covariance matrices of the level-1 and level-2

random effects, respectively.  The mean structure implied by Equation 22 is

(24) �
y
 =  X�.

Now consider precisely the same model defined as a SEM (e.g.,
Equations 18 and 19).  We again consider the balanced condition, but we will
expand this shortly.  Here, the measurement (or level-1) equation is given as

(25) y
i
 = ��

i
 + εεεεε i

,

where the first column of � is a vector of 1s to define the intercept and the
second column contains the specific values of time.  The structural (or level-
2) equation is given as

(26) �
i
 = � + �

i
,

in which there are again no level-2 predictors.  Finally, the reduced form
equation is

1 Recall that there is an implicit column vector of 1s to define the intercept in Equation 21,
but I do not include this here to explicate that we have no additional level-2 predictors.
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(27) y
i
 = �� + ��

i
 + εεεεεi

.

Note that, analogous to Equation 22, � represents the design matrix for both
the random and fixed model effects.  Using traditional SEM notation, the
covariance structure implied by Equation 27 is

(28) �(�) = �	�� + 
εεεεε,

and the mean structure is

(29) �(�) = ��.

Note that Equations 28 and 29 are sub-parameterizations of the more
general SEM shown in Equations 5 and 6.  Also note the symmetry between
Equations 23 and 28, and between Equations 24 and 29.  It can be seen that
for the two-level growth model described here, the multilevel and structural
equation models are related such that

(30) X = �
T = 	
�

r
 = 
ε

� = �

Whereas in the MLM, time is entered as a predictor variable in the design
matrix X, in the SEM time is entered through the fixing of parameters in the
factor loading matrix �.  The associated matrices defining the fixed and
random effects are identical (Bauer, in press).  Here lies the isomorphism.

As I noted earlier, various aspects of these relations have been explored
by Bauer and Curran (2002), Neale et al. (1999), Newsom (2002), Rovine
and Molenaar (1998, 2000, 2001), and most thoroughly by Bauer (in press).
The question that intrigues me here is, Can we use this strategy to estimate
a broader class of multilevel models with the SEM framework? The brief
answer is yes, and the general approach we will use is to code the values of
the level-1 predictors into the factor loading matrix within the SEM.
However, an important initial question to ask is, Why would we want to
trouble ourselves to do this at all?  The MLM is unquestionably a powerful
and well developed method that performs exceptionally well across a variety
of applied research settings.  Why work to replicate this model within the
SEM framework? I suggest two reasons.  First, I believe it is important to
show these equivalencies to better understand specific aspects of each of
these modeling strategies in isolation.  Second, I believe that the SEM may
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provide advantages over the current MLM under certain empirical
conditions.  I will now present a detailed exploration of these models using
an empirical data example.

Fitting Multilevel Models Using the SEM Framework: The Balanced Case

I will use empirical data drawn from the High School and Beyond (HSB)
study to demonstrate the estimation of multilevel models within SEM.  The
HSB data has been used to demonstrate multilevel models elsewhere
(Raudenbush & Bryk, 2002; Singer, 1998), and I use these same data here.
The data consist of a total of N

T
 = 7185 students nested within J = 160

classrooms with class sizes ranging from N
j
 = 14 to N

j
 = 67 with a median

class size of 47.  The outcome of interest is a standardized math
achievement test with a grand mean of y  = 12.75, and grand standard
deviation of sd = 6.88.  I will consider two level-1 predictors of math
achievement (child gender and child minority status) and one level-2
predictor (school socioeconomic status, or SES).

The Balanced Condition.  As a starting point, I extracted a subset of
the full HSB data to result in a balanced data structure (i.e., equal numbers
of students within all classrooms).  Although restrictive, I will fully expand
these models to the unbalanced condition later.  I randomly selected N

j
 = 8

students nested within J = 53 classrooms for a total sample of N
T
 = 424

children.  I then created a data matrix X that was of dimensions J by N
j
 (i.e.,

53 by 8 ) in which each row represented a given classroom with each row-
wise cell representing the eight children within that classroom.  The general
form of this data matrix is presented in Table 1.

Table 1
The J = 53 by N

J
 = 8 Raw Data Matrix X which is the Unit of Analysis for

the Unconditional Random Effects Regression Models Estimated in SEM

child 1 child 2 child 3 child 4 child 5 child 6 child 7 child 8

class 1 y
1,1

y
1,2

y
1,3

y
1,4

y
1,5

y
1,6

y
1,7

y
1,8

class 2 y
2,1

y
2,2

y
2,3

y
2,4

y
2,5

y
2,6

y
2,7

y
2,8

class 3 y
3,1

y
3,2

y
3,3

y
3,4

y
3,5

y
3,6

y
3,7

y
3,8

• • • • • • • • •
• • • • • • • • •
• • • • • • • • •

class 53 y
53,1

y
53,2

y
53,3

y
53,4

y
53,5

y
53,6

y
53,7

y
53,8
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Although this is a data matrix of the math achievement scores for all
N

T
 = 424 children, this is a very different matrix than those with which we

typically work in SEM.  Specifically, as in the standard SEM, each row is
exchangeable with all other rows; however, in this case every cell within
each row is exchangeable with all other cells within that same row.  That is,
the ordering of the cells is completely arbitrary within any given row.  This
is similar to the arbitrary denoting of “twin 1” and “twin 2” in studies of twin
pairs (e.g., Neale & Cardon, 1992).  Thus, in Table 1 the first row represents
the eight children within the first classroom, but the order of these eight
children within the first row is inconsequential.  This data matrix will be the
unit of analysis for our first multilevel model.

We will use the standard ML estimator in SEM to fit our first two-level
model.  To do so, we must calculate our usual covariance matrix and mean
vector from our data matrix X for use in Equation 7.  However, like the raw
data matrix above, the covariance matrix and mean vector are of a particularly
peculiar sort.  Because we are considering a balanced design, N

j
 = 8 for all

J = 53 classrooms.  The covariance matrix S is thus of dimension N
j
 by N

j

representing the number of children within each classroom.  Similarly, the
mean vector y  is of dimension N

j
 by 1, also representing the number of

children within each classroom.  The general structure of this matrix and
vector is given in Equation 31.

