
TEACHER’S CORNER

A SAS Macro for Estimating and
Visualizing Individual Growth Curves

Madeline M. Carrig, R. J. Wirth, and Patrick J. Curran
University of North Carolina at Chapel Hill

Longitudinal data analyses can be usefully supplemented by the plotting of individ-
ual growth curves. Unfortunately, such graphics can be challenging and tedious to
produce. This article presents and demonstrates a SAS macro designed to automate
this task. The OLStraj macro graphically depicts ordinary least squares (OLS)-esti-
mated individual trajectories, describes interindividual variability in OLS-estimated
growth parameters, and identifies possible outlier observations. Analytical develop-
ments are briefly outlined, and the use of the macro is demonstrated, with particular
attention paid to the potential utility of the macro as both a data screening and post
hoc diagnostic device. Potential limitations of the macro and suggestions for future
developments are discussed. It is hoped that the program will be of use to applied re-
searchers who seek to maximize the effectiveness of growth curve models in answer-
ing questions about stability and change.

Structural equations-based latent growth curve, or latent trajectory, modeling
(LTM) is a powerful and flexible analytic technique for the description and predic-
tion of individual differences in stability and change over time. In LTM, the situa-
tion is similar to that encountered in any latent variable confirmatory factor analy-
sis (CFA) or structural equation model (SEM); namely, although we believe
individual-specific scores on the latent growth factors exist, it is the latent factor
means, variances, and covariances that are estimated from the sample data and not
the individual trajectories themselves. Indeed, when there is no missing data, the
full LTM can be estimated entirely based on the sample mean vector and
covariance matrix with no individual-specific information whatsoever. Frequently,
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the group-level estimates of factor means and variances resulting from the typical
LTM analysis are sufficient to answer many substantive questions of interest.
However, there are a number of situations in which individual-specific scores on
latent growth factors (and hence estimates of individual growth trajectories) may
be of use to the applied researcher.

For example, estimates of individual-specific scores allow for the examination
of individual trajectories prior to model estimation, a procedure Rogosa (1994)
and others argued should comprise part of any longitudinal data analysis. It is clear
that computation of maximally informative LTM parameter estimates requires that
a number of assumptions hold, including (a) selection of a valid functional form of
growth to represent change in constructs of interest, (b) population homogeneity,
(c) a linear relation between growth factors, and (d) absence of influential outliers.
Estimates of individual growth trajectories can allow for the evaluation of whether
the hypothesized functional form uniformly represents change for sampled indi-
viduals, and permit outlier diagnostics to be conducted. Still other uses for individ-
ual growth trajectory estimates are graphical visualization (e.g., Smith, Best,
Stubbs, Archibald, & Roberson-Nay, 2002; Wainer & Velleman, 2000), post hoc
exploration of model misfit, prediction of future observations, use of estimates as
criterion variables in other analyses, and derivation of cut scores (e.g., as when se-
lecting a subgroup of sampled individuals with a clinically significant cutoff score
in a longitudinal study of depression; Biesanz, Curran, & Bollen, 2003). Taken to-
gether, these potential uses suggest that a procedure for estimating individual
growth trajectories could represent a highly useful adjunct to LTM.

Unfortunately, because of the time-consuming and complicated nature of the
programming work involved, it can be challenging for applied users of LTM tech-
nology to compute and graphically display estimates of individual growth trajecto-
ries. To capitalize on the estimation of individual trajectories in our own work, we
have developed a SAS-based macro that estimates and plots ordinary least squares
(OLS)-estimated individual growth trajectories for continuous repeated measures
data across a variety of experimental settings. Given the time invested in develop-
ing this program, combined with the power of OLS trajectory estimation tech-
niques when used in our own applied research, we thought it would be of some use
to share this program publicly.

The goal of this article is to present the analytical developments that underlie
OLS trajectory estimation, to present the macro itself, and to demonstrate the use
of this macro on an empirical data set of antisocial behavior assessed on N = 221
children on four separate occasions. Although we focus on SEM-based approaches
to trajectory analysis here, the macro may be used to supplement any growth curve
modeling procedure. The macro and supporting documentation are available on a
publicly accessible Web page (www.unc.edu/~curran/OLStraj.htm), and the user
can replicate all analyses there. It is important to note that only minor modifica-
tions to the program are required to allow for the application of this macro across a
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wide variety of conditions that might be encountered in applied research. We con-
clude with a discussion of the known limitations of OLS trajectory estimation, po-
tential limitations of the macro, and suggestions for future developments in this
area.

