In this article, the authors examine the most common type of improper solutions: zero or
negative error variances. They address the causes of, consequences of, and strategies to
handle these issues. Several hypotheses are evaluated using Monte Carlo simulation
models, including two structural equation models with several misspecifications of each
model. Results suggested several unique findings. First, increasing numbers of omitted
paths in the measurement model were associated with decreasing numbers of improper
solutions. Second, bias in the parameter estimates was higher in samples with improper
solutions than in samples including only proper solutions. Third, investigation of the
consequences of using constrained estimates in the presence of improper solutions indi-
cated that inequality constraints helped some samples achieve convergence. Finally, the
use of confidence intervals as well as four other proposed tests yielded similar results
when testing whether the error variance was greater than or equal to zero.
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The frequency with which improper solutions appear to occur is rather
surprising.
—Joreskog and Lawley (1968:90)
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We refer to improper solutions as estimates that take on values that
would be impossible for the corresponding parameters or that are con-
strained to the boundaries of possible values. These primarily take the
form of a correlation greater than one or constrained at one or a vari-
ance that is negative or constrained to zero. The type of improper solu-
tions that have received the greatest attention are negative or con-
strained to zero-error variances, sometimes called Heywood cases.
These concern us to the degree that they indicate something wrong
with our model, data, or estimator. As Joreskog and Lawley’s (1968)
quote suggests, negative error variances occur more frequently than
we might expect. Yet, despite their frequency, our knowledge about
them is modest. The growing use of confirmatory factor analysis and
structural equation models (SEMs) makes understanding improper
solutions a pressing issue.

There are three general questions to ask about improper solutions:
(1) What makes them more likely to occur? (2) What are the conse-
quences of having them? (3) What strategies should we follow to cope
with them? In this article, we address each of these questions. We
highlight those areas in which our study corroborates or runs counter
to prior research, and we provide new results and approaches to
improper solutions. Specifically, we examine the contribution of sam-
ple size and model misspecification to the incidence of improper solu-
tions. Key questions are whether improper solutions are a symptom of
a misspecified model (omitted paths) and whether the number of
improper solutions will tend to increase as the extent of model
misspecification increases. Although misspecification is regarded as
one of the major causes of improper solutions (Bollen 1989, Dillon,
Kumar, and Mulani 1987, Van Driel 1978), we have located no studies
that have examined what happens to the number of improper solutions
as the degree of misspecification in a model increases. The main
exceptions are studies of factor analysis models that “overfactor” their
data and look at the occurrence of improper solutions (e.g., Sato
1987). A unique contribution of our article is the inclusion of both cor-
rect and incorrect model specifications examined across two sample
sizes. We focus on a particular type of model misspecification in this

article—omission of paths—and investigate how the number of omit-
ted paths is related to the occurrence of improper solutions. Further-
more, we examine the consequences of improper solutions for the
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paramieter estimates, estimated asymptotic standard errors, m:a chi-
square statistic under three conditions: the wamnocon moE:osm are
freely estimated, constrained to zero, or have an inequality 8:&3:.:
imposed. Each of these strategies appears in research, and our goal is
to provide evidence on which is the most reasonable approach to use in
applied research settings. .

Finally, we explore significance tests to .aﬁ.mﬂs_:m .S.ro%ﬁ an
improper solution departs from a proper solution in a statistically sig-
nificant way. This is salient because it has the wwﬁmssm_ of a.nEosm:.m?
ing that the improper solution is due to sampling ?woﬁwm:o:m rather
than model misspecification. We will follow Van Driel’s chm.v sug-
gestion of using the asymptotic standard errors of the error variances
to form confidence intervals and compare it to several w:ﬂ‘:m:,.a tests
of statistical significance that we suggest. Our goal is to examine the
behavior of Van Driel’s and our significance tests for Ewn:.n& use
with improper solutions. It would be ideal if these tests work since we
could then determine whether the cause of Heywood cases is a:m to
sampling fluctuation, a situation of less concern than is misspecification
of the model.

PAST RESEARCH

CAUSES OF IMPROPER SOLUTIONS

Van Driel (1978) wrote about improper mo_cmos.m in anoBSQ
factor analysis, but his advice is useful for mmZ.m in mn:.onw_. Spe-
cifically, he argued that improper error variance nm:Ewﬂom might result
from any one of three causes: (1) sampling mcnﬁ.zm:o:m. Q..v model
misspecification to the extent that no factor m:&.v\m_m model will fit the
data, and (3) “indefiniteness” (underidentification) o%. the model. To
this list we add (4) empirical underidentification (Rindskopf 1984)
and (5) outliers/influential cases (Bollen Hom.d. m:nrmzdg.? we
expand cause (2) by considering how Emm%mn._mo.mso: can shift the
error variances and their standard errors, which in turn affects the
probability of observing improper solutions. In other words, Eomﬁ
misspecification may not be severe enough to mnnma zero or negative
error variances in the population, but the slight shift in the error
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variance in combination with changes in sampling error could infly-
ence the chances of getting nonpositive error variances in a sample.
Strictly speaking, the “direct” cause of improper solutions could stif}
be sampling fluctuation, but we consider this type of improper solu-
tions as a consequence of misspecification because the probability of
observing improper solutions is changed. In addition, the shape of the
distribution of the estimator of error variances (e.g. normal or
nonnormal) can also affect the probability of nonpositive error vari-
ance estimates. Thus, our definition of cause of improper solutions is
broader than some researchers (see Luijben Gw@v. Although all five
of these influences are of interest, we will primarily focus on two:
sampling fluctuations and model misspecification.

While the role of misspecification in generating improper solutions
has been raised in earlier theoretical discussions (Bollen 1989, Dillon
etal. 1987, Van Driel 1978), we could find no Monte Carlo simulation
studies that investigated whether improper solutions were more fre-
quent in misspecified models. The main exception was exploratory
factor analysis research that looks at the consequences of “overfactor-
ing” for improper solutions (Rindskopf 1984). These studies of the
inclusion of too many factors might be the source of the general ten-
dency for researchers to suspect model specification errors when the
solution is improper and to treat “proper estimates” as a partial valida-
tion of a model. Our study will empirically examine the reasonable-
ness of this approach.

Boomsma (1983, 1985) used a Monte Carlo simulation design to
explore the circumstances and frequency in which nonconvergence
and improper solutions may occur. She found that improper solutions
occurred more frequently in small sample sizes, with smaller popula-
tion values of error variances both across comparable models and
within a single model, and in six-variable factor analysis models com-
pared with eight-variable ones. She recommended that analysts avoid
sample sizes of less than 50. Boomsma’s study was the only one that
we have found that included two full SEMs rather than just the factor
analysis model that all others have relied on.

Anderson and Gerbing (1984) assessed the effect of sampling
errors and model characteristics on the occurrence of nonconvergence,
improper solutions, and distribution of goodness-of-fit indices in
maximum likelihood (ML) confirmatory factor analysis. Consistent
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with findings by Boomsma (1985), they found that sample size and the
number of indicators per factor were associated with the occurrence of
improper solutions. They recommended a sample size of at least 150
and three or more indicators per factor in a confirmatory factor
analysis.

In sum, empirical evidence suggests that sample size and model
specification aspects such as the number of indicators and having too
many factors are related to the incidence of improper solutions. How-
ever, previous studies have not examined typical misspecifications
such as the omission of paths and their contribution to the incidence of
improper solutions. In addition, general SEMs have been less studied

than factor analysis models. In this article, we will address these
issues.

CONSEQUENCES AND STRATEGIES

In a second study, Gerbing and Anderson (1987) studied the conse-
quences of improper solutions in sample sizes of 75 and 150, since at
larger sample sizes improper solutions were relatively rare. In their
three-factor models, each factor was measured with two or three indi-
cators, and they varied the magnitude of the loadings. They found that
the loadings in the locality of the improper solutions were biased.
More specifically, those factor loadings for an indicator with an
improper solution tended to be positively biased, other loadings for
indicators of the same factor on average underestimated the popula-
tion parameter, and the remaining loadings were practically unbiased.
Gerbing and Anderson also noted a general tendency for the standard
errors to be overestimated for all the factor loadings, with there being
greater differences for the loadings associated with the indicator with
the negative error variance. However, chi-square likelihood ratio tests
and some other goodness-of-fit indices were largely unaffected.