(31)

11 1

21 22 2

31 32 33 3

41 42 43 44 4

551 52 53 54 55

661 62 63 64 65 66

771 72 73 74 75 76 77

881 82 83 84 85 86 87 88

s y
s s y
s s s y
s s s s y

ys s s s s
ys s s s s s
ys s s s s s s
ys s s s s s s s

   
   
   
   
   = =   
   
   
        

S y

Prior to fitting our first SEM, consider the elements of S and y .  The first
diagonal element of S (e.g., s

11
) represents the variance of the math

achievement scores for the students who are (arbitrarily) ordered first within
each of the 53 classrooms, the second diagonal element represents those
ordered second, and so on.  Further, the first off-diagonal element of S (e.g.,
s

21
) represent the covariance of math achievement scores for the students

who are ordered second within each class with those who are ordered first
within each class, and so on.  Finally, the first element of the mean vector y
(e.g., 

1y ) represents the mean math achievement of the students who are
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ordered first within each class, the second element for those ordered second
in each class, and so on.  As you can see, this is an extremely odd covariance
matrix and mean vector from a traditional SEM perspective.

This becomes odder still when you consider that the order of children
within classroom is arbitrary, meaning that there are an extremely large
number of distinctly unique but equally valid covariance matrices and mean
vectors that will all result in identical model results.  Given there are N

j

children within J classrooms, there are (N
j
!)J possible combinations of

children within each classroom.  For J = 53 and N
j
 = 8 there are many millions

of possible orderings of children within and across rows.  This in turn results
in many millions of unique covariance matrices and mean vectors, each of
which contain sufficient information to equally fit our MLMs of interest.
What we will see is that although the sample S and y  are seemingly arbitrary,
we will impose the necessary restrictions needed to estimate the MLM
through the parameterization of the measurement model via � in the SEM.

I will begin by estimating a standard random effects ANOVA model
within the SEM.  This is simply estimating a random mean at level-1, and
allowing these means to vary randomly over classrooms (e.g., Raudenbush
& Bryk, 2002, p. 23).  Recall that the key to the equivalency between the
SEM and MLM was that we incorporate any level-1 predictors into the
factor loading matrix in the SEM.  Following this strategy here, in order to
define the random effects ANOVA model as an SEM, we require a column
vector of 1’s at level-1.  To accomplish this in the SEM, we simply define a
single latent factor upon which all eight indicators of math achievement load
with a value fixed to 1.  This is presented in Figure 1.

There are three parameters to be estimated in this SEM.  There is a single
residual that is equated across all eight items (where item represents child);
this is equated given the arbitrary ordering of children within classroom, and
this represents the level-1 random effect (e.g., 2

�̂ ).  There is a single
variance of the latent factor, and this represents the level-2 random effect
(e.g., 

00	̂ ).  Finally, there is a mean of the latent factor (denoted by the
triangle), and this represents the single fixed effect (i.e., 00�̂ ).

I estimated the model presented in Figure 1 using the standard maximum
likelihood estimator based on the single covariance matrix and mean vector
summarizing the data arranged as in Table 1.  The log likelihood for this model
was LL = 2834.05.  The mean (and standard error) of the latent factor was 11.167
(.412), the factor variance was 3.494 (1.794), and the residual variance was
44.025 (3.232) resulting in an intraclass correlation (ICC) of 3.494/(44.024 +
3.494) = .074 indicating an appreciable degree of nesting in the data.  For
comparison, I replicated this same random effects ANOVA model under the
standard MLM framework using restricted ML.  All of the results from the MLM
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matched those from the SEM to the third decimal.  This empirically supports the
analytical results showing that the standard SEM based on a single covariance
matrix and mean vector results in a true disaggregation of level-1 and level-2
random effects when parameterizing the level-2 effects as latent factors.
Although I used Mplus (Muthén & Muthén, 1998) for the SEM analyses and
SAS PROC MIXED (SAS Inc., 2000) for the MLM analyses, all of the results
I present here would be replicated using any comparable software package.

Let us now turn to the inclusion of a single level-1 predictor variable, the
minority status of the child.  This was coded 0 if the child did not self-report
as a member of a minority group and was coded 1 if they did report being a
member of a minority group.  The question of interest is whether child
minority status is related to math achievement, and if the magnitude of this
effect varied over classroom.  To estimate this model within the SEM, we
must not only define a latent factor for the random intercept, but we must also
define a latent factor for the random slope associated with minority status.
To do this, we must modify the data matrix so that order becomes more
important.  The raw data matrix is thus the same as that presented in Table

Figure 1
Path Diagram for the SEM Estimation of a Random Effects ANOVA
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1 with the additional restriction that the first four children listed in a given row
are minority status 0, and the second four are minority status 1.  I intentionally
selected the subset of the HSB data so that minority status was balanced
within classroom, but I will relax this restriction later.

It is important to note that we have no information about minority status
within the data matrix X; that is, there is no measured variable that defines
minority status for each child.  Instead, minority status is solely represented in
terms of the ordering of the observations within each row, and we will
capitalize on this ordering to define a latent factor to represent this effect in the
SEM.  Also note that in the random effects ANOVA model the order of
children within a row was arbitrary and thus children could be considered fully
exchangeable.  However, here we have conditional exchangeability such that
order is arbitrary within minority status, but not across minority status.  So the
first four children are ordered arbitrarily, but these must remain in the first four
elements of the first row.  Outside of this ordering of cases, no new information
is present in this data matrix compared to the earlier one.  This is because we
will incorporate the values of the level-1 predictors into the SEM via the factor
loading matrix.  This multilevel model is presented in Figure 2.