THE UNCONDITIONAL RANDOM GROWTH CURVE
MODEL

For the unconditional LTM that assumes linear growth, the general model is of the
following form:

yit = αi + βiλt + εit (1)

where yit represents the value of the repeated measure for individual i at time t; αi

and βi are the random intercept and slope, respectively, of the (linear) growth tra-
jectory for individual i; λt represents the value of the time trend variable at time t;
and εit represents the individual- and time-specific residual. If a quadratic func-
tional form of growth is preferred, the general model assumes the following form:

yit = αi + βiλt + β2i λt2 + εit (2)

where βi represents the random slope, β2i is the quadratic parameter describing the
acceleration (or deceleration) of change over time for individual i, and all other pa-
rameters are as previously defined.

Because the intercepts and slopes in Equations 1 and 2 are random, they can be
expressed as functions of a mean and deviation in the Level 2 equations:

αi = µα + ζαi (3)

βi = µβ + ζβi (4)

such that the intercept of the (linear) latent trajectory for individual i is held to be a
function of the mean of the intercepts across all cases (µα) and an individual-spe-
cific intercept disturbance deviation (ζαi), and the slope of the (linear) latent trajec-
tory for individual i is held to be a function of the mean of the slopes across all
cases (µβ) and an individual-specific slope disturbance deviation (ζβi). The com-
bined, or reduced form, equation for the unconditional linear growth model is

yit = [µα + λtµβ] + [ζαi + λtζβi + εit] (5)

From this equation, it is readily apparent that the values of the repeated measures
yit are hypothesized to be a function of latent growth factors and latent individ-
ual-level disturbance factors. In most applications the λt are fixed, but it is possible
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to estimate them from the sample data (McArdle & Epstein, 1987; Meredith &
Tisak, 1984, 1990).

Therefore, in the standard unconditional linear growth curve model, the esti-
mated parameters are the means of the latent trajectory factors the vari-
ances of the latent trajectory factors (denoted ), the covariance between
the latent trajectory factors (denoted ), and the residual variance (denoted ).
This fixed- and random-effects growth curve model may be estimated using a mul-
tilevel modeling procedure such as hierarchical linear modeling (HLM; Bryk &
Raudenbush, 1987) or using a structural equations-based latent growth curve mod-
eling approach (LTM; McArdle, 1988; Meredith & Tisak, 1984, 1990). Although
we focus on the LTM approach here, the OLStraj macro may be used to supple-
ment any growth curve modeling approach.

LTM ESTIMATION OF THE RANDOM GROWTH CURVE
MODEL

Usingthe traditionalSEMmatrix terminology, thegeneralexpressionfor theLTMis

y = Λη + ε (6)

where y is a T × 1 vector of repeated measures, Λ is a T × k matrix of factor loadings
(i.e., time trend variable values), η is a k × 1 vector of latent factors, and ε is a T × 1
vector of residuals. Equation 6 is analogous to the Level 1 model presented in
Equation 1. In a fashion analogous to the Level 2 growth curve equation, η can be
expressed in terms of a mean and deviation as follows:

η = µη + ζ (7)

where µη is a k × 1 vector of growth factor means and ζ is a k × 1 vector of residu-
als. Equation 7 can be substituted into Equation 6 to result in the reduced-form ma-
trix equation for the LTM:

y = Λ (µη + ζ) + ε (8)

This model is presented in Figure 1.
The model-implied variances of the observed repeated measures are

VAR(y) = ΛΨΛ′ + Θε (9)

where Θε represents the covariance structure of the residuals for the T-repeated
measures of y and Ψ represents the covariance matrix of the deviations ζ. Finally,
the model-implied mean structure of the observed repeated measures is repre-
sented in the following matrix expression:

E(y) = Λµη (10)

VISUALIZING INDIVIDUAL GROWTH CURVES 135

ˆ ˆ( , ),α βµ µ
ˆ ˆandα βψ ψ

ˆ αβψ 2σ̂



where Λ and µη are defined as before.
As in any SEM model, the optimal parameter estimates in LTM are typically

viewed as those that minimize the difference between the observed and the
model-implied mean vectors and covariance matrices. Accordingly, in most stan-
dard applications that do not consider missing data, the sample mean and
covariance matrices, and not individual-level data, are utilized in model estima-
tion. Perhaps the most widely used approach to computation of parameter esti-
mates is minimization of the maximum likelihood fitting function. However, other
estimators (e.g., arbitrary distribution function, two-stage least squares) are also
available.