Gerbing and Anderson (1987) also investigated the consequences
of constraining an error variance to be nonnegative in the estimation,
fixing a negative error variance to zero, and fixing the negative error
variance to a value that would lead the indicator to have about 28 per-
cent residual variance. They discovered that the overall fit measures
were not greatly affected by the unconstrained versus the constrained
versions of the model, with the possible exception of the last constraint
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in which the error variance was set to a positive number.! The loadings
for the indicator with the improper solutions decreased, those for the
other indicators loading on the same factor increased, and the remain- .
ing loadings were largely unaffected across the unconstrained and
constrained solutions.

One of their findings is particularly relevant to Van Driel's (1978)
suggestion that analysts use the estimated asymptotic standard error
for the negative error variance to form a confidence interval to check to
see if it includes zero. If it includes zero, Van Driel suggested that the
researcher can conclude that the improper estimate is a result of sam-
pling fluctuations rather than specification errors. The appropriate-
ness of this test depends on the estimated asymptotic standard error
being a reasonable estimate of the standard deviation of the corre-
sponding improper estimates so that a confidence interval using it
would be accurate. Gerbing and Anderson (1987) provided the only
Monte Carlo simulation evidence on this issue that we could locate.
They found that for the correctly specified model, the estimated
asymptotic standard errors for the unique variance estimates led to no
instance out of 100 samples in which the 95 percent confidence inter-
vals did not include zero. Since in the population, the error variance
parameter was greater than zero, this check did not give any false indi-
cation that the error variance was negative. However, we cannot say
much more about the accuracy of the confidence interval, nor does this
provide much guidance on testing for negative error variances when
there are more than one error variance to test.

SIGNIFICANCE TESTS FOR ZERO
AND NEGATIVE ERROR VARIANCES

Several aspects of the consequences and treatment of improper
solutions require further investigation. Of key interest is the testing of
whether an improper estimate is due to sampling fluctuations. We pro-
pose several other means besides the Van Driel (1978) confidence
intervals to test whether the improper estimate is a result of specifica-
tion error or sampling error. First, we can form the ratio of the parame-
ter estimate to its estimated asymptotic standard error to form a test
statistic to compare to a standardized normal variable. The main dif-
ference between the z test and the confidence interval method is that it
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is a one-tailed instead of a two-tailed test. A closely related signifi-
cance test is a Wald test for the negative error variance in which the
ratio of the parameter estimate to its asymptotic standard error is
squared and the resulting test statistic compared to a chi-square distri-
bution with one degree of freedom. While the Wald test coincides with
the z test for an individual parameter, it can be extended to test multi-
ple parameters, whereas the ztestisnota simultaneous test. A possible
problem with both of these tests is that they rely on the estimated
asymptotic standard errors, and it may not be a good estimate of the
standard deviation of the estimate. We will directly examine this issue
here.

* Another test statistic is a likelihood ratio test statistic. We can form
it by comparing the likelihood value for the model with the uncon-
strained error variance to one that sets it to zero (or some other small
positive value). The chi-square distribution is the reference distribu-
tion for this test statistic. Finally, a Lagrangian multiplier (“modifica-
tion index”) test statistic is another possibility. This would require
only the estimation of the constrained to zero-error variance model.
The Lagrangian multiplier statistic for releasing the constraint leads to
a chi-square test statistic. An advantage of the Wald, Lagrangian mul-
tiplier, and likelihood ratio tests is that they all generalize to simulta-
neous tests of several error variances. This is preferable to repeated
checks of the different error variances using multiple confidence inter-
vals or multiple z tests. ,

In sum, we describe five tests for whether a negative error variance
is due to sampling fluctuations: (1) a test to determine whether the
confidence intervals include zero, (2) a z test of the null hypothesis that
the error variance is zero versus the alternative that it is less than zero,
(3) a Wald test, (4) a likelihood ratio chi-square test, and (5) a
Lagrangian multiplier test. Van Driel (1978) proposed the first test,
while we suggested the others here to compare to the Van Driel confi-
dence interval method. A comparison of all these tests is important
because they will reveal whether we have a practical test of whether
sampling fluctuations are the cause of an improper solution.

Our goal for this article is to address three questions relating to
improper solutions in SEM: (1) What makes improper solutions more
likely to occur? (2) What are the consequences of having them? (3)
What strategies should we follow to cope with them? To address the
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first question, we will use a computer simulation design to examine
En individual and joint influences of sample size and model specifica-
tion on the incidence of improper solutions. To address the second
question, we will examine bias in resulting parameter estimates, stan-
dard errors, and test statistics. Finally, to address the third question, we
.<<E examine a variety of statistical tests to help determine whether an
improper solution might be attributable to sampling fluctuation or if
instead it may denote more serious model specification problems.

DESIGN

The most challenging aspect of any computer simulation study is in
Gm careful selection of the population models. We chose specifica-
tions that reflected prototypical model types in the social science liter-
ature combined with considerations of statistical power to reject a
model with a given misspecification at a given sample size. Selected
parameter values led to a range of effect sizes (e.g. communalities and
NN.N values ranging from 49 to 72 percent) and, for the misspecified con-
ditions, both a wide range of power to detect the misspecifications
(e.g., power ranging from .07 to 1.0 across all sample sizes) and a
range of bias in parameter estimates (e.g., absolute bias ranging from
0to 37 percent). See Paxton et al. (forthcoming) for a comprehensive
description of our model parameterization. We believe that this
parameterization reflects values commonly encountered in applied
.Hnmm.&o: and that the omission of one or more parameters would result
in meaningful impacts on parameter estimation and overall model fit.

We chose misspecifications according to the degree that they would
elevate the magnitude of the ML fitting function (Joreskog and
Sorbom 1993) evaluated at the population covariance matrix of the
observed variables. The ML fitting function is zero in the population
foracorrect model and increases in magnitude as we misspecify the
model by removing paths.? In this article, by degree of misspecification
we specifically refer to the number of paths that have been oB:Hm
from the correctly specified model. We do not consider other types of

misspecification, such as inclusion of nonexistent paths or misspecifi-
cation of error structure.
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Our models are presented in Figures 1 and 2. Model 1 is a causal
chain model with three latent variables (n,» N, and n,). Each latent
factor has three indicators. Among the nine observed variables
(Y1-Y9), three variables (Y4, Y6, and Y7) have cross loadings: Y4 is
an effect indicator of both 1, and n,, Y6 is an effect indicator of both n,
and 1, and Y7 is an effect indicator of both , and 1. The three scal-
ing indicators, A, , A, and A (underlined in Figure 1) are fixed at 1.0
in unstandardized metric. The population values of the lambdas are all
set to be 1.0 in unstandardized metric, except for the cross loadings,
which are set to be 0.3. Population values of 8, and ,m: are set to be
0.6. The numbers in parentheses below the unstandardized coeffi-
cients are the standardized coefficients. The error variances are set to
values so as to achieve R’s of 0.49.

The measurement component of model 2 is the same as in model 1.
This model also includes four exogenous variables, measured without
error. All four of the exogenous variables affect the first latent vari-
able, 11,. The first and third exogenous variables, X1 and X3, also
affect m, and n,. We selected the population parameter values of the
covariances between the exogenous variables and the paths from the
exogenous variables to the latent variables to maintain the parameter
values of the measurement model.

Past research has not focused on the interplay between
misspecification and negative error variances. Therefore, for each
model we estimated four model specifications—three of which were
misspecifications. That is, in three of the specifications, the model
estimated in the sample did not correspond to the model in the popula-
tion. For model 1, specification 1 is the correctly specified model, cor-
responding to the model picture in Figure 1. In specification 2, we
omitted the path from n, to Y7 (henceforth A, ). A , along with the
other parameters that will be omitted in specifications 2 through 4 are
dashed in Figure 1 for easier identification. Specification 3 addition-
ally omits the path fromn, to Y6 (X)), while specification 4 addition-
ally omits the effect fromn, to Y4 (A, ). In mode! 1, consequently, the
degree of misspecification as gauged by the fitting function value
increases from specification 2 to 4, with first one, then two, then three
paths removed from subsequent specifications.