Figure 2 highlights several key additions to the previous model.  First, it is
important to realize that although we are now including minority status as a
level-1 predictor, we are analyzing exactly the same covariance matrix and
mean vector as we used before.  It is not required that we use this same
covariance matrix, and we could equivalently use any of a large number of
potential matrices within the restrictions of conditional exchangeability.
However, we can use the same matrix as before given that the values of
minority status are not embedded in the data set, but are instead entered into
the model via the factor loading matrix that defines a second latent factor.
More specifically, we have included a new latent factor representing the fixed
and random effects associated with minority status as a level-1 predictor.  The
factor loadings are set equal to 0 for children with a minority status of 0, and
these are set equal to 1 for children with a minority status of 1.

It is now clear why it was important to order children so that the non-
minority children were listed first followed by the minority children.  There
are two fixed effects (a mean of each latent factor), one level-1 random
effect (the item-level residual variance equated over items), two level-2
random effects (the variance of each latent factor), and the covariance
between the level-2 random effects (the covariance between the two latent
factors).  This parameterization represents a random regression model with
one level-1 predictor (minority status) and no level-2 predictors.  The SEM
and MLM results are presented in Table 2.
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Table 2
SEM and MLM Results for Random Regression with Child Minority Status
as the Sole Level-1 Predictor

SEM MLM

ˆ �
� 13.530 (.481) 13.530 (.481)

min
ˆ �
� –4.725 (.654) –4.725 (.654)

ˆ
�


 3.197 (2.493) 3.197 (2.493)

min

ˆ
�
 4.516 (4.638) 4.516 (4.638)

,
ˆ
� �
 .127 (2.701) .127 (2.701)

�̂ε 36.355 (2.883) 36.355 (2.883)

Figure 2
Path Diagram for the SEM Estimation of a Random Effects Regression with Minority
Status as the Sole Level-1 Predictor
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As expected, the SEM and MLM results are identical.  Of key interest
is the significant fixed effect of minority status indicating that, on average,
minority children report standardized math tests scores that are 4.7 units
lower than non-minority children.  This is reflected in the fixed-effect
regression in the multilevel model and the mean of the minority latent factor
in the SEM.  Further, there is not a significant random effect associated with
minority status indicating that the magnitude of the effect does not vary
significantly over classroom.  It is important to note that this random effect
is represented as the latent factor variance in the SEM, and the covariance
between the random intercept and slope is represented in the corresponding
factor covariance.

Finally, I expanded this model to include the combined level-1 effects of
child minority status and child gender (where gender equal to 0 reflects girls
and gender equal to 1 reflects boys).  As before, we need not include additional
information into the data matrix given that we will enter the values of gender
into the factor loading matrix.  However, we must impose one more degree of
ordering in our raw data matrix.  Specifically, within minority status equal to
0, the first two children must be girls, and the second two boys; and within
minority equal to 1, the first two children must be girls and the second two must
be boys.  There remains exchangeability of children within row, but now only
within gender ordered within minority.  For example, the two girls that are
minority of 0 can be exchanged with one another, but these two cannot appear
anywhere else in that particular row.  We thus continue to work with the same
raw data matrix presented in Table 1, but with the realization that within a given
row the first two cells represent math achievement scores for female non-
minorities, the next two for male non-minorities, the next two for female
minorities, and the final two for male minorities.  The is no variable measuring
gender or minority; we will define this via �.

We will again analyze the same covariance matrix and mean vector as
before, but we are now going to consider the inclusion of two level-1 variables,
each of which has a fixed and a random effect.  The corresponding SEM
needed to estimate this model is presented in Figure 3.  Note that the factor
loadings for the intercept term are set to 1 for all indicators, the loadings are
set to 1 for indicators representing males, and the loadings are set to 1 for
indicators representing minorities.  Each latent factor mean and variance
represents the fixed and random effects, respectively.  The results of this
model are presented in Table 3.  Again, all results are identical between the
SEM and MLM estimation of this model.  The fixed effects reflect that the mean
of math achievement is 12.994 for non-minority female children, and that there
is a 1.07 increment for males and a 4.725 decrement for minorities.  Finally, there
is no significant random variability in any of these effects (p < .05 ).  To reiterate,
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Figure 3
Path Diagram for the SEM Estimation of a Random Effects Regression with Minority
Status and Gender as the Two Level-1 Predictors

Table 3
SEM and MLM Results for Random Regression with Child Minority Status
and Child Gender as the Two Level-1 Predictors

SEM MLM

ˆ �
� 12.994 (.604) 12.994 (.604)

gen
ˆ �
� 1.07 (.641) 1.07 (.641)

min
ˆ �
� -4.725 (.654) -4.725 (.654)
ˆ
�


 6.387 (3.916) 6.387 (3.916)

gen

ˆ
�


 4.531 (4.485) 4.531 (4.485)

min

ˆ
�
 5.463 (4.656) 5.463 (4.656)

�̂ε 34.463 (2.994) 34.463 (2.994)
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this is a fully random regression model estimated as a standard SEM based
upon a single covariance matrix and a single mean vector.

Continuous Level-1 Predictors.  Up to this point I have considered only
level-1 predictors that are dichotomous, thus making the integration of these
effects quite easy via the factor loading matrix.  There are of course many
instances in which we would like to consider continuous level-1 predictor
variables as well.  This can be fully accomplished in the SEM, although
several challenges are quickly encountered.  Recall that the general rule is
that all possible values of the level-1 predictor must be defined in the factor
loading matrix.  With a dichotomous measure this is easily accomplished
because there are only two potential values on which the variable was
observed.  However, for a continuous measure this can become exceedingly
tedious and introduces an interesting problem with missing data (e.g., it is not
likely that all values of the level-1 continuous covariate may be observed
across all classrooms).  However, through the use of definition variables
(as is currently available in Mx, Neale et al., 1999; see also Mehta & West,
2000), these problems can be surmounted.  The key to this approach is the
use of individual factor loading matrices, where here “individual” is serving
as “classroom”.  More specifically, a factor loading matrix would be defined
that is unique to each classroom j; the elements of this matrix would contain
each observed value of the continuous level-1 covariate.  Finally, the
discrepancy function would be fitted to the model by pooling over all
classroom-specific matrices.  Given space constraints, I do not demonstrate
the inclusion of continuous level-1 covariates here, but see Bauer (in press)
and Neale et al. (1999, p. 133) for empirical examples of this approach.