Therefore, in latent trajectory analysis, a set of observed repeated measures is
used to estimate an unobserved, or latent, growth trajectory that is hypothesized to
have given rise to the observed data. The parameters estimated can
be computed using the sample mean vector and covariance matrix alone, and rep-
resent summary statistics for latent scores on growth factors and disturbances. Just
as factor scores are not routinely estimated in the standard CFA or SEM, individ-
ual-level values of latent growth factors are neither directly assessed, nor esti-
mated, in the typical LTM. Fortunately, it is possible to estimate individual-level
scores on latent growth factors. It is to OLS estimation of individual growth trajec-
tories, in particular, that we now turn.

OLS ESTIMATION OF INDIVIDUAL TRAJECTORIES

There are multiple approaches to the estimation of latent growth factor scores, in-
cluding generalized least squares, factor regression (or empirical Bayes), and con-
strained covariance. Biesanz et al. (2003) concluded from their examination of the
analytic properties of factor score estimators that no one estimator is ideal for all
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potential uses. Because our priorities in developing the OLStraj macro were trajec-
tory visualization and accessibility to the user, we selected the OLS estimator
(which is equivalent to the generalized least squares estimator under certain re-
strictive conditions) for use in the program.

OLS estimation uses the OLS fitting function to estimate a regression model for
each case in the sample. In the case of a linear functional form of growth, the model
estimated for each case is of the following form:

yit = αi + βi λt + εit (11)

where yit is the value of the repeated measure for individual i at time t, αi is the re-
gression intercept for individual i, λt is the value of the user specified coding of
time at time t, βi describes linear change over time in y for individual i, and εit is the
time-specific regression residual for individual i. The OLS estimator of slope for
each case reduces to

and the OLS estimator of intercept for each case reduces to

where is the mean of the time trend variable and is the mean of y for individ-
ual i across the T time points.

The OLS estimator possesses several advantages over other point estimation
techniques; most notably, case-by-case OLS estimates are readily computed in
many widely available statistical packages and possess intuitive appeal for re-
searchers trained in regression. In addition, the mean of the case-by-case OLS in-
tercepts

and the mean of the case-by-case OLS slopes

serve as unbiased estimators of the mean population intercept (µα) and mean popu-
lation slope (µβ), respectively (Rogosa, Brandt, & Zimowski, 1982). Although the
sample variances and covariance of and are biased, OLS estimate-based for-
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mulae for corrected (unbiased) variance–covariance estimates are available (e.g.,
see Rogosa & Saner, 1995).

We now turn to a brief description of the trajectory estimation functions and
features of the OLStraj macro.

THE OLStraj MACRO

The individual trajectories software program and program documentation are
available at www.unc.edu/~curran/OLStraj.htm. The program was written using
the SAS macro language and incorporates both procedures included in SAS/Base
and SAS/STAT software and high-resolution graphics provided by SAS/GRAPH
software. The main module of the program is the macro OLStraj, which is embed-
ded and invoked within the program. The user may alternatively choose to store the
OLStraj macro in a user defined macro library.

As described in the program documentation, invocation of OLStraj presumes
that a SAS data set INITIAL has previously been created by the user. Prior to using
OLStraj, the user must also (a) create an identification (ID) variable on data set
INITIAL, (b) identify the names of the variables on data set INITIAL that repre-
sent the repeated measures of interest, and (c) specify the coding of time for each
of the repeated measures.

On invocation, the macro OLStraj performs the following procedures:

1. Listwise deletion. If specified by the user, OLStraj will delete any observa-
tion in INITIAL having a missing value for one or more of the repeated measures
variables. Alternatively, OLS estimates can be computed using all available infor-
mation for each case (i.e., partially missing data).

2. Creation of subsample. OLStraj allows the user to specify that a subset of
observations be evaluated. (This feature is particularly useful for larger data sets,
when a closer examination of a subsample of trajectories is desired.)

3. OLS case-by-case regressions. OLStraj next uses the OLS fitting function to
estimate a regression model for each case in the sample (or subsample). The user
specifies whether a linear, a quadratic, or both linear and quadratic case-by-case re-
gressions should be performed.

4. Creation of group-level plots. If specified by the user, OLStraj produces
two group-level plots using high-resolution graphics. The first plot displays
overlaid simple-joined (noninterpolated) trajectories for all cases in the sample
(or subsample). The second plot displays overlaid OLS-estimated trajectories for
all cases in the sample (or subsample). If the user specifies a quadratic func-
tional form of growth for OLS case-by-case regressions, the OLS-estimated tra-
jectories displayed on this plot will be quadratic in functional form. Otherwise,
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the OLS-estimated trajectories displayed on the plot will be linear in functional
form.