For model 2, specification { is the correctly specified model, corre-
sponding to Figure 2. In specification 2, we omitted all three of the
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Figure 1: Diagram of Model 1

paths removed in model 1: A Ny and A.,- In specification 3, only the four

gamma paths are omitted, X1 to n,(,),X3ton (7)), X1 to N, (Y.)
and X3 to N, (Y,,)- In specification 4, both the mocmmw:::m m:ua m_:w,
three ._mEvmm paths are omitted. Like the previous model, we chose the
ordering of these misspecifications so as to increase the magnitude of
E.n m:m.:m function as we remove paths. Finally, none of the
misspecified ‘Eomn_m results in negative population etror variances
Thus, any sample negative error variances are due to other influences .
EQS (Bentler 1997) was used for data simulation. Our Eommmm
define the population covariance matrix, which we used to generate
sets of raw data. From a multivariate normal distribution, we obtained
650 sets of raw data from the population with N = 50 m:m N=175.We
used 100 as the maximum number of iterations. Zonoozéammzon
was rare (e.g., ranging fromOto 5 samples across different specifica-
tions for model 1, N = 50, using EQS). For the analysis in this article
we only used converged cases. See the technical mEuo:&x,
9Eu”\\éii.csn.ma:\zocnﬂm:\ommE.EEG for the exact number of
samples used for each model. Our focus is on small sample sizes (N =
50, 75) since improper solutions were rare for our sample size at or
above Bo. and the greatest potential for bias appears to be in small
sample sizes. For example, for model 1, specification 1 at N = 100, we




478 SOCIOLOGICAL METHODS & RESEARCH

36 s s
N1 Ri A1 Al 22 A7 . 5
[81)) [81)] (&1} n (51 {.28) (.28) [§:1}] (.50
K I 1 e 2 B 1 e e A R EY AR
g X 1.. ..a
o ) o
.o. .b-o
3 s 98\ o] 10
1.0 L0 1.0 B4 K4l 1o 1.2 o ., . .
{.70) (&) &) ..o {.70) {.70; (.70 ... . {.70) (.70, {.70),

* L)
39 o5 oS,
& S

o35 20
o4 (6D

X1 X2 X3 X4
w0050 A

15 (.30)

Figure 2: Diagram of Model 2

found only 12 out of 650 samples with nonpositive error variances. At
larger sample sizes, they were even less frequent. . .
We estimated each of the eight (two models x mo:.a .mvoo_mnm:ozm
each) specifications on the samples of raw Qmﬂw, ovﬁ:::m ESBQQ
estimates and fit statistics. To compare estimation aSE negative error
variance restrictions to unrestricted estimation, we estimated all mod-
els in both EQS and SAS’s PROC CALIS. We 5@@ mo.m for con-
strained estimation and CALIS for unconstrained estimation.

RESULTS

In our investigation of improper solutions, we consider the number
of improper solutions, the bias in the parameters introduced by the
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presence of improper solutions, and the difference in bias from con-
strained versus unconstrained estimation. We then discuss briefly the
comparison between asymptotic standard errors and empirical stan-
dard deviation in these different situations. We also investigate the
behavior of Van Driel’s (1978) significance test and our four addi-
tional tests of the statistical significance of the negative error vari-
ances. Within our design, there are four conditions that vary: model
(model 1 or model 2), misspecification (specifications 1-4), sample
size (50 or 75), and estimation technique (constrained or uncon-
strained). With this large number of conditions (two models, four
specifications, two sample sizes, and two estimation techniques), we
produced voluminous results. To conserve space and retain focus in
the present article, we present the figures and tables that help illustrate
our findings. Interested readers can refer to the technical appendix
Q:G“\\Siibzo.mac\woﬁaz\nmmﬁ.rs& for further details. Exam-
ples of the tables and figures in the technical appendix include full
comparisons of parameter estimates among all samples, just samples
with proper solutions, and just samples with improper solutions across
all conditions; side-by-side comparisons of the constrained and

,unconstrained estimation techniques; and box plots to visually display

differences in the constrained and unconstrained estimation
techniques.

INCIDENCE OF IMPROPER SOLUTIONS

Interestingly, our results indicate that in model 1, the number of
zero or negative error variances decreases as the number of omitted
paths increases (see Figure 3). This finding holds across both sample
sizes. In model 1, specification 1 (i.e., properly specified), N=5 0,15.2
percent (99) of the 650 replications were samples with improper solu-
tions.? For specification 2 G(: path omitted), only 11.1 percent (72) of
the replications had improper solutions. The number of improper
solutions decreased slightly, to 10.0 percent (65), for specification 3
(A,,and A s Omitted) and then to 8.3 percent (54) for specification 4
A, and A,, omitted).

Continuing to examine model 1,at N =75, we see fewer improper
solutions than at N = 50. This is consistent with past studies that sug-
gest an inverse relationship between sample size and frequency of
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Figure 3: Number of Improper Solutions: Model 1

improper solutions (Boomsma 1985). With the larger sample size, we
again see that the degree of misspecification is inversely related to
number of improper solutions. For specification 1, 13.1 percent (85)
of the samples had improper solutions, which reduced to 4.0 percent
(26) at specification 2, 2.0 percent 28 for specification 3, and 1.8 per-
cent (12) for specification 4.

For model 2 (displayed in Figure 4), the relationship between the
number of negative error variances and the degree of :zmmmmo_mom:on
is less straightforward than in model 1. Recall that we are measuring
the degree of misspecification by the magnitude of the ML fitting
function for a given model evaluated at the population covariance
matrix. Our specifications for model 2, like model 1, are ordered from
a zero fitting function value for specification 1 to monotonically
increasing values as we move to specifications 2, 3, and 4. The power
of the chi-square tests for these models corresponds to the same order-
ing. This was discussed in the Design section.

In model 2, specification 1, N =50, 83 (12.8 percent) of the samples
had improper solutions. This number sharply decreased to 31 (4.8 per-
cent) when all three A paths C(:, o and A,) were omitted in specifi-
cation 2. At this point, the findings mirror those of model 1— when the
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measurement model is misspecified, the number of improper solutions
decreases. However, in specification 3, when only the gamma paths
(Y, Yy Yy and 7,) are omitted, we find no decrease in the number of
improper solutions and in fact find an increase relative to specification
2. With both the lambda and gamma paths omitted in specification 4,
the number of improper solutions was 66 (10.2 percent)—fewer
than the properly specified model but more than specification 2.

With N = 75, we observe similar results. Again, there are fewer
improper solutions at the larger sample size. The number of i improper
specifications at specifications 1 through 4 are 31 (4.8 percent), 7 (1.1
percent), 47 (7.2 percent), and 23 (3.5 percent) respectively. With the
lambda paths removed (specification 2), there are the fewest i improper
solutions. At this sample size, however, when the gamma paths are
removed there are more improper mo_cscnm than the correctly speci-
fied model.

In sum, in contrast to model 1, in model 2 there is no monotonic
decline in the number of improper solutions with increasing
misspecification. Instead, the omission of lambda paths seems to
decrease improper solutions, while the omission of gamma paths
increases the number of improper solutions. Omission of both lambda
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and gamma paths falls somewhere in between. In both models, how-
ever, misspecifications that omit lambda paths in the measurement
model appear to decrease the number of improper solutions. )

It seems that improper solutions are more frequent for error vari-

ance parameters that are closer to zero than for those that are further
away from zero. Evidence relevant to th
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ion comes from rig-
ure 5. It contains the number of negative error variances by parameter
for model 1, specification 1 for N = 50. Consistent with the idea that
improper solutions will be more frequent for error variances that are
closer to zero in the population is that Y7, Y6, and Y4 have the lowest
error variances (all equal 0.29), and these also are the error variances
with the greatest frequencies of negative values. However, the lower
error variances cannot be the entire explanation, since Figure 5 shows
that the number of improper solutions is not the same for these three
variables despite the fact that they have equal population error vari-
ances. Furthermore, these results are not unique to model 1, specifica-
tion 1. The same pattern holds for the other specifications for model 1
and model 2.

Our preceding findings reveal that the relation between the magni-
tude of misspecification (i.e., the value of F_inthe population) and the
frequency of improper solutions is not a simple association.
Misspecification can make nonpositive error variances more likely in
several ways. One is if the misspecification leads some error variances

+
1

to be nonpositive in the population. This is one sense in which we

would say that misspecification caused an improper solution in the
population and this negative value typically increases the probability
of improper solutions in the sample estimates. However,
misspecifications can affect the probability of improper solutions in

samples even if the error variance is positive in the population. To

understand how, we need to consider that the probability of a
nonpositive error variance is affected by several factors. One part is
the population parameter value of the error variance and how closeit s
to zero. If positive, the closer it is to zero, the greater the probability of
anonpositive error variance, other things equal. A second factor is the
standard deviation of the estimator of the error variance. Greater stan-
dard deviations suggest a wider dispersion of estimates and hence a
greater probability of nonpositive error variances than when smaller
standard deviations occur. Finally, the shape of the distribution of the
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estimator of the error variances will affect the probability of
nonpositive error variance estimates. For instance, even if the popula-
tion error variance and the standard deviation of the estimator are
identical in two situations, a left-skewed distribution for an estimator
of variance could have a higher probability of nonpositive error vari-
ance than a normal distribution.