Level-2 Predictors.  The models I have described above have not
included any level-2 predictor variables.  That is, I have considered two
characteristics associated with the individual children, and we have allowed
the magnitude of these effects to vary over level-2 units, but we have not yet
included predictors at the level of the classroom.  Given that we have defined
latent factors to represent the fixed and random effects of the level-1
predictors, we can simply regress these latent factors on our level-2 measures
of interest.  To accomplish this, we must now augment our data matrix X with
an additional column to incorporate the level-2 covariates of interest.2

To demonstrate this model, I will consider a single classroom level
predictor representing the mean socioeconomic status (SES) of the school.

2  Given that we will simply regress the latent factors on level-2 predictors, these
predictors may be categorical or continuous; the challenges encountered when
incorporating continuous level-1 predictors in the SEM do not apply to level-2 predictors.
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Because there is only one classroom per school, school SES is a classroom-
level measure.  The structure of the new data matrix X is presented in Table
4.  As can be seen, the data matrix is identical to that used before with the
exception that there is an added column representing school SES.  Given that
each row represents one classroom, the first eight cells continue to represent
the math scores for the eight children nested within that classroom, but the
ninth cell represents the school measure of SES for that classroom.

Based on the this data matrix X, we again compute our standard
covariance matrix and mean vector, but this continues to exhibit several
curious properties.  For example, the portion of S related to the students within
classroom is the same as before (e.g., Equation 31); however, the newly added
diagonal element for school SES (denoted s

ww
) represents the sample variance

of SES across the J = 53 schools.  Further, the off-diagonal elements
associated with w (e.g., s

j,w
) represents the covariance of the N

j
 child in

classroom j with the level-2 covariate w.  This is now a partitioned matrix
containing information about the covariance structure of our measures within
level-1, within level-2, and between level-1 and level-2; we are thus
disaggregating the multilevel covariance structure for estimation within the
SEM framework.  As before, this matrix has little intrinsic meaning until we
parameterize the level-1 measures via the factor loading matrix in the SEM.

To demonstrate this, I estimated a SEM to define a random regression
with two level-1 predictors (child minority status and gender) in which all
effects were random, and I regressed these random effects on a single level-

Table 4
The Raw Data Matrix X Ordered First by Minority and Within Minority by
Gender and is Augmented with a Column for the Level-2 Predictor School SES

child 1 child 2 child 3 child 4 child 5 child 6 child 7 child 8 School
min = 0 min = 0 min = 0 min = 0 min = 1 min = 1 min = 1 min = 1 SES
gen = 0 gen = 0 gen = 1 gen = 1 gen = 0 gen = 0 gen = 1 gen = 1 (w

1
)

class 1 y
1,1

y
1,2

y
1,3

y
1,4

y
1,5

y
1,6

y
1,7

y
1,8

w
1,1

class 2 y
2,1

y
2,2

y
2,3

y
2,4

y
2,5

y
2,6

y
2,7

y
2,8

w
2,1

class 3 y
3,1

y
3,2

y
3,3

y
3,4

y
3,5

y
3,6

y
3,7

y
3,8

w
3,1

• • • • • • • • • •
• • • • • • • • • •
• • • • • • • • • •

class 53 y
53,1

y
53,2

y
53,3

y
53,4

y
53,5

y
53,6

y
53,7

y
53,8

w
53,1
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2 measure (school SES).  A path diagram of this model is presented in Figure
4, and the results of the SEM and MLM results are presented in Table 5.  As
expected, the results are identical for the SEM and MLM strategies.  There
is a significant prediction of the random intercept of math achievement as a
function of school SES such that higher SES is associated with higher mean
math scores for female, non-minority students (resulting from the coding
used for the level-1 effects).  Further, there is no significant prediction of
either the gender or minority effects, but this too is expected given no
evidence was found for variability in these effects in the earlier model that
contained no level-2 predictors.  These results demonstrate that we can use
the standard SEM with a single covariance matrix and mean vector to
perfectly replicate a multilevel model containing both level-1 and level-2
predictors and random effects at both levels for the balanced case.

Figure 4
Path Diagram for the SEM Estimation of a Fully Multilevel Model with Two Level-1
Predictors and One Level-2 Predictor
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Fitting Multilevel Models Using the SEM Framework: The Unbalanced Case

Up to this point I have considered a highly contrived balanced situation in
which the within-class sample size is equal over all classrooms, and there were
exactly half of the children within each class who were female and exactly half
who were self-identified minority.  I did this to orient to the general problem
and to demonstrate that under these conditions the multilevel model could be
estimated as a SEM using the standard ML estimator based on a single
aggregate covariance matrix and mean vector.  Of course these contrived
conditions would rarely be encountered in practice.  However, with some basic
extensions we can continue to use the SEM framework to estimate more
complex (and more realistic) multilevel models.

To expand the SEM to the unbalanced case, we must briefly turn back
to the ML fit function defined earlier in Equation 7.  As is explicated in this
equation, the fit function is based upon a single sample covariance matrix and
a single sample mean vector.  In the fully balanced case, these are sufficient
statistics for estimation of the models discussed thus far.  However, in the
unbalanced case we can no longer use a single covariance matrix and mean
vector given that the level-1 sample size varies across level-2 units; these
aggregate covariance matrices and mean vectors no longer represent
sufficient statistics for model estimation.  However, we can address this
issue through the use of direct maximum likelihood (direct ML).

The direct ML estimator has been used extensively in standard SEM
analyses to properly model data in which some portion is missing (see Allison,
2001, and Schafer & Graham, 2002, for details).  We can make use of the

Table 5
SEM and MLM Results for the Gender, Minority Status, and School SES

SEM MLM

ˆ �
� 13.118 (.567) 13.118 (.567)

gen
ˆ �
� 1.085 (.642) 1.085 (.642)

min
ˆ �
� –4.703 (.655) –4.703 (.655)

ˆ
�

� 4.069 (1.494) 4.069 (1.494)

gen
ˆ
�

� .476 (1.692) .476 (1.692)

min
ˆ
�

� .743 (1.726) .743 (1.726)

�̂ε 34.463 (2.994) 34.463 (2.994)
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direct ML estimator here because we can conceptualize the unbalanced
nested design as a form of missing data.  For example, if one classroom were
to have N

j
 = 15 children and a second classroom were to have N

j
 = 10

children, we can consider the difference of five children to be missing in the
second classroom.  Of course it is not missing in the literal sense of the word,
but it is in the eyes of the estimator.3  This approach will allow us to estimate
the multilevel model as a SEM for unbalanced designs.