5. Creation of individual-level plots. If desired by the user, OLStraj produces a
set of multiple individual-level plots using high-resolution graphics. These indi-
vidual graphs plot the value of each individual’s repeated measures against time
(as coded by the user). Linear, quadratic, or both OLS-estimated trajectories are
superimposed on the observed repeated measures.

6. Creation of histograms and box plots. If specified by the user, OLStraj pro-
duces a set of three group-level histograms and one multivariable group-level
box-and-whisker plot using high-resolution graphics.

The group-level histograms display frequency counts for ranges of values of the
estimated intercepts, slopes, and (if quadratic regressions are specified by the user)
quadratic terms resulting from OLS case-by-case regressions. OLStraj automati-
cally computes 18 data ranges of equal width, which extend from the minimum to
the maximum value of the parameter of interest; some of these data ranges may be
empty, and this will be reflected on the histograms produced. The box-and-whisker
plot provides a visual display of descriptive summary statistics for estimated inter-
cepts, slopes, and (if quadratic regressions are specified) quadratic terms. The type
of box-and-whisker plot displayed by OLStraj corresponds to the schematic
box-and-whisker plot detailed in Tukey (1977). Box plots for estimated parame-
ters are presented side-by-side; each plot displays the mean, quartiles, and mini-
mum and maximum observations for an individual-level estimated parameter. Ob-
servations located outside lower and upper “fences” are labeled with the value of
the ID variable for that case.

7. Creation of output data set. If desired by the user, OLStraj creates an output
data set that contains parameter estimates resulting from the OLS case-by-case re-
gressions. This data set can be submitted to other SAS procedures or exported for
use in other statistical or graphics programs.

EMPIRICAL EXAMPLE

A subset of 221 individuals was selected from the National Longitudinal Survey of
Labor Marketing Experience in Youth (NLSY), a study initiated in 1979 by the
U.S. Department of Labor. The repeated measure used in this example, the antiso-
cial behavior subtest of the Behavior Problems Index (BPI), was drawn from a
larger battery of instruments administered to NLSY mothers and children. The an-
tisocial behavior subtest of the BPI is one of six subtests developed by Zill and Pe-
terson (Baker, Keck, Mott, & Quinlan, 1993). Six 3-point Likert-type items make
up the subscale, ranging from 0 (not true) to 1 (sometimes true) to 2 (often true).
For this example, responses were summed to compute an overall measure of anti-
social behavior; scores could range from 0 to 12. The overall measure of antisocial
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behavior was computed at each of the four time periods (1986, 1988, 1990, and
1992; denoted as Time 1, Time 2, Time 3, and Time 4, respectively). The resulting
variables constructed for Time 1 through Time 4 were named Anti1, Anti2, Anti3,
and Anti4, respectively. The individuals selected for this example had complete
data for all repeated measures. See Curran and Bollen (2001) for further details.

An Unconditional LTM

To examine the fixed and random components of growth in antisocial behavior, we
used PROC CALIS (SAS Institute, 1990) to estimate an unconditional linear LTM
for the repeated measures of antisocial behavior collected at Times 1, 2, 3, and 4.
Two latent factors were estimated: The first factor defined the intercept of the de-
velopmental trajectory of antisocial behavior (with all factor loadings fixed to 1.0)
and the second defined the linear slope of the trajectory (with factor loadings set to
0, 1, 2, and 3 to define an annual metric of time). The model estimated is presented
in Figure 1. Means were estimated for both the intercept and slope factors, with
these values representing the model-implied mean developmental trajectory
pooled over all individuals. Variances were also estimated for the intercept and
slope factors, representing the degree of individual variability in trajectories
around the group mean values. The covariance between the two factors repre-
sented the covariation between initial level and rate of change. Finally, residual
variances were estimated for each repeated measure and represent the variability in
the time-specific measures not accounted for by the underlying random trajecto-
ries. It was assumed that measurement error remained constant over time and that
residual variances were uncorrelated.