We partially investigated these factors influencing the probability
of negative error variances for our simulation models. First, we fit cor-
rect and incorrect specifications to the population covariance matrices
for models 1 and 2. In no case did the misspecification lead to popula-
tion parameters that were nonpositive. Hence, all the negative error
variance estimates are due to sampling fluctuations.* To further inves-
tigate this, we looked at the population error variance for E6 for model
1 under all four specifications, and these were 0.29, 0.29, 0.24, and
0.29. The population error variance for the misspecified models dif-
fers little from the correct specification. If anything, this difference
alone would not lead us to predict a greater probability of nonpositive
error variances in the misspecified models (with the possible excep-
tion of specification 3) than in the correct specification. The fact that
the number actually decreases in some misspecified models suggests
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that we need to consider the mean, standard deviations, and shape of
the distributions for these error variances in the simulation samples.

Figure 6 provides the histograms for the error variance estimates
for E6 across the four specifications, based on our simulated samples.
The mean error variances are 0.24, 0.25, 0.23, and 0.28 from specifi-
cation 1 to specification 4. These are consistently lower than the popu-
lation error variances reported in the previous paragraph. The empiri-
cal standard deviations are 0.16, 0.14, 0.11, and 0.11, respectively.
There are also more extreme cases in specification 1 and 2 compared
with the other specifications. A slightly smaller mean error variance
and a bigger standard deviation for the correctly specified model
partly explain why we get more nonpositive variances in this model
compared with other misspecified models. In addition, the shape of
the distributions appears more *“normal” in more misspecified models
than the correctly specified model. For example, the histogram for
specification 1 is left skewed and thin looking (skewness = —5.84,
kurtosis = 69.49). The histogram for specification 4 is almost normal
looking (skewness = .30, kurtosis = .452). In sum, changes in mean
error variance, standard deviation, and shape of the distribution led to
a drop in improper solutions for E6 from specification 1 (22 cases) to
specification 4 (2 cases) (see Table le in technical appendix).

In sum, the results of this section indicate the hazard of considering
improper solution estimates as a straightforward indicator of model
misspecification. As our results illustrate, misspecifications of a
model can decrease the probability of improper solution estimates. Of
course, if we had the population covariance matrix and found
nonpositive error variances, then we would have clear evidence of
misspecification. However, in the real-world situation of sample data,
a negative error variance estimate can occur due to sampling fluctua-
tions around a positive error variance in the population. Thus, it is
important to determine whether a nonpositive error variance is statisti-
cally significant. We return to this issue below.

CHI-SQUARE TEST STATISTIC

We now examine the consequences of improper solutions. Table 1
presents the mean chi-square test statistic for all four specifications of
models 1 and 2 for the proper and improper solutions and for the
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Figure 6:  Histograms of E6, Model 1, n = 50, Specification 1-4

constrained and unconstrained samples. To examine the impact of
improper solutions on the test statistic, we can compare its mean value
for the proper and improper solutions for the same model and same
specification. Doing so, we find little practical difference in the test
statistic, replicating the findings of Anderson and Gerbing (1984).

BIAS IN PARAMETER ESTIMATES

If we compare the parameter estimates for samples that include
only proper solutions with samples that include only improper solu-
tions, the samples with improper solutions reflect the largest bias.
Table 2 compares mean relative bias in the parameter estimates for
samples with improper solutions against those with only proper solu-
tions for both models at sample size 50 under constrained estimation.’

57
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TABLE 1: Comparisons of Chi-Square Statistics Between Samples With O:.w. Proper
and Only Improper Solutions

Model 1 Model 2

?ﬁé.ﬁmw Improper

Proper Constrained Unconstrained Proper Constrained Unconstrained

N=50
Specification | (df=122) ) . (df =50
Null chi-square 21233 214.50 217.09 361.74 357.16 359.37
Model chi-square 23.72 24.76 24.56 57.67 " 5796 57.4%
N 546 99 86 560 83 76
Specification 2 (df=23) (df=53)
Null chi-square 212.52 213.92 214.57 360.33 369.31 369.3t
Model chi-square 25.89 27.04 25.71 67.24 67.11 66.72
N 516 72 68 618 31 3
Specification 3 (df =24) (df=54)
Null chi-square 212.82 212 21212 361.86 35417 356.21
Model chi-square 21.17 29.19 28.33 81.50 79.51 78.93
N 584 65 63 567 80 70
Specification 4 (df = 25) (df = 5T)
Null chi-square 212.93 209.94 211.09 360.80 360.67 360.67
Model chi-square 31.69 31.37 3101 91.35 94.11 93.74
N 596 54 54 583 66 66
N=15
Specification 1 (df =22) (df = 50)
Null chi-square 302.70 289.56 289.95 491.81 478.50 473.94
Mode! chi-square 23.15 24.16- 2441 54.67 53.19 52.59
N 610 38 37 618 3 28
Specification 2 (df=23) (df = 53)
Null chi-square 302.58 287.06 289.75 491.46 467.47 467.47
Model chi-square 2553 26.20 26.40 66.87 64.39 64.11
N 624 26 24 643 7 7
Specification 3 (df =24) (df=54) :
Null chi-square 302.08 295.66 295.66 492.16 478.99 480.83
Model chi-square 27.84 32.54 3212 87.99 87.23 85.89
N 637 13 13 603 47 45
Specification 4 (df =125) (df=5T)
Nuli chi-square 302.12 293.24 293.24 491.22 490.89 492.34
Model chi-square 32.78 38.22 37.80 101.84 101.08 100.48
N 638 12 12 627 23 24

Beginning with model 1, N = 50 (the left top half of Table 2), it is
useful to trace the pattern of bias introduced by misspecification in the
properly specified model and proper solutions. We define relative bias
as 100 multiplied by the difference between the parameter estimate
and its population value divided by the population value. As the
lambda paths are removed, bias rises in the related cross-loading
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estimates. For example, when v(d is set to zero in specification 2, the
mean relative bias in A._ rises from 1.8 percent to 33.2 percent. In spec-
ification 4, when A, A_, and A are removed, A, A, and A, show
biases of 23.5 percent, 26.3 mnnnmnr and 33.7 percent, nmmvmn:é_«. As
for the structural paths, the estimates of B, show little change over the
misspecifications, while B shows generally increasing bias with
misspecification —0.6 percent to 11.5 percent to 28.4 percent to 24.9
percent. In general, in the samples with proper solutions, we see
increasing mean relative bias with increases in misspecification. We
also see more parameter estimates experiencing increases in bias
when the number of specification errors is increased. These findings
are consistent with our theoretical expectations.

Moving to the samples with improper solutions, a direct compari-
son of the proper/improper samples shows that the samples with
improper solutions tend to have larger bias in the parameter estimates.®
In fact, the bias increases dramatically for some parameters. Like the
samples with only proper solutions, bias is most severe for the cross
loadings. Even in the correctly specified model (specification 1), esti-
mates of A_, and A_, show mean relative biases of —149.0 percent and
—84.6 percent when negative error variances are included. The bias is
also large in their surrounding factor loadings, A, and A, (30.3 per-
cent and 65.2 percent). Biases in other parameter estimates are also
relatively large. For example, A, shows a bias of ~20.0 percent (com-
pared with —.6 percent in the ?omﬂ;mo_c:os sample), and §_, shows a

‘bias of 22.1 percent (compared with —.6 percent).

