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This article compares maximum likelihood (ML) estimation to three var-

iants of two-stage least squares (2SLS) estimation in structural equation

models. The authors use models that are both correctly and incorrectly spe-

cified. Simulated data are used to assess bias, efficiency, and accuracy of

hypothesis tests. Generally, 2SLS with reduced sets of instrumental vari-

ables performs similarly to ML when models are correctly specified. Under

correct specification, both estimators have little bias except at the smallest

sample sizes and are approximately equally efficient. As predicted, when

models are incorrectly specified, 2SLS generally performs better, with less

bias and more accurate hypothesis tests. Unless a researcher has tremendous

confidence in the correctness of his or her model, these results suggest that a

2SLS estimator should be considered.
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Structural equation modeling (SEM) with latent variables is a basic tool

in social science research. The maximum likelihood (ML) estimator is

by far the dominant estimator for these models. It is a full information esti-

mator that simultaneously estimates all parameters while using information
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from the whole system of equations and is sometimes called the full infor-

mation ML (FIML) estimator. We will use ML as synonymous with FIML

in this article. Limited information estimators are less common in these

general SEMs, though they are more common in simultaneous equations

without latent variables. Bollen (1996a, 1996b) proposed a limited infor-

mation two-stage least squares (2SLS) estimator for latent variable SEMs.

Limited information estimators in other contexts are more robust to struc-

tural specification errors in models. An important question is whether this

2SLS estimator better isolates errors in models than does the ML, and if

so, at what cost it does this. The purpose of this article is to compare the

performance of the ML and 2SLS estimators of parameters in latent vari-

able models under conditions of correctly and incorrectly specified models

and across different sample sizes. Given the common situation of estimat-

ing imperfect models in small and moderate sample sizes, there is impor-

tant practical usefulness in knowing the relative performance of these two

estimators.

The ML estimator’s dominant position in SEMs is due to several fac-

tors. One practical reason is that the ML estimator is the default estimator

in SEM software. Another reason for its popularity is that under correct

model specification and with observed variables that come from distribu-

tions with no excess multivariate kurtosis, the ML estimator is consistent,

asymptotically unbiased, asymptotically efficient, and asymptotically nor-

mal, and we can estimate the asymptotic covariance matrix of the para-

meter estimator (e.g., see Browne 1984). The 2SLS estimator has the same

properties except that it is asymptotically efficient among limited informa-

tion estimators rather than full information estimators. As such, we would

expect some large-sample efficiency advantage for the ML estimator when

the underlying assumptions are met (Bollen 1996b).

The problem with this analytical description of the ML and 2SLS estima-

tors is that it assumes ideal conditions that commonly fail in practice. For

instance, in real applications the observed variables typically come from non-

normal distributions with excess kurtosis (Micceri 1989); the sample size might

not be large; and the model is nearly certain to have structural specification
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errors. The 2SLS estimator is asymptotically ‘‘distribution free’’ so that in large

samples its asymptotic standard errors and significance tests do not depend on

normality. Bootstrapping techniques (Bollen and Stine 1990, 1993) or cor-

rected asymptotic standard errors enable users to take account of nonnormal-

ity (or excess kurtosis) of the observed variables (Browne 1984; Satorra

and Bentler 1988) when using the ML estimator. Under special conditions,

some standard errors and the w2 test will be asymptotically robust to non-

normality (see review in Satorra 1990). However, the asymptotic efficiency

of the ML estimator is established under the condition of no excess kurtosis

so that even though we can correct the significance tests or we might meet

the robustness conditions, this does not necessarily maintain the asymptotic

efficiency of this full information estimator.

The impact of a structurally misspecified model is even more difficult

to handle. The econometric literature on 2SLS in multiequation models

with observed variables suggests that the 2SLS estimator is less sensitive

to structurally misspecified models than are full information estimators

such as the ML estimator (Cragg 1968). Yet this issue has not been exam-

ined in latent variable models. Bollen (2001) provides the conditions for

the 2SLS estimator to be robust to specification errors in both the simulta-

neous equation and the latent variable models, but the analogous con-

ditions are not available for the ML estimator. In addition, we do not have

sufficient evidence on the behavior of 2SLS and ML estimators of latent

variable models across different sample sizes.