The initial model fit the data well according to the chi-square test of omnibus
model fit: χ2(8, N = 221) = 5.56, p = .70. Numerous fit indexes also suggested ex-
emplary model fit to the data: comparative fit index = 1.0, Nonnormed Fit Index =
1.0, incremental fit index = 1.0, and root mean square error of approximation = 0.
The estimated means of the latent factors suggested that the model-implied mean
trajectory for the sample was characterized by a significant mean BPI score of 1.55
at the first time period (p < .001), and a significantly increasing slope of .18 units
per year during the study window (p < .001). Further, significant variance esti-
mates for both the intercept ( = .97, p < .001) and slope ( = .10, p = .03) factors
indicated substantial interindividual variability in both initial level and rate of
change in antisocial behavior. Finally, the estimated correlation between the inter-
cept and slope factors (r = .49, p = .04) suggested a significant and positive associa-
tion between antisocial behavior at Time 1 and the rate of change in antisocial be-
havior over time. Again, note that the resulting from the
unconditional LTM represent summary statistics for the latent growth factors and
were estimated without direct calculation of the individual trajectories for each
case in the sample.
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Next, we demonstrate how the OLStraj macro may be used to supplement the
findings from the LTM of antisocial behavior.

Application of the OLStraj Macro

Selected output from the OLStraj macro is displayed in Figures 2 through 8. Our
initial step was to use OLStraj to estimate and plot individual trajectories for each
observation in the sample. We first requested plots that superimpose estimated lin-
ear trajectories on the observed repeated measures for an evaluation of individual
fit to the data. These plots reveal that for many children in the sample, a linear func-
tional form appears to represent change in antisocial behavior quite well (see Fig-
ure 2 for representative plots). This finding is consistent with the excellent fit of the
unconditional linear LTM to the antisocial behavior data. Next, we requested that
OLStraj add estimated quadratic trajectories to the individual trajectory plots. As
shown in Figure 3, which presents a subset of the relevant output, it appears that for
other children a quadratic functional form of growth better accounts for change in
antisocial behavior than a linear function. This finding suggests that if theoreti-
cally reasonable, it may be beneficial to fit a quadratic LTM to the observed data
and evaluate the significance of improvement in model fit.

The OLStraj macro was then employed to visually examine all 221 OLS-esti-
mated individual trajectories simultaneously. The graphs provided by the macro
are (a) a plot of overlaid simple trajectories and (b) a plot of overlaid OLS-esti-
mated trajectories. As can be seen in the overlaid OLS-estimated trajectories plot
(included as Figure 4), consistent with findings from the unconditional linear
LTM, substantial variability in both initial level and rate of change in antisocial be-
havior appears to exist within the sample. From examination of the plot, it is clear
that a sizable number of negative linear slopes, positive linear slopes, and possibly
a number of linear slopes very close to zero exist in the sample. Potentially outly-
ing or otherwise problematic observations (e.g., observations with negative
OLS-estimated intercepts, which are theoretically impossible) can clearly be dis-
cerned from the plot and may be identified for further evaluation.

From Figure 4, it is apparent that when a large number of individuals is incorpo-
rated into a single plot, certain individual trajectories become difficult to discern.
Accordingly, we next used the macro to visually examine OLS-estimated individ-
ual trajectories for a small subset (n = 25) of the total sample (N = 221; Figure 5).
Figure 5 reveals more clearly that a positive rate of change in antisocial behavior
over time does not hold for all individuals. In fact, a number of the individuals (n =
6 of 25) in the subset actually appear to experience decreasing trajectories of anti-
social behavior (despite the positive mean trajectory for the entire group).

Distributional characteristics were further explored using the OLStraj macro’s
histogram and box-and-whisker plot option. Examination of a histogram analyz-
ing all N = 221 individual slopes (Figure 6) indicates that the distribution of
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FIGURE 2 Two children for whom a linear functional form appears to represent growth well. ID =
identification variable; OLS = ordinary least squares.
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FIGURE 3 Two children for whom a quadratic functional form of growth appears to better fit the data
than a linear functional form. ID = identification variable; OLS = ordinary least squares.



OLS-estimated latent slopes is centered close to zero (M = .18), has a slight posi-
tive skew, and represents a relatively poor approximation to the normal distribu-
tion. As shown in Figure 7, the box-and-whisker plot demonstrates that extreme
values for estimated growth parameters exist, suggesting the possible presence of
influential outliers. One of the extreme slopes identified and labeled on the
box-and-whisker plot was estimated by OLStraj for ID number 69. As shown in
Figure 8, the pattern of observed and OLS-estimated antisocial behavior scores for
ID 69 is indeed unusual. This observation warrants further attention (e.g., this ob-
servation might be checked for keypunch errors, or if proven to exert an undue in-
fluence on model results, considered for removal from the sample on this basis).
Because evaluation of outliers is beyond the scope of this article, we do not address
this further.