Similar findings appear across the misspecifications—the coeffi-
cient estimates from samples with negative error variances tend to be
more biased than samples with only proper solutions. This follows the
pattern determined in the samples with proper solutions only. Also
similar to the samples with proper solutions, as lambda paths are omit-
ted in the misspecifications, the bias in the other cross loadings tends
to increase. For example, in specification 2, the bias in the estimates of
v« _:Q.mwmmm from —84.6 percent to —133.3 ppercent, while A " vc:. and
v« estimates increase in bias from ~20.0 percent, 16.4 wonnmi and
uo 3 percent to —59.5 percent, 25.5 percent, and 51.9 percent.” Bias in
the improper-solution samples decreases from these highs to lower
levels in specifications 3 and 4 but remain higher than those in the
proper-solution samples.
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TABLE 2: Mean Relative Bias (percentage) in the Parameters of the Models for Samples With Only Proper or Only Improper Solutions

Specification | Specification 2 Specification 3 Specification 4 Specification 1 Specification 2 Specificdtion 3 Specification 4

Parameter Proper Improper Proper Improper Proper Improper Proper Improper Proper Improper Proper Improper Proper Improper Proper Improper
Model 1, N = 50, constrained estimation Model 1, N =75, constrained estimation
VIFIPE 7.1 6.7 75 23 74 1.6 74 -0.2 35 ~-1.6 32 1.1 3.1 26 34 58
V3FIPE 6.6 36 6.7 0.8 65 07 6.1 1.6 1.5 3.4 16 1.7 1.6 53 1.8 2.0
V4F1PE -06 -200 21 -59.5 329 539 23.5 26.0 -53 -180 -4.5 35.1 289 387 24.1 32.7
VA4F2PE 37 16.4 3.0 255 47 -15 26.3 23.9 4.9 18.9 4.6 -6.6 -39. 0l 278 30.8
V6F2PE 4.6 303 0.6 51.9 309 3538 -— — 58 50.1 2.0 50.2 333 336 — —
V6F3PE 6.9 -84.6 27 -1333 — — — — -5.0 -105.0 52 -1104 — _— _ —
VTFZPE 08 -1450 —_— - _ _ —_ -— -4.9 -2646 —_ —_ — — — ——
V7F3PE 1.8 65.2 332 64.4 338  69.0 337 772 7.0 1186 379 48.7 385 652 39.0 66.6
V9F3PE 1.7 22 0.7 6.3 1.0 52 1.0 50 42 -29 37 -2.5 37 -96 37 -5.4
F2F1PE 6.7 -4.7 6.2 -1.8 -1.4 -16 10.3 125 4.5 -9.0 45 -119 -34 -154 89 ~23
F3F2PE 0.6 2.1 115 14.1 28.1 9.0 24.9 =32 0.1 20.8 9.6 114 244 55 20.8 38
N 546 99 576 72 584 65 596 54 610 38 624 26 637 13 638 12
. Model 2, N = 50, constrained estimation Model 2, N =175, cobstrained estimation
VIFIPE 1.0 ~-4.2 0.2 0.5 0% -30 0.2 -0.5 3.0 35 29 16.0 33 23 3.2 7.1
V3FIPE 3.0 -2.8 22 6.1 34 50 25 517 2.7 6.3 27 3.4 31 29 33 ~-1.4
V4F1PE -150 -l46 —_ -— 95 695 — — =22 158 —-— — 146 129 — —
V4F2PE 10.1 12.1 22.1 235 58 =25 208 28.1 42 53 20.1 11.2 23 85 193 220
V6F2PE 6.7 579 28.4 371 1.7 434 29.2 37.8 83 4.0 26.8 19.8 27 417 28.1 23.9

V6F3PE -5.8 -1523 —_ _ 120 -1103 _ —_ -17.4 -1393 — — 3.1 %00 -— -_
VIF2PE -2.6 -266.1 = — —_— -9.4 -219.5 — -_ ~188 -175.2 - —_ -11.7 -253.0 — _
V7F3PE 5.8 82.9 354 727 86 863 38.1 69.7 10.0 80.2 334 65.6 6.5 108.7 36.8 65.3
V9F3PE 36 00 37 03 4.0 06 33 20 22 1.2 2.1 ~1.9 26 1.6 22 4.0
FIVIOPE 04 1.7 0.7 23 -128 -98 ~136 -178 0.7 04 -0.6 1.8 -13.0 154 -147 -14.8
FIVIIPE -3.0 2.1 26 43 60 58 -6.3 =34 2.6 0.4 23 14.5 -0.9 20 -1.0 -4.4
FIVI2PE -0.8 -33 -0.5 -~12.6 12.1 103 143 14.1 0.1 5.1 -0.2 9.8 12.9 6.8 14.6 10.8
F1V13PE 26 25 22 103 57 83 60 ° 64 -0 -~106 ~08 -10.7 2.3 0.5 23 7.5
F2V10PE 0.6 ~1.6 0.2 11.8 - — —_ — -1.2 2.8 01 -148 — —-— - —
F2VI2PE 18 6.3 2.1 0.5 — — — — 0.1 2.4 0.2 228 — — - —_
F3VIOPE ~2.9 41.9 155 323 - - - — 1.6 326 15.6 309 - —_ — —_
F3VI2PE 1.8 -396 -167 -349 — — — — 05 -~313  -147 =381 _— —_ — —
F2FIPE " 36 =54 4.7 107 =310 -401 -276 ~19.0 5.0 -1.5 72 324 -300 -384 . -256 -21.5
F3F2PE 29 40.6 29.5 14.8 114 319 384 273 4.5 234 25.5 0.2 10.7 279 344 9.6
N 560 83 618 31 567 80 583 86 618 31 643 7 603 47 627 23

NOTE: To see the dxspasxon measures of these parameter estimates (¢.g., standard deviation, mean standard error, mean squared error), refer to Tables 1a-11, 2a-2d, 3a-3d, and 4a-4d in
the technical appendix). Fl is 0y, Y1F1 is Ay;, F2F1 is B,, and F1X1 is v,,, and so forth,

S
o
o
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A few additional findings appear from an examination of model 1.
First, those parameter estimates with a population value of 1.0 and
factor complexity of one retain a low mean relative bias across
misspecifications. That is, the estimates of v(_: ».:. and P& are rela-
tively unaffected by bias throughout the specifications, even in the
case of improper solutions. More surprisingly, the mean relative bias
for two of those, A, and A, have Jower bias in the solutions with
improper solutions than they do in the proper-only samples. A similar
phenomenon occurs in B,,. There, bias in the parameter is higher in the
improper samples for specifications 1 and 2 but falls for specifications
3 and 4—actually falling below the bias from the proper-solution sam-
ples. We observed a similar pattern with N =75 (see the top right part
of Table 2). .

We next turn to model 2 (see bottom half of Table 2).* As mentioned
earlier, model 2 is an expansion of model 1 such that four observed
variables, X1, X2, X3, and X4, were added to the model as exogenous
factors influencing three latent factors, p N, and 1. This allows us to
examine the behavior of coefficient estimates linking exogenous vari-
ables to endogenous variables (gammas), as well as endogenous vari-
ables to each other (betas), which were not studied in previous
research. For the correctly specified model with a sample size of 50,
for those 560 proper solutions, the parameter estimates show low bias.
The highest bias was in A, and A, with mean relative bias of —15.0
percent and 10.1 percent. The remaining parameter estimates have
mean relative bias of less than 10 percent. As expected, parameter esti-
mates in improper solutions have much higher bias. For the lambdas,
the bias is concentrated in the estimates of Aoy ?% A, and y.:, similar
to model 1. For example, the mean relative bias in the estimate of v(: is
—266.1 percent. For the gammas, the estimates of y,, and v,, have the
highest bias, with mean relative bias among improper solutions as
highas41.9 percent and -39.6 percent. For the beta estimates, B, hasa
mean relative bias of 40.6 percent.

In specification 2, similar to model 1, bias in ve:. ys, and v(d esti-
mates increases for proper solutions (e.g., from a mean of 6.7 percent
to 28.4 percent for A_). Interestingly, the betas and gammas are also
affected. Mean relative bias of Y,, among proper solutions increases

from -2.9 percent to 15.5 percent. The bias also increases for the
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parameter estimates of y,, and B_,. For the improper solutions, how-
ever, there is an increase in mean and median bias in those parameter
estimates, and extreme cases decrease considerably (see Figure 3a and
Figure 5b in the technical appendix).

In specification 3, where the gamma paths (y,,, Yy Yy @nd ) are
omitted, again as expected, the parameters that surround the omitted
parameter estimates are affected most. For proper solutions, there is
small increase in relative bias in estimates such as those for Y,y Y, aNd
Y,,- There is some slight increase in bias in some estimates of lambdas,
such as A, and A ,. Estimates of B, are also biased to —31.0 percent.
For the improper solutions, the parameter estimates are similar to
specification 1. For some parameter estimates, there is a slight
increase in bias, such as A, and A_. In specification 4, in which the
gamma and lambda paths are all omitted except for the parameters that
were not affected much in either specification 2 and 3 (such as A, , A,
and P_ )» all the other parameter estimates increased in bias for both
proper and improper solutions.

In sum, while the bias in the parameters shows a slightly compli-
cated relationship under conditions of improper solutions and
misspecification, in general researchers will increase, often signifi-
cantly, the bias in their parameter estimates by using samples with nega-
tive error variances. This holds across a variety of misspecifications.
This analysis also serves to remind researchers of the large increases
in bias that occur with misspecifications of their models, both in sam-
ples with proper solutions and samples that include improper
solutions.