The direct ML fit function used in the general SEM can be expressed as

(32) 1
, , , , , ,

1 1

log | | ( ) ( )
N N

DML i mm i m i m i mm i m i m
i i

F y y� �−

= =

′= Σ + − Σ −∑ ∑

where m denotes the measured (or observed) data taken on individual i within
a sample of size N (Wothke, 2000, Equation 1; see also Arbuckle, 1996).
However, for our use here, each row of the data matrix refers to a given
classroom, and each element within a given row refers to a specific child
nested within that classroom.  Thus, in the situation in which we estimate a
multilevel model as a SEM, the direct ML fit function defined in Equation 32
allows for unbalanced designs when we consider i = j and N = J indicating
that the level of the individual is in actuality the classroom, and the pattern
of “missingness” is in actuality the unbalanced design in which sample size
varies over classroom.  I will use this approach to estimate a random effects
regression within the SEM based on the full HSB data set.

Random Effects ANOVA Model.  To demonstrate this approach, I will
re-estimate several of the earlier models, but will consider the entire HSB
data set and not just the highly structured subsample.  Unfortunately, here
we begin to pay the reaper in that the data management aspect of this
endeavor is becoming increasingly tedious.  In order to estimate the
unbalanced multilevel model using the direct ML estimator in SEM, we must
first identify the largest level-1 sample size over level-2 units because this
will define the total number of columns in the data matrix.  For the HSB data,
we find that the maximum level-1 sample size is N

j
 = 67.

Thus, for our initial models we will compute a J = 160 by N
j
 = 67 data

matrix X in which the data for each of J = 160 classrooms is contained in a
given row, and the varying sample sizes across classrooms is expressed as
“missing” for any number of observations fewer than N

j
 = 67.  For example,

if classroom j = 5 were to have N
5
 = 10 children, the first 10 elements of row

5 in data matrix X would contain the individual children’s math achievement

3  Briefly allowing the rather spooky notion of estimators having eyes.
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scores, and the remaining 67 – 10 = 57 elements would be denoted as missing.
This general data structure is presented in Table 6.  Because order of
classroom is arbitrary, I place the largest class as the first row simply to
demonstrate that one classroom has N

j
 = 67 children.  However, all other

classrooms will have only as many columns as children, and all remaining
columns are missing (denoted in the table with cross-hatching).4  We will
now use this data matrix with the direct ML estimator to replicate our earlier
models but using the full HSB data set.

The key difference from the earlier models is that we now must define
our latent factors with 67 individual indicators reflecting that this is the
largest level-1 sample size.  Thus, if we were to replicate the random effects
ANOVA model using the full HSB sample, we will define a single latent
factor with 67 indicators, all of which were related to the factor with loadings
set equal to 1.  I do not present the model results here but, as predicted, the
results from this SEM using the direct ML estimator precisely equal those of
the standard multilevel model.

4  Because the ordering of cells within a given row is completely arbitrary, these can be
written out in any of a large number of ways.  For this example I listed the data starting
from left to right for half of the rows and starting from right to left for the other half (e.g.,
for a classroom with 10 students, I would list the math scores in columns 57 through 67).
This not only highlights the arbitrariness of the ordering, but also allowed for more efficient
estimation of the models given less spareseness of row and column coverage within the raw
data matrix.

Table 6
The J = 160 by N

J
 = 67 Raw Data Matrix X Where Classroom Size is not Balanced

child 1 child 2 child 3 child 4 • • child 66 child 67

class 1 y
1,1

y
1,2

y
1,3

y
1,4

• • y
1,66

y
1,67

class 2 y
2,1

y
2,2

y
2,3

y
2,4

• • y
2,66

class 3 y
3,1

y
3,2

y
3,3

• • • • • • • • •
• • • • • • • • •
• • • • • • • • •

class 160 y
160,1

y
160,2
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A Single Level-1 Predictor.  It becomes more complicated to
incorporate level-1 predictors for the unbalanced condition, but only
modestly so.  Whereas for the random effects ANOVA model we only had
to identify the maximum sample size across all classrooms, we now have to
consider the maximum sample size within each value of the level-1 predictor
of interest.  For example, to include minority status as a level-1 predictor
using the full HSB data set, we must again order the data so that all of the
children of minority status equal to 0 appear first followed by all of the
children of minority status equal to 1.  However, because we are working
with an unbalanced design, the specific number of minority children in each
classroom varies over classrooms.  To account for this, we must identify the
largest number of minority status equal to 0 plus the largest number of
minority status equal to 1, and this combined value identifies the total number
of columns of our data matrix X.

In the full HSB data set we find that the largest number of children of
minority status equal to 0 in a given classroom is N

m=0
 = 66, and the largest number

of children of minority status equal to 1 in a given classroom is N
m=1

 = 64.  Thus,
our data matrix contains J = 160 rows and 66 + 64 = 130 columns.  This data
structure is shown in Table 7.  We can now fit a two-factor SEM to this data
matrix X in which there are 130 indicators, all of which load on the random
intercept factor with factor loadings set equal to 1, and indicators 67 through 130
load on the minority status factor with factor loadings set equal to 1.  I do not
present these results here but, again as predicted, all parameter estimates and
standard errors from the SEM with direct ML estimation are precisely equal to
those obtained from a standard multilevel analysis of the same model.