DISCUSSION

As is hopefully apparent from the brief example presented here, we believe that
OLStraj possesses many potential uses as a diagnostic device. For example,
OLStraj can be used to evaluate model assumptions. The visually presented OLS
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estimates of individual growth trajectories computed by OLStraj can allow for the
identification of cases for which a simple linear functional form of growth does not
characterize the observed data well; further examination of these cases could re-
veal that these cases are outliers, or perhaps alternatively, that a quadratic or other-
wise nonlinear model of growth might be more appropriate for the sampled popu-
lation. In addition, OLStraj’s individual growth trajectory estimates can allow for
the assessment of whether sampled individuals are homogenous with respect to
functional form, and may in some cases indicate that a growth mixture model
should be considered (e.g., see Carrig & Bauer, 2001; Muthén & Shedden, 1999).
Further, OLStraj can be used prior to model estimation to screen for extreme val-
ues of OLS-estimated individual growth parameters. As previously suggested, if
such values are identified, associated observations might be checked for data entry
errors or otherwise considered for removal from the sample. The OLStraj macro
can also be used profitably as a post hoc device for the exploration of model misfit.

In addition, we have found that even after the estimation of a final model, the
OLStraj macro can represent a highly useful adjunct to HLM-based or LTM-based
growth curve modeling. The OLS estimates computed by the program, which can
be saved by the program to an output data set, can be used as criterion variables in
other analyses. They may also be utilized for the prediction of future observations
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FIGURE 5 Overlaid ordinary least squares (OLS)-estimated trajectories plot (n = 25).



FIGURE 6 Histogram of ordinary least squares (OLS)-estimated slopes (N = 221).

FIGURE 7 Box-and-whisker plots of ordinary least squares (OLS)-estimated intercepts and
slopes (N = 221). ID = identification variable.



and for the derivation of cut scores. Finally, the plots produced by OLStraj can be
directly exported to other applications for use in the preparation of manuscripts (or
alternatively, the data set resulting from the program can be imported into the in-
vestigator’s graphics program of choice). Depending on the investigator’s particu-
lar application, reporting of results might include OLStraj plots that demonstrate
careful data screening and evaluation of assumptions prior to the acceptance and
interpretation of findings from complex growth curve models.

It should be noted that the case-by-case OLS estimator employed by OLStraj
possesses important limitations (Biesanz et al., 2003). First, OLS trajectory esti-
mation places restrictions on the structure of error variances, such that the variance
of εit is assumed to equal the variance of εi and the variances εi1, εi2, …, εit are as-
sumed to be uncorrelated. The assumption that the error variances within individu-
als are equal across time and uncorrelated may be inconsistent with the re-
searcher’s hypotheses regarding the true error structure within his or her data.
Second, the OLS framework does not lend itself well to more complex models of
change, such as the autoregressive, time-varying covariate, or multivariate LTM,
or to the use of noncontinuous (e.g., categorical) observed data. Third, omnibus
tests of model fit are not readily available for case-by-case OLS estimation of
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FIGURE 8 Estimated individual trajectory plot for identification variable (ID) value = 69, identified
as a possible outlier by its extreme ordinary least squares (OLS)-estimated slope.



growth trajectories, thus rendering overall judgments about model evaluation diffi-
cult. A fourth limitation is that compared with constrained covariance estimates of
individual trajectories, OLS estimates of individual intercept and slope are
overdispersed and suggestive of a weaker relation between intercept and slope than
actually exists (Biesanz et al., 2003). Therefore, future development on the
OLStraj macro should emphasize the inclusion of additional approaches to indi-
vidual trajectory estimation. An option to compute constrained covariance-esti-
mated trajectories, in particular, could be a beneficial addition. Finally, future work
on the OLStraj macro could incorporate the estimation of nonlinear functional
forms of growth that are not members of the polynomial family (e.g.,
monomolecular or Gompertz functions estimated in SAS PROC NLIN), which
would represent useful supplements to the linear and quadratic forms currently
available in the program.

In conclusion, in our own work we have found the OLStraj macro to be a highly
useful companion program to standard growth curve modeling software. Although
we have focused on an SEM-based approach to growth curve estimation in this ar-
ticle, the OLStraj macro lends itself equally well to multilevel modeling ap-
proaches to growth curve modeling. It is hoped that the program will be of use to
applied researchers who seek to maximize the effectiveness of LTMs in answering
questions about stability and change.
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