ASYMPTOTIC STANDARD ERRORS

The means of asymptotic standard errors are very similar to empiri-
cal standard deviations for both the proper and improper solutions.
The one exception is for the parameter estimates that have relatively
high biases in improper solutions, empirical standard deviations tend
to be much bigger than mean standard errors, which are higher to
begin with, than their counterparts in proper solutions. For example,
for model 1, specification 1, N =50, mean standard error and empirical
standard deviation for A_ is 0.29 and 0.32, respectively, in proper
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solutions but as high as 0.42 and 0.68 in improper moE:o:m. Our tech-
nical appendix (http://www.unc.edu/~curran/csim.html) has even
more detailed information on ﬁE.m comparison.

CONSTRAINED VERSUS
UNCONSTRAINED ESTIMATION

Until this point in the discussion, we have only considered con-
strained estimation. As discussed earlier, however, the type of estima-
tion varies across software, and there is some debate as to i:o&mn
constrained estimation (such as performed in EQS, Bentler _.ood isa
reasonable response to improper solutions. Table 3 provides Emon‘.Em-
tion about the mean relative bias for constrained versus czoozm:ms.&
estimation.® If we undertake a direct comparison of the mean relative
bias under constrained and unconstrained estimation, we see :E.ﬁ for
those parameter estimates that are severely biased under nozm:mmanm
estimation, the mean relative bias is even larger under unconstrained

estimation. For example, in model 1, specification 1, while the esti-

mates for A, have a mean relative bias of —149.0 percent under con-
strained estimation, the bias is as big as -393.7 percent under uncon-
strained estimation. Similarly, in specification 2, estimates of A " have
a bias of —59.5 percent under constrained estimation but —153.6 per-
cent under unconstrained estimation. While occasionally (e.g., A,, in
specification 3) the unconstrained estimation produces a lower mean
relative bias, unconstrained estimation typically produces a E.m:ﬁ
bias. For the parameter estimates with very small bias, the constrained
versus unconstrained results are not very different.

In this case, however, considering only mean relative bias could be
misleading because this could be inflated due to mx.:m_.:m cases or a
very skewed distribution. Therefore, we show the 92:@55: of the
bias in selected parameters in the forms of box plots." m_m:n.o 7 pres-
ents box plots with comparison of constrained and unconstrained esti-
mation for model 1, specification 1, N = 50."' Although the _uo.x plots
only provide information about one specification w:a sample size, the
results are similar across specifications, sample sizes, and models.

Most of the median relative biases are not far from zero, oxn.o? for
A and A . Inaddition, A, A, A, and A, displayed E.EQ variances,
while other estimates clustered closely around the median. The results
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reflect that the median difference between constrained and uncon-
strained estimation is much smaller. Clearly, median relative biases
were lower than mean relative biases for almost all estimates. For sev-
eral estimates 9:. A o and Pav. the differences were excessively
large. For example, the mean and median relative bias for A, is30.3
percent and 2.7 percent, respectively, from constrained results and
66.1 percent and 1.5 percent from unconstrained results. Thus, the dif-
ference between the constrained and unconstrained median estimates
was smaller than that between their mean estimates. The reason that
the mean relative bias under unconstrained estimation is so much
larger is that it has more extreme cases. Overall, however, constrained
estimates still appeared less biased than unconstrained estimates.
Additional points to raise from Table 3 are that some of the samples
with improper solutions that converge under constrained estimation
do not do so with unconstrained estimation. This suggests an advan-
tage of the constraint—it helps achieve convergence. However, con-
vergence seems to cover another serious problem: The parameter esti-
mates are much more severely biased in those samples that converge
only under constrained estimation than the ones that converged under
both types of estimation. For example, A ., under model 1, specifica-
tion 1, N = 50, is underestimated by —444.4 percent on average with

. constrained estimation when unconstrained estimation would not

have converged. This is a much bigger bias than that found when the
samples converged under both constrained and unconstrained estima-
tion (—73.9 percent). This large difference is mainly driven by some
extreme cases since the median relative bias is only —52.8 percent. Of
17 cases that converged under constrained but not unconstrained esti-
mation, at least 5 have relative bias greater than —173.8 percent for the
estimates of A_.

Of course, it is important to stress the more general result—that
samples with improper solutions result in substantially higher levels
of bias across models, specifications, sample sizes, and estimation
techniques. Overall, the findings in this section suggest that if a sam-
ple will converge under both constrained and unconstrained estima-
tion, then the estimates from constrained estimation will be less biased
than those from the unconstrained estimation. If, however, a sample
converges under constrained estimation but would not have converged

(text continues on p, 497)
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TABLE 3: A Comparison of Mean Relative Bias (percentage), Constrained Versus Unconstrained Estimation for Samples With Only Improper Solutions

Specification 1

Specification 2

Specification 3

Specification 4

Constrained Unconstrained

Constrained Unconstrained  Constrained Unconstrained  Constrained Unconstrained

VIFIPE
V3F1PE
V4F1PE
V4F2PE
V6F2PE
V6F3PE
VTF2PE
V7F3PE
VSF3PE
F2F1PE
F3F2PE
N

VIFIPE
V3F1PE
VA4F1PE
V4F2PE
V6F2PE
V6F3PE
VTF2PE
VTF3PE
V9F3PE

6.7
36
=209
’/a':4
30.3
-84.6
-149.0
65.2
22
-4.7
221
99

-42
-2.8
~14.6
12.1
57.9
~152.3
~-266.1
829
0.0

5.8
3.0
220
20.5
66.1
-160.6
-393.7
156.8
1.8
55
26.8
86

-3.7
=32
-33.3
20.8
310.0
-1018.2
-2566.2
863.1
1.3

Model 1, N = 50, samples with improper solutions

23
0.8
-59.5
25.5
519
-1333
64.4
6.3
~-1.8
14.1
72

0.5
6.1
23.5
37.1

727
-0.3

1.6 1.6 1.1
0.2 -0.7 -1.1
-153.3 53.9 12.7
55.6 -1.5 -02 .
62.6 35.8 377
-155.6 — —
842 69.0 91.5
8.9 52 6.5
1.3 -1.6 -3.2
7.8 9.0 39
68 65 63
Model 2, N = 50, samples with improper solutions
0.5 -3.0 ~2.2
6.2 -5.0 -2.9
- 69.5 6.3
237 -2.5 73
38.2 434 45
— -110.3 -92.8
— -219.5 —660.8
84.1 86.3 284.1
0.0 0.6 12

-0.2

1.6
26.0
239

712
5.0
12.5
-3.2
54

0.5

5.7
28.1
37.8

69.7
2.0

1.2
-0.4
25.7
22.8

105.7
83
15.1
-12.0
54

-0.7
5.9
29.5

39.5

829
2.1

F1V10PE 1.7 0.3 23 22 -9.8 -84 -17.8 -17.7
FIVIIPE -2.1 2.1 -4.3 —-4.2 -5.8 -5.0 -3.4 -2.6
FIVI12PE -33 -2.6 ~12.6 -12.6 103 9.5 14.1 14.2
F1V13PE 2.5 24 10.3 10.2 8.3 8.6 6.4 5.5
F2V10PE -1.6 =25 11.8 122 — — —_ —
F2V12PE 6.3 6.2 0.5 0.1 — — — —
F3V10PE 419 49.9 323 354 — — — -—
F3V12PE -39.6 —47.1 -34.9 -37.7 — — —_ -_
F2F1PE -5.4 -5.7 10.7 10.5 —40.1 -36.5 -19.0 -17.2
F3F2PE 40.6 4.5 14.8 10.4 319 312 27.3 22.8
N 83 76 31 31 80 70 66 66
Specification ] Specification 2 Specification 3 Specification 4
Constrained Unconstrained  Constrained Unconstrained C onstrained Unconstrained  Constrained Unconstrained
Model 1, N = 75, sarples with improper solutions
VIFIPE -1.6 -2.5 L1 238 2.6 26 5.8 5.8
V3F1PE 34 2.4 1.7 2.1 5.3 53 2.0 2.1
V4F1PE -18.0 -23.0 35.1 -95.3 38.7 385 327 337
V4F2PE 18.9 247 -6.6 527 0.1 1.1 30.8 30.3
V6F2PE 50.1 149.2 50.2 28.3 336 377 —_ L —
V6F3PE -105.0 -392.9 -110.4 -50.1 —_ — — _
V7F2PE -264.6 -674.5 —_ — — — — —
V7F3PE 118.6 261.8 48.7 50.9 69.2 75.0 66.6 73.9
V9F3PE -2.9 -13 -2.5 -5.9 -9.6 -9.8 -5.4 -58
F2F1PE -9.0 -10.2 -11.9 -9.7 -154 -15.9 -2.3 -2.4
F3F2PE 20.8 252 114 6.0 55 3.6 3.8 -0.5
N 38 37 26 24 13 13 12 12

(continued)
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Allfive tests yielded the same results. At a sample size of 50, for 86
samples with improper solutions, every confidence interval contained
zero, and all z tests, Wald tests, likelihood ratio chi-square tests, and
Lagrangian multiplier tests were nonsignificant (using .05 or .10
level). As is shown in the box plots in Figure 8, none of the test statis-
tics was even close to being significant, even for extreme cases (indi-
cated by asterisks in the graph). The results were similar at the sample
size of 75. Of 37 samples with improper solutions, the z test, Wald test,
and likelihood ratio test were significant for only one sample (results
not shown)."? .