0 166 64

child1 child 2 • • • child max child1 child 2 • • • child max
min 0 min 0 min 0 min 1 min 1 min 1

n n= =

= = = = = =

��������������� ���������������

Table 7
The J = 160 by N

J
 =130 Raw Data Matrix X for the Full HSB Data Set

class 1 y
1,1(0)

y
1,2(0)

• • • y
1,max(0)

y
1,1(1)

y
1,2(1)

• • • y
1,max(1)

class 2 y
2,1(0)

y
2,2(0)

• • • y
2,max(0)

y
2,1(1)

y
2,2(1)

• • • y
2,max(1)

class 3 y
3,1(0)

y
3,2(0)

• • • y
3,max(0)

y
3,1(1)

y
3,2(1)

• • • y
3,max(1)

• • • • • • • • •
• • • • • • • • •
• • • • • • • • •

class 160 y
160,1(0)

y
160,2(0)

• • • y
160,max(1)

y
160,1(1)

y
160,2(1)

• • • y
160,max(1)
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A Full Multilevel Model with Both Level-1 and Level-2 Predictors.
Finally, we can include one or more level-2 predictors just as we did before.
We simply augment the data matrix X in Table 7 with a single column (here,
column number 131) which denotes the value of school SES for each of the
J = 160 individual schools.  We then define the random intercept and random
minority status factors as before, and regress these two factors on our level-
2 measure of school SES.  This model is presented in Figure 5.  Again, I do
not present the full results here.  As analytically predicted, the parameter
estimates and standard errors from the SEM estimation of the unbalanced
nested model with both level-1 and level-2 predictors are precisely equal to
those obtained using standard MLM analysis of the same model.  This model
could be extended to include additional level-1 or level-2 predictors following
the strategies outlined above.

Figure 5
Path Diagram for the SEM Estimation of the Full HSB Data Set with 130 Indicators to
Define the Intercept and Minority Latent Factors
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Why Bother?

I have demonstrated both analytically and empirically that a two-level
multilevel model with both level-1 and level-2 predictors and fixed and
random effects can be equivalently estimated within the standard SEM
framework.  If the design is balanced, the multilevel model can be estimated
using ML based on a single covariance matrix and mean vector.  If the design
is unbalanced, the multilevel model can be estimated using full information
ML allowing for unequal level-1 sample size across level-2 units.  Finally,
discrete level-1 predictors can be included through specific definitions of the
factor loading matrix, continuous level-1 predictors can be included through
the use of definition variable methodology, and any form of level-2 predictors
can be included as predictors of the latent factors.

Given these analytical and empirical results, I make the following
proposal: Any two-level linear multilevel model can be estimated as a
structural equation model given that this is essentially a data
management problem; thus the intentionally lighthearted title of my
article.  However, in the spirit of never getting something for nothing, for
any multilevel model of any reasonable complexity, estimating this as a
SEM becomes a remarkably complex, tedious, and error-prone task.  A
quite reasonable question then is, Why bother? Given that I can fully
estimate these multilevel models in any number of elegant software
packages dedicated to such an endeavor, why should I consider these
complex SEMs that accomplish the same thing? I see two possible answers
to this question.

First, I believe that understanding how a multilevel model might be
estimated within the structural equation modeling framework helps us to
better understand both approaches to model estimation.  I am in no way
advocating the widespread estimation of multilevel models using SEM
software.  I do hope, however, that the delineation of how these two modeling
strategies are related to one another helps us to better consider each
approach in isolation.  I believe this alone is worth the effort.

However, I believe there is a second advantage to such a consideration
as well.  If we can replicate a multilevel model using the standard SEM
framework, might we then potentially capitalize upon other strengths of the
general SEM to improve upon our multilevel analyses? I believe that we can
indeed accomplish this, and this may in turn improve our methods for
analyzing data from both the SEM and MLM perspectives.  I will conclude
with a description of several of these potential applications that I find
particularly intriguing.
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Potential Expansions of the Multilevel Model via SEM

Multiple Indicator Level-2 Predictors.  Recall that, just as in the
standard ordinary least squares regression model, the MLM makes the
assumption that all predictors are error free.  Given the use of manifest
variables in the SEMs presented above, this same assumption is being made
here as well.  Violation of this assumption undermines the asymptotic
properties of the ML estimator and the resulting parameter estimates are no
longer unbiased (Bollen, 1989).  However, one of the key strengths of the
SEM is the ability to explicitly model measurement error through the use of
multiple indicator latent factors.  Given that the level-1 random effects are
defined as latent factors in the SEM, we can simply now regress these “level-
1” latent factors on one or more “level-2” latent factors.  I put these terms
in quotes because these latent factors are analytically equivalent in the SEM;
only we know that the factors have fundamentally different meanings given
our specific parameterization of the factor loading matrices.

A generic path diagram of a multilevel model with two correlated
multiple indicator latent factors at level-2 is presented in Figure 6.  The figure
presents a situation in which there is a random level-1 intercept and slope,
and each of these is regressed on two level-2 predictors which are modeled
as multiple indicator latent factors.  Just as in the comparison of OLS
regression and SEM, the latent factors allow for the estimation and removal
of measurement error from the exogenous predictors, and thus provide
unbiased estimates of the regression coefficients relating the level-2
predictors to the level-1 random effects.

Multiple Indicator Dependent Variables.  Just as we are able to
include multiple indicator latent factors for our level-2 covariates, we can use
this strategy for our dependent measure as well.  That is, instead of modeling
a manifest variable loading on the level-1 random effect factors, given proper
data characteristics we can model this as a latent factor itself.  Although
measurement models have been proposed in the standard MLM approach,
these are currently limited in that factor loadings must be fixed to unity and
all residual variances are equated for all items (e.g., Raudenbush, Rowan, &
Kang, 1991).5  There is no such limitation in the SEM, and a hypothetical
SEM with two correlated latent factors at level-1 is presented in Figure 7.
An excellent example of this type of model was given in Bauer (in press) who

5   Note that exciting recent work has focused on the integration of multilevel modeling and
item response theory via MCMC estimation to model measurement error in MLMs (e.g.,
Fox & Glas, 2001, 2003).  However, given the recency of these developments, these
methods have not yet been incorporated in applied research settings.
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drew item level data from the HSB teacher survey.  He used four individual
items to assess teacher perceptions of control over school policy and five
items assessing perceptions of control over the classroom.  This represented
a multilevel measurement model with two level-1 dependent variables
modeled as multiple indicator latent factors, and these factors were then
regressed on several level-2 predictors.  Although current software makes
estimating such a model quite tedious, it can be seen that there are many
potentially interesting applications of models such as these.