In sum, both ML and 2SLS offer many promising advantages. How-

ever, the specific experimental conditions under which these advantages

hold are not well understood, thus making an informed selection of one

estimator over the other difficult in practice. To understand these complex

issues better, we use Monte Carlo simulations to examine the relative per-

formance of the 2SLS and ML estimators. Specifically, we study sample

sizes ranging from 50 to 1,000; models with varying degrees of structural

specification error; and three versions of the 2SLS estimator that are dis-

tinguished by the number of instrumental variables (IVs) that are included

in the estimation. We vary the number of IVs since analytic work with the

2SLS estimator in simultaneous equation models without latent variables

suggests that this can affect the finite sample properties of the estimator

(e.g., Nagar 1959). For each estimator, we examine the percentage of bias

in parameter estimates, the standard deviation of the estimate, and the

accuracy of hypothesis tests.

The next section of the article presents the general structural equa-

tion model with latent variables and the ML and 2SLS estimators. In this
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section, we briefly summarize key properties of these estimators and their

behavior in different sample sizes and with different degrees of model

misspecification. We follow this with a discussion of the research issues

about the properties of the ML and 2SLS estimators in correct and incor-

rect models. Next is a presentation of the design of our simulation experi-

ment including the primary model and the design factors. After this

section we present our findings on bias, standard deviations, and hypoth-

esis testing using the ML and 2SLS estimators. Finally, we summarize the

key findings and discuss their implications.

Model and Estimators

We use a slight modification of the LISREL notation (Bollen 2001) to

represent the SEM:

η=αη +Bη+Γξ+ ζ,

y=αy +Λyη+ ε,

x=αx +Λxξ+ δ, ð1Þ

where η is the vector of latent endogenous variables,1 ξ is the vector

of latent exogenous variables, and ζ is the vector of disturbances. The B
matrix gives the effect of the endogenous latent variables on each other,

and Γ is the matrix of coefficients for the effects of the latent exogenous

variables on the latent endogenous variables. Intercepts are indicated by α.

The y and x vectors are the observed variables affected by η and ξ, respec-

tively, with their coefficients in Λy and Λx. In the latent variable equation

of (1), we assume that EðζÞ= 0 and the COV(ξ, ζ0Þ= 0. In the measure-

ment model equations of (1), we assume that EðεÞ= 0, EðδÞ= 0, and these

unique factors are uncorrelated with ξ, ζ, and each other. As is well known,

we can represent simultaneous equations with no measurement error, con-

firmatory factor analysis, and numerous other common statistical models

as special cases of these equations (e.g., see Bollen 1989).

ML Estimator

The most common estimator of the parameters for this model is the ML

estimator:

FML = ln jΣðθÞj+ tr½Σ−1ðθÞS�− ln jSj− p

+ ½ z̄−µðθÞ�0Σ−1ðθÞ½ z̄−µðθÞ�, ð2Þ
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where Σ(θ) is the model-implied covariance matrix, S is the sample covar-

iance matrix, µ is the vector of population means, µ(θ) is the model-

implied mean vector, z̄ is the vector of sample means of the observed vari-

ables, and p is the number of observed variables. The θ vector contains the

parameters of the model that are to be estimated.

Asymptotic properties of ML. . The ML estimator is a full information

estimator in that it simultaneously estimates all model parameters and

takes account of the full system of equations including constraints and

restrictions when developing the estimates. When the observed variables

come from distributions with no excess multivariate kurtosis and when

the model is correct, then the θ̂ that minimizes FML is consistent, asympto-

tically unbiased, asymptotically efficient, and asymptotically normal,

and we can consistently estimate its covariance matrix (Jöreskog 1973;

Browne 1984). Some research is available on the behavior of θ̂ when there

is excess kurtosis (Boomsma 1982; Browne 1984; Curran 1994). The main

consequence is that the significance tests are likely to be inaccurate,

though the consistency of the ML estimator is not affected. There also are

special conditions under which some of the significance tests are asympto-

tically robust (Satorra 1990).