These findings are consistent with a previous study, in which only a
confidence nterval was used (Gerbing and Anderson 1987). How-
ever, we remained concerned about the accuracy of the standard errors
that underlie the confidence intervals, z test, and Wald test. To exam-
ine this, we compared the mean and median of the standard errors for
each parameter estimate with a negative error variance in the uncon-
strained solution to the standard deviation of these negative error vari-
ances. We presented the statistics for a few selected error variances
that are most likely to have improper solutions in Table 4, based on
estimation from model 1, specification 1, N = 50. The mean standard
errors are bigger than the empirical standard deviations for some esti-
mates (e.g., E1) while smaller for the others (e.g., E7). In fact, there is
a negative curvilinear association between the magnitude of the error
variances and standard errors (see Figure 9). However, the likelihood
ratio test and the Lagrange multiplier test do not make use of standard
errors, but these yield the same results as the other tests.

Given that the population error variances are positive, these signifi-
cance tests result in correct decisions; that is, we should not reject the
null hypothesis. As valuable as this is for this model, it leaves open the
question of the relative performance of the significance tests when the
null hypothesis is true. To explore this question, we generated an addi-
tional condition in which the population error variance of E7 was
equal to zero, using the correctly specified model 1 for both N=50 and
N =75 and repeated these significance tests at an alpha leve! of 0. For
N = 50, out of 650 samples, there were 339 samples with improper
solutions, 331 (98 percent) of which were associated with E7. The test
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Figure 8:  Box Plots of Four Tests of Negative Error Variances: Model 1, Specification 1,
n =50 (86 cases)

statistics suggest that the rejection rate of the null hypothesis is much
higher (as it should be) since the population value for E7 is now zero.
We found that 99.7 percent of the confidence interval includes 0,03
percent of the z tests and Wald tests reject the null; 8.8 percent of the
likelihood ratio tests reject zero; none of the Lagrangian multiplier
tests is significant. Results from N = 75 are quite similar. Given the .05
alpha level for these tests, the confidence intervals, z tests, Wald, and
Lagrangian multiplier tests reject less frequently than we would
expect. The likelihood ratio test has a higher rejection rate than .05 but
is closer to .05 than are the other tests. This higher than nominal rejec-
tion rate is consistent with the result from other simulations that find
that the chi-square test statistic is too large in smaller samples even
under ideal conditions. Despite this, the likelihood ratio test statistic
performs the best here and has the desirable property that it can test
several error variances simultaneously. However, we would encour-
age more extensive study and comparisons of this test to the others in
the context of testing for improper solutions.
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TABLE 4: Estimates of Selected Error Variances and Standard Errors, Model 1, Specifi-
cation 1, N = 50

Improper Solutions Proper Solutions

Standard Standard
N Mean Median Deviation N Mean Median Deviation

Parameter estimate

El 1 -0.065 — — 632 0490 0.495 0.156
B4 8 -0.154 -0.154 0.090 625 0.265 0268 0.105
E6 22 -0289 -0.119 0.465 611 0263 0.265 0.097
E? 51 -0327 -0.108 0533 582 0275 0272 0.115
Standard error
El 1 0335 —_ — 632 0.142 . 0.139 0.030
E4 8 0.692 0.398 0.711 625 0.102 0.097 0.033
E6 22 1218 0.375 2.709 611 0.098 0.091 0.037
E7 51 0.137 0.129 0.040 582 0.142  0.140 0.030

40

30 o

SD

Estimates of Error Variance

Figure 9: Scattergram of Negative Error Variances and Standard Errors: Model 1,
Specification 1, N =50
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CONCLUSION

This study investigated improper solutions in the context of two
general SEMs and under two sample sizes across several
misspecifications. We now return to our three motivating questions for
the research: (1) What makes negative error variances more likely to
occur? (2) What are the consequences? and (3) What are useful strate-
gies to follow when they occur?

Some of our findings on the contributing factors to improper solu-
tions corroborate earlier research. Improper solutions are more com-
mon in small samples than in large ones. This is largely attributable to
the greater sampling fluctuations in small samples compared with
large ones. However, the relationship between misspecification and
improper solutions is more complex than we originally thought. Spe-
cifically, we did not find a simple positive relation between measure-
ment model misspecification (omitted paths) and the number of
improper solutions. Instead, we must consider the impact of
misspecification on the population parameter, the standard devia-
tion, and distribution of the error variance estimator. It is the combi-
nation of these factors that determines the probability of improper
solutions under misspecification. As our models illustrate, the prob-
ability of nonpositive error variance estimates can diminish under
misspecification. A clear implication is that researchers should not
use negative error variance estimates as an indicator of model
misspecification. Of course, it is important to remember that the lack
of improper solutions does not necessarily support a model structure
either.

Itis worth noting that we only considered one type of misspecification
in this article: omitted lambda and gamma paths. The consequences of
other types of misspecification (e.g., inclusion of nonexistent paths or
misspecification of error structure) are not covered and should be
included in future works. In addition, we found that none of our
misspecified models led to negative error variances in the population.
Therefore, shifts in the frequencies of improper solutions were due
more to other factors than to misspecification creating a negative error
variance in the population.

Our findings on the consequences of negative error variances are a
mix of replicating earlier research and revealing new results, Like
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others, we found no practical difference between samples with only
proper solutions and those with improper solutions in terms of
chi-square test statistics. We also replicated a prior result that the
parameter estimates that were most biased by the improper solutions
were those in the locality of the negative variance estimates. Further-
more, the presence of improper solutions tends to mean that the bias in
the parameter estimates of the model will be higher than in samples
with only proper solutions. This holds across models, specifications,
and sample sizes. This finding for our general SEM parallels earlier
re.earch using confirmatory factor analyses. As for mean asymptotic
standard errors, they are generally quite close to empirical standard
deviations for proper solutions. For improper solutions, those parame-
ter estimates that are heavily biased tend to have large mean standard
errors and even higher empirical standard deviations.

Some of our other new results address both the consequences and
the strategies for handling improper solutions. One tactic that
researchers sometimes employ in the presence of improper solutions
is constrained estimation. We found that using an inequality constraint
sometimes helps convergence in the numerical minimization process.
However, those cases that converged under constrained estimation
without converging under unconstrained conditions had extremely
large negative estimates of variances, which consequently biased the
corresponding estimates of lambdas and gammas a great deal. For the
samples with improper solutions that achieved convergence under
both constrained and unconstrained estimation, the constrained esti-
mates were less biased and had smaller standard errors and mean stan-
dard errors. A practical recommendation based on this finding is that
researchers should not automatically impose a zero-error variance or
an inequality constraint on the error variance. First, they should make
sure that the estimator converges even if the error variance is an unre-
stricted parameter. If not, they risk having severely biased estimators
of the model parameters. . .

It should be strongly noted that even these “less biased” estimates
were still more biased than the estimates in samples with only proper
solutions. In some ways, this is not that surprising. Consider, for
example, if we focused our attention on the samples with the largest
positive error variance estimates. We would expect that the parameter
estimates from these samples would exhibit more bias than if we took
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only those samples that were closer to the center of the distribution of
error variances across samples, Our focus on negative error variances
is not any different. Examining only those samples with the largest
negative error variance estimates highlights the most extreme sam-
ples, and we would expect some bias. In the case of negative error vari-
ances, we know that these are not right since negative variances are
impossible in the population. We cannot similarly detect the most pos-
itive error variance values, and they would just be part of the sample of
proper solutions.