Figure 6
Hypothetical Model with Multiple Indicator Latent Factors Defined for the Level-2
Predictors
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Three-Level Growth Models.  One of the key advantages of the MLM
growth model is that it can easily be expanded to higher levels of nesting
(e.g., time nested within child nested within classroom).  It has been quite
challenging to estimate models such as these within the SEM framework.
However, using the methods described above, the SEM can also be used to
estimate a 3-level growth model, and a hypothetical model is presented in
Figure 8.  This is similar in form to the measurement model depicted in Figure
7, but here the two correlated latent factors at level-1 represent randomly
varying intercepts and slopes.  However, the second order latent factors
(representing level-2) capture fixed and random effects associated with the
children nested within, say, classrooms.  Finally, these level-2 factors are
then regressed on a level-3 covariate, here shown as a multiple-indicator
latent factor.  Thus the SEM can be applied to estimate a 3-level growth
model with time nested within child nested within classroom.

Testing Within-Level and Across-Level Mediation.  Baron and Kenny
(1986) describe methods for testing mediation within the standard regression
model.  Krull and MacKinnon (1999, 2001) extended these methods to the
multilevel model and, although promising, these methods are limited to testing
a single mediator at a time.  Given the estimation of MLMs within the SEM
framework, we can augment these tests with those available within SEM.

Figure 7
Hypothetical 3-level SEM with a Measurement Model for Two Correlated Constructs at
Level-1
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Specifically, one of the key strengths of the SEM framework is the ability to
decompose total effects into direct, indirect and specific indirect effects, and
to calculate standard errors for all of these (e.g., Bollen, 1987).  In principal,
this would allow for tests of mediation within level-1, within level-2, or
simultaneously across both levels.  Bauer (in press) extended his multivariate
multilevel measurement model to formally test whether the size of the school
mediated the effect of private versus public school in the prediction of the
level-1 perceptions of control factors.  More work is needed to better
understand the advantages and disadvantages of these tests, but the SEM
does offer interesting alternatives to testing mediation within the MLM.

Figure 8
Hypothetical 3-level SEM with a Growth Model at Level-1, Fixed and Random Effects at
Level-2, and a Multiple Indicator Latent Factor at Level-3
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Testing Within-Level and Across-Level Moderation.  Because the
MLM is an extension of the standard OLS regression, interactions are tested
in precisely the same way.  Namely, the unique contribution of the product
between two main effects is assessed in the presence of the main effects,
and a significant unique effect is indicative of a higher order interaction (e.g.,
Cohen, 1978).  A complexity that arises in the MLM is that interactions may
occur within just level-1, just level-2, or across levels 1 and 2 (the cross-level
interaction).  We have recently proposed methods for probing these
interactions in the general MLM (Bauer & Curran, 2003), in the multilevel
growth model (Curran, Bauer & Willoughby, in press-a) and in the SEM
growth model (Curran, Bauer, & Willoughby, in press- b).  Interestingly, the
SEM approach to the multilevel model cannot only test all three types of
interactions that arise in the MLM (with the cross-level interaction arising as
indirect effects in the SEM; see Curran et al., in press-b), but the SEM can
extend some of these tests in a powerful way.  Specifically, one of the
strengths of the general SEM is the ability to test a variety of interesting
questions regarding similarities and differences in model parameters across
discrete group membership.  This is accomplished through the multiple group
SEM in which models are defined within each of two or more discrete
groups, and model parameters can be equated within or across groups to
empirically evaluate a number of hypotheses.  These hypotheses might relate
to potential group differences in the structure of level-1 and level-2 random
effects (e.g., thus allowing for heterogeneous covariance structures of
random effects across group membership).  Or these might consider
differences in measurement structure or regression structure over groups.
For example, in Curran and Muthén (1999) and Muthén and Curran (1997)
we applied such models to evaluate the efficacy of treatment interventions
within an experimental design.  Regardless of specific question, the SEM
provides a method for evaluating these questions of moderation in ways that
are not currently easily accessible via the standard MLM.

Alternative Methods of Estimation.  A distinct advantage of the
multilevel model is that there are well developed methods for the incorporation
of alternative link functions to allow for explicit modeling of dependent
measures that are scaled as dichotomous, ordinal or count variables (e.g.,
Davidian & Giltinan, 1995; Vonesh & Chinchilli, 1997).  However, the
estimation of the standard multilevel model under ML currently assumes that
any continuous dependent variable is normally distributed.  In contrast,
whereas the SEM does not currently allow for the use of link functions, there
have been a variety of recent developments in alternative methods of
estimation in the SEM that help overcome several limitations associated with
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the ML estimator.  For example, Browne (1984) proposed the ADF estimator
that is asymptotically distribution free and works well at large sample sizes and
less complex models (Curran, West, & Finch, 1996; Muthén & Kaplan, 1985,
1992).  Recent developments draw on elements of the ADF estimator which
increases applicability in many research settings including diagonally weighted
least squares (Jöreskog, 1994) and robust weighted least squares (Muthén, du
Toit, & Spisic, 1997).  Further, Satorra and Bentler (1990) proposed
adjustments to the ML to correct standard errors and test statistics under
nonnormality.  Finally, Bollen (1996) developed a two-staged least squares
estimator for use in SEMs that is asymptotically distribution free and less
influenced by specification error.  All of these alternative methods could be
used in the estimation of SEMs with continuously but nonnormally distributed
data that are not currently available in MLM.