Properties of ML for structurally misspecified models.. Much less is

known of ML’s properties when the model is structurally misspecified,

particularly in models with latent variables. Kaplan (1988) and Curran

(1994) use simulations to illustrate that the ML estimator is susceptible to

spreading the bias due to specification error in one equation to other cor-

rectly specified parts of the model. These results are consistent with

research from econometrics. The econometric literature has examined the

behavior of the ML estimator in simultaneous equations without measure-

ment error or latent variables. If a simultaneous equation model suffers

from misspecifications such as omitted variables, then the misspecification

in one part of the system can spread bias to coefficient estimates from

other equations even when the other equations are well specified.2 Haus-

man’s (1983:414) description of this is typical: ‘‘With system estimation

misspecification in any equation in the system will generally lead to

inconsistent estimation of all equations in the system.’’ Furthermore, the

asymptotic efficiency and asymptotic unbiasedness properties of ML are

called into question when the model is structurally misspecified.

Finite sample properties of ML. . Research on the finite sample proper-

ties of the ML estimator in latent variable models also is sparse (Phillips
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1983:490). Finite sample properties are typically approached in two ways.

One is via analytical results where exact or approximate expressions are

derived that provide the bias and variance of the ML estimator at different

finite sample sizes. The second approach is to use Monte Carlo techniques

to provide finite sample bias and variance using simulated data for particu-

lar models, parameter values, and sample sizes.

There is little analytical or simulation research on the properties of the

parameter estimates from ML in latent variable SEM. Turning again to the

econometric literature and simultaneous equation models, we see that

Sargan (1970) has shown that the ML estimator does not always have

finite moments (see also Mariano 1982:512–13; Phillips 1983:491–2). In

special cases such as multiple regression with a normal disturbance term,

where the ML estimator is equivalent to ordinary least squares (OLS), there

are well-known finite moments. However, we cannot always determine

the exact expected value or variance of the ML coefficient estimator in

finite samples. Although this work on nonexistence of finite moments for

the ML is in the context of simultaneous equations, it has implications for

the ML estimator in the more general SEM as well since simultaneous

equations are a special case of the general SEM. Furthermore, the same

analytics that establish the nonexistence of finite moments in simultaneous

equations (e.g., see Phillips 1983:491–2) are likely to apply to latent vari-

able SEMs that use ML.

Lacking analytical expressions for finite moments, Monte Carlo simu-

lations provide evidence on the simulation mean bias and variance of the

ML. Boomsma (1982) studied the ML estimator in a confirmatory factor

analysis model where he varied the magnitude of factor loadings, the

correlation between the factors, the number of indicators per factor,

and the sample size. Boomsma (1982) concluded that though there were

biases in the parameter estimates and standard errors for the smaller sam-

ple sizes (N < 100), these were negligible in samples larger than 100

(see also Boomsma and Hoogland 2001).

Gerbing and Anderson (1985) also studied a confirmatory factor analy-

sis model. Their sample sizes varied from 50 to 300, and they varied the

number of indicators per factor, the numbers of factors, the magnitude of

the correlations of the factors, and the reliability of the indicators. Gerbing

and Anderson (1985) found little bias in the ML estimator with the excep-

tion of the parameter relating factors that were defined by only two indica-

tors. Curran’s (1994) Monte Carlo simulation of confirmatory factor

analysis models found the ML estimator to exhibit little bias in correctly

specified models across his sample sizes of 100, 200, and 1,000. The
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evidence from these factor analysis simulations are consistent in their find-

ing of little bias in the ML estimator for samples sizes of at least 100,

though bias in smaller sample sizes is less clear. We were not able to

locate any Monte Carlo simulation studies that examined a general SEM

with structural relations between latent variables, so we have no evidence

on the bias in these types of models.