Based on the evidence from earlier studies and our results, we sug-
gesta preliminary strategy to deal with negative or zero-error variance
estimates.” Since Heywood estimates might arise from several
causes, a strategy must take this into account. With this in mind, our
first suggestion is to check the identification of the model. There are
rules of identification that can ease the task (e.g., Bollen 1989:88-104,
238-54, 326-33; Davis 1993). If the model is underidentified, the
researcher can try to locate the sources of the underidentification and
attempt to improve the situation. If the model is identified, then the
researcher should estimate the model without constraining the error
variances to be positive. If the default in an SEM package were to con-
strain the variance to be nonnegative, then the analyst would have to
remove this restriction. The unconstrained models will either con-
verge to a solution or not. If it is nonconvergent, the researcher should
check whether this is due to bad starting values or whether the
minimization algorithm should be altered.

If the estimation converges, then check to see if there are any nega-
tive estimates of error variances. If not, then interpret the results as
usual, If there are negative error variance estimates, then determine
whether these are due to outliers or influential cases (Arbuckle 1997;
Bollen 1987; Bollen and Arminger 1991; Cadigan, 1995). In the event
that the negative error variances are due to influential cases, then
investigate the causes of these unusual values and explore ways to cor-
rect them. >:.m5ma<o? with no influential cases, the researcher
should screen for empirical underidentification (see Kenny 1979;
Rindskopf 1984). Assuming that the negative error variance estimates
are not due to influential cases or empirical underidentification, the
next step is to test whether the negative error variance estimates might
be due to sampling fluctuations. We have recommended five possible
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significance tests (confidence interval, z test, Wald test, chi-square
ratio test, and Lagrange multiplier’s test). The latter three have the
advantage that they can simultaneously test two or more error vari-
ances. If the significance tests suggest that the error variance(s) are
below zero, then the researcher should suspect model misspecification.
This is true since a researcher who follows our sequence of steps will
have already ruled out the most likely other causes.

A nonsignificant negative error variance estimate is consistent with
the idea of sampling variability leading to the negative estimates. Our
results suggest that the next step should be to reestimate the model
constraining the error variances to zero or a small positive number.
This could reduce the bias in the parameter estimates. Of course, this
is given that the magnitude of the negative error variances is not big. If
the estimate were very big in magnitude, imposing a constraint at zero
would not be helpful since it might still have a severe bias in the
parameter estimates related to the error variance. If the negative esti-
mate of variance is not far from zero, then the constraint at zero may
provide less biased parameter estimates than no constraint. The bigger
the negative estimates, the less helpful it is to impose the constraint. If
the population value of the variance were known or could be esti-
mated, then the constraint should be set to the population value,
although this rarely happens in practice. In sum, the resulting esti-
mates after the constraint should be interpreted as usual except that
those parameters most closely associated with the troublesome error
variance estimates are likely to have higher bias than estimates that
result in a fully proper solution without the constraints. For example,
the factor loading to the indicator with the original negative error vari-
ance is likely to be too big in absolute magnitude, while the factor
loadings for the other indicators influenced by the same factor might
be too small.

We regard the preceding analysis strategy as preliminary. We say
this because of the limitations of our study and the other literature in
this area. First, there is an inherent limitation in Monte Carlo studies as
to the representativeness of the model structures researchers consider.
Itis difficult to know whether results from one set of models will gen-
eralize to the models typically estimated in practice. Although we
have departed from prior research in including both correctly and
incorrectly specified models and factor analysis as well as latent
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variable structures, it is impossible to be certain of the limits of the
findings. A related restriction is that research, including ours, has
examined data that were simulated from a multivariate normal distri-
bution. A natural question is, How sensitive are our findings to having
variables from nonnormal distributions? However, the literature on
the robustness conditions for these models and nonnormal data (e.g.,
Satorra 1990), the corrections to the standard errors and test statistics
for nonnormality, and the possibility of bootstrapping for significance
testing and confidence intervals suggest that the nonnormality is
something that might not be as serious as other problems.

A more complicated issue is the relation between misspecification
and the occurrence of negative error variances. Our simulation results
demonstrate that the relation is more complex than previously
thought. Future research designs should seek to more fully determine
the conditions under which misspecification leads to greater or fewer
numbers of negative estimates of error variances. Although part of the
answer should lie in the magnitude of the population error variances in
correctly and incorrectly specified models, our findings suggest that
this is not the entire answer.

Finally, Van Driel’s (1978) confidence intervals and the tests of sig-
nificance that we propose bear closer scrutiny. It would be useful to -
comparatively evaluate each test statistic to see which performs most
accurately as a test for negative error variances. This is a key hypothe-
sis to test since the outcome of the test points us toward sampling fluc-
tuations or the more serious issue of misspecification depending on
what we find. Our research has provided fresh evidence about improper
solutions, but it also raises many new issues for investigation.

NOTES

1. See Dijkstra (1992) for theoretical results relevant to comparing the estimates with and
without the constraint.

2. We realize that there are alternative ways in which the degree of misspecification might
be measured (e.g., the mcan bias in parameter estimates could gauge the amount of
misspecification error). However, we stay with the magnitude of the fitting function evaluated at
the population covariance matrix as our measure of the degree of misspecification because in ad-
dition to providing a metric for misspecification, it also is directly tied to the power of the
chi-square test statistic (Satorra and Saris 1985).
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3. These were identified by a condition code, “constrained at the lower bound” in EQS, with
al least one of the error variance estimates fixed to zero.

4. Areviewer raised the possibility that empirical underidentification could be related to the
negative error variances in some of the models. Although a possibility, we found no evidence to
suggest that this is an issue for our models.

5. Detailed information on all parameter estimates across all conditions (models, sample
sizes, and estimation techniques) appears in the technical appendix. Almost unequivocally
across conditions, we find that excluding the improper solutions leads to a decrease in parameter
bias.

6. There are three exceptions: Ajy, A3y, and A3,. For the estimates of these three parameéters,
the samples with improper solutions tend to have lower parameter bias. This is discussed in
greater detail below.

7. For the parameter estimates that are severely biased, the standard deviation, standard er-
rors, and mean squared errors are also bigger (these results appear in the technical appendix).

8. We focus on results with N = 50 since a similar pattern is observed with N = 75.

9. Numbers of improper solutions under constrained estimation are slightly larger than un-
constrained estimation, as reported in Table 3, since imposing constraints helps achieve conver-
gence. The comparison does not look different when those nonconverged cases under uncon-
strained estimation were excluded. Box plots presented in Figure 7 as well as those in the
technical appendix are based on improper solutions that achieved convergence under both types
of estimation,

10. These estimates are additionally conservative because they include only samples that
converged under both types of estimation. As will be discussed below, the samples that would
not converge under unconstrained estimation were especially likely to show bias. )

11. Box plots for all specifications and sample sizes are available in the technical appendix.

12, That was an extreme case. The error variance is —~11.74, and the standard error is 3.72.

13. See Kano (1998), Sato (1987), and Van Driel (1978) for other discussions of strategies to
handle improper solutions.
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Unit nonresponse in the second wave of a panel survey is related to several respondent
characteristics and to the interviewer of that wave. More striking is the effect of the inter-
viewer of the first wave, who is not involved in the second interview. To analyze both in-
terviewer effects simultaneously. the authors use a multilevel cross-classified model, In
that analysis, the effect of the interviewer of the second wave almost disappears. Thas ef-
Jectturns out to be at least pa rtly spurious due to a correlation of bothinterviewer effects.
The authors conclude that the interviewer of the first interview is very important regard-
ing participation in the subsequent waves of a panel survey.

The Effects of Interviewer and
Respondent Characteristics on

Response Behavior in Panel Surveys
A Multilevel Approach

. JAN PICKERY
GEERT LOOSVELDT
ANN CARTON

University of Leuven, Belgium

nthis article, we analyze the nonresponse in the second wave of

a panel survey. We restrict ourselves to the respondents who
were interviewed during the first wave of the panel but refused to co-
operate again in the second wave. We look for interviewer effects on
that refusal rate. In particular, we control for the interviewer of the first
wave who has an impact on the respondent’s experience with the inter-
view and consequently can affect his or her decision to cooperate
again.

Among other things, refusals make up an important component of
nonresponse. A refusal is an active act of the respondent and can be
considered as a crucial aspect of respondent behavior. Several models
try to explain this kind of respondent behavior (see,e.g., Goyder 1987;
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