Incorporation of Categorical Dependent Variables via WLS
Estimation.  As I noted above, the SEM cannot currently explicitly
incorporate alternative link functions as is done in the nonlinear MLM.
However, the SEM can incorporate categorical dependent measures
through the analysis of polychoric correlations (e.g., Olsson, 1979) using
weighted least squares (WLS) estimation (e.g., Muthén, 1983, 1984).  This
approach is based on the premise that the observed categories arise from the
eclipsing of some threshold value associated with an unobserved underlying
continuous variable (or latent response function).  The structure among these
unobserved continuous measures are estimated via polychoric correlations,
and the SEM is fitted to this correlation structure using WLS estimation.
Thus, a variety of potentially interesting multilevel SEMs could be fitted to
categorical dependent variables allowing for the continued capitalization of
other advantages offered by the SEM.

Multilevel Finite Mixture Modeling.  There has been a recent flurry
of work focused on the extension of the classic finite mixture model to
several types of SEMs (Arminger & Stein, 1997; Jedidi, Jagpal, & DeSarbo,
1997; see Bauer & Curran, in press-a, for a review).  Briefly, the general goal
of mixture modeling is to identify two or more latent classes that represent
subpopulations that are hypothesized to exist but could not be identified as
such based strictly on the available observed measures.  Instead, latent class
membership must be probabilistically inferred as a function of the
distributional structure of the data.  Although clear evidence of latent classes
may be attributable to specific characteristics of the data that do not relate
to “true” latent class structure (e.g., Bauer & Curran, in press-a, in press-
b, in press-c), the identification of multiple classes may also reflect true
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heterogeneity in the population.  In principal, these mixture models could be
applied using the methods described above to provide some empirically-
based insight into the potential of population heterogeneity in the sample data.
Although great care must be taken in the application and interpretation of
these techniques in general, this is an intriguing area of future research for
the multilevel model.

Omnibus Measures of Model Fit.  One current challenge that is
encountered with the MLM is the difficulty of calculating an omnibus
measure of model fit.  The reason is that there is no logical saturated model
with which to compare a particular fitted model.  Of course there are a
variety of powerful methods for comparing nested models and using residual
plots and information criterion measures to evaluate model fit (e.g.,
Raudenbush & Bryk, 2002), but there remains no single inferential test of the
goodness-of-fit of a specific hypothesized MLM.  In contrast, the SEM does
allow for a natural saturated model to which any fitted model can be
compared.  This is reflected in the well known likelihood ratio test (LRT)
which, under certain assumptions, follows an asymptotic central chi-square
distribution to allow for formal inferential tests of omnibus model fit as well
as the calculation of a variety of incremental fit indices.  This LRT can be
applied to evaluating multilevel models using the SEM framework.  It is
important to note, however, that if the SEM is fitted as I described above, the
default test statistic provided by the software package is not correct.
Instead, an alternative saturated model must be estimated that incorporates
the unique data structure being analyzed (see Bauer, in press, for details).
However, once defined, the LRT can be used in the usual way.  Further work
is needed to better understand the potential advantages and limitations of
these measures in practice, but these provide a promising way of evaluating
model fit in practice.

Limitations in Using SEM to Estimate Multilevel Models

As I noted at the opening of this article, my focus here has not been on the
extension of the general SEM to nested data structures, and I leave this to the
creative contributions of McDonald and Goldstein (1989), Bentler and Liang
(2003), du Toit and du Toit (in press), and others.  Instead, I have explored
methods that allow for the estimation of the multilevel model using the existing
SEM analytical framework.  Despite the potential advantages, there are of
course a number of distinct limitations.  Of most importance, I believe that if
no other elements of the SEM are incorporated in a multilevel model then the
SEM approach has nothing unique to offer over the standard multilevel model.
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I presented the random regressions earlier to empirically demonstrate the
analytically derived predictions, but in every case the complex SEM simply
replicated the standard MLM.  My recommendation is that if a particular
research hypothesis can be fully evaluated using a standard multilevel model,
by all means use the MLM approach.  However, if unique elements of the SEM
are to be used that are not currently available in MLM, then the SEM approach
should be considered, but with several caveats.

First, the SEM approach that I have described above is a data
management nightmare.  Many steps are necessary to properly structure the
data and the SEM code quickly becomes extensive.  These challenges could
of course be overcome through the creation of new software that is
dedicated to this task, but this is currently a tedious and error prone process.
Second, the interpretation of the multilevel models estimated as SEMs is non-
standard, and care is needed in the identification of the proper parameter
estimates and the proper interpretations (e.g., latent factor means in the
SEM represent regression coefficients in the MLM, and indirect effects in
the SEM represent cross-level interactions in the MLM).  Finally, it is
important to realize that simply because a particular multilevel model can be
parameterized using SEM, it does not mean that the model is even remotely
meaningful.  For example, it is trivial to re-specify the covariances among the
latent factors representing the level-2 random effects in the SEM so that one
factor is regressed upon another within level-1.  Although numerically
estimable, this may be nonsense from an analytic or substantive standpoint.
It is thus critical that these models be parameterized in a way that the results
are both valid and meaningful.

Although I chose to focus my entire article on a comparison of the SEM
and MLM, an intriguing final question is whether there is a compelling reason
to even embark on such an endeavor in the first place.  Indeed, the
boundaries between these two modeling strategies are becoming
increasingly porous as is evidenced in that fully random regressions can be
estimated in the SEM and latent variable measurement models can be
estimated in the MLM.  We seem to be approaching a point in which the
terms SEM and MLM better distinguish historical roots and commercial
software rather than the underlying statistical models.  This is best evidenced
in the recent developments of the generalized linear latent and multilevel
model (or GLLAMM) by Rabe-Hesketh and colleagues (Rabe-Hesketh,
Pickles, & Skrondal, 2001; Rabe-Hesketh, Skrondal, & Pickles, in press;
Skrondal & Rabe-Hesketh, in press).  GLLAMM is a general modeling
framework in which there is no conceptualization of what is a “MLM” or
what is a “SEM”; instead, the specific set of parameter matrices are selected
that are needed to optimally test a given question of interest.  The orientation
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of this approach is theoretically appealing and bodes well for the ongoing
development of maximally general models that are focused less on historical
lineage and more on the parameterization of the statistical model that
optimally corresponds to the given theoretical model of interest.
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