2SLS Estimator

The term 2SLS estimator applies to a family of different methods that

are in use in latent variable SEMs. For instance, Jöreskog (1983) builds

on the factor analysis work of Hägglund (1982) and Madansky (1964)

to propose a 2SLS estimator that provides the starting values in the

Jöreskog and Sörbom (1993) LISREL software. The Jöreskog–Hägglund–

Madansky 2SLS estimator first estimates a factor analysis model that

assumes no correlated errors, then estimates the covariance matrix of the

factors, and last applies another variant of the 2SLS estimator to this cov-

ariance matrix of the factors to estimate a latent variable structural model.

This 2SLS estimator differs from the 2SLS estimator of Lance, Cornwell,

and Mulaik (1988) in that the latter authors estimate the factor analysis

model with the ML estimator and then use a 2SLS estimator in a similar

manner to that of Jöreskog, Hägglund, and Madansky.

The 2SLS estimator for latent variable SEM in Bollen (1996a, 1996b,

2001) differs from both of these in that it permits correlated errors across

equations, does not require that the measurement model be estimated first

(or at all), estimates intercepts, and provides the asymptotic covariance

matrix of the estimator for significance testing. Significance tests of multi-

ple coefficients in the same or different equations are possible using the

estimated asymptotic covariance matrix.3 Furthermore, when there are no

latent variables or measurement error, Bollen’s (1996a, 2001) 2SLS esti-

mator is equivalent to the original Theil (1953, 1961)–Basmann (1957)

2SLS estimator for simultaneous equation models. This equivalence is

valuable since it enables us to draw on the econometric literature that has

studied the 2SLS estimator in the context of simultaneous equation models.

Alternatively, if there is a factor analysis model with no correlated

errors and no intercepts, then Bollen’s (1996b, 2001) 2SLS estimator is

equivalent to the Jöreskog–Hägglund–Madansky 2SLS estimator. For the

remainder of the article, we examine Bollen’s version of the 2SLS estima-

tor while recognizing that other versions of 2SLS have been proposed. This

version of the 2SLS estimator has been applied to estimation of SEMs that
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are nonlinear in the latent variables (Bollen 1995; Bollen and Paxton

1998), to comparison of nonnested latent variable models (Oczkowski

2002), to models with heteroscedastic disturbances (Bollen 1996a), and to

higher order factor analysis models (Bollen and Biesanz 2002).

To apply this 2SLS to equation (1), each latent variable must have a

single observed variable to scale it such that

y1 = η+ ε1,

x1 = ξ+ δ1, ð3Þ

where y1 and x1 are the vectors of scaling indicators. We can then reex-

press equation (3) as

η= y1 − ε1,

ξ= x1 − δ1: ð4Þ

Following Bollen (2001:122–4), we can rewrite the latent variable and

measurement models as

y1 =αη +By1 +Γx1 + ε1 −Bε1 −Γδ1 + ζ,

y2 =αy2 +Λy2y1 −Λy2ε1 + ε2,

x2 =αx2 +Λx2x1 −Λx2δ1 + δ2, ð5Þ

where y2 and x2 are the vectors of the remaining nonscaling indicators. To

simplify the presentation of the 2SLS estimator, we focus on a single

equation. Consider the jth equation from y1 as

yj =αη j +Bjy1 +Γ jx1 + uj, ð6Þ

where yj is the jth y from y1, αη j is the corresponding intercept, Bj is the

jth row from B, Γ j is the jth row from Γ , and uj is the jth element from u
where u= ε1 −Bε1 −Γδ1 + ζ. Following Bollen (1996b:113), we define

Aj to be a column vector that contains αηj and all the nonzero elements of

Bj and Γ j. Let N represent the number of cases in a sample. Form Zj as an

N-row matrix that has the sample elements of all of the y1 and x1 variables

that have nonzero coefficients in equation (6), form yj as an N × 1 vector

of the sample values of yj, and make uj an N × 1 vector of the values of uj.

Using these definitions, we rewrite equation (6) as

yj =ZjAj + uj: ð7Þ

The 2SLS estimator provides a consistent estimator of these parameters,

but it requires IVs. The IVs are observed variables that must satisfy
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several conditions. First, the observed variable must not be directly or

indirectly influenced by any of the disturbances in (7). Second, if the

observed variable is endogenous, its disturbance must be uncorrelated

with all of the disturbances in (7). Finally, the observed variable must cor-

relate with the observed variables that they will be predicting. These

model-implied IVs are determined by the structure of the model. In other

words, if the model is correct, there is no ambiguity as to which variables

are uncorrelated with the disturbances of an equation and hence a potential

IV. In contrast to most treatments of IVs, we do not assume that the

researcher searches for IVs outside of the model. Rather, all IVs are found

among the observed variables that are part of the model and that satisfy

the conditions of being an IV for a particular equation. This approach also

differs from the typical simultaneous equation approach in that endogen-

ous observed variables are sometimes suitable as IVs.

So that we can identify the equation parameters, there must be at least

as many IVs as there are variables that they will be replacing, and the

squared multiple correlation coefficients from the regression of the vari-

ables to be replaced on the IVs should be reasonably high (e.g., > .10).

Bollen (1995, 1996b) and Bollen and Paxton (1998) have more details on

the selection of IVs along with several examples. Bollen and Bauer (2004)

provide an automated procedure that chooses the model-implied IVs for an

equation, but to conserve space we do not repeat these discussions here.

If we use Vj to represent an N-row matrix containing the IVs,4 then the

2SLS estimator is

Âj = ðẐ0jẐjÞ−1Ẑ0jyj; ð8Þ

where

Ẑj =VjðV0jVjÞ−1V0jZj: ð9Þ

The 2SLS estimator, Âj, has an estimated asymptotic covariance matrix

equal to

acovðÂjÞ= σ̂2
uj
ðẐ0jẐjÞ−1 ð10Þ

with σ̂2
uj
= ðyj −ZjÂjÞ0ðyj −ZjÂjÞ=N. An important characteristic of 2SLS

is that this is a noniterative procedure. All parameter estimates and stan-

dard errors are computed in closed form, and a solution always exists. We

will later contrast this aspect of 2SLS with the iterative process that is

required for ML estimation. We need not assume normality of the observed
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variables or disturbances for the asymptotic covariance matrix to be accu-

rate (Bollen 1996b).

Asymptotic properties of 2SLS. The 2SLS estimator shares several

desirable asymptotic properties with the ML estimator. The 2SLS estima-

tor is consistent (Basmann 1957; Theil 1958), asymptotically unbiased

(Theil 1958; Richardson 1970), and asymptotically normally distributed

(Basmann 1960). As equation (10) shows above, 2SLS has an asympto-

tic covariance matrix that we can use in statistical significance testing.

Furthermore, 2SLS is an asymptotically efficient estimator among the

single-equation limited information estimators (Bowden and Turkington

1984:110–11).

Finite sample properties of 2SLS. The number of finite moments of the

2SLS estimator is equal to the degree of overidentification of an equation

(Mariano 1972; Hatanaka 1973; Kinal 1980). This means that the 2SLS esti-

mator for an equation that has two more IVs than required to identify the

equation will have first and second finite moments. However, there will be

no finite moments of the 2SLS estimator if an equation is exactly identified.

In finite samples, the 2SLS estimator is influenced by the degree of

overidentification (number of extra IVs) for an equation such that bias

increases but the variability decreases with the number of additional IVs

(e.g., Sawa 1969:936; Mariano 1982:523). For instance, the bias is less

when an equation has one additional IV compared to two additional IVs.

However, Buse (1992) suggests that the relation to bias is more compli-

cated than just the number of IVs. He finds that if the additional IVs

improve the squared multiple correlation of the first-stage regression, then

the bias need not occur.

Other things being equal, the precision of the 2SLS estimator is lower

in an equation as the number of endogenous variables increases (Phillips

1983). Also, the approach to normality of the estimator is influenced by

the magnitude of the coefficient, the sample size, and the degree of overi-

dentification such that larger coefficients and greater overidentification

slow the approach to normality while larger sample sizes accelerate the

approach to normality (Phillips 1983).

Summary of Properties of 2SLS and ML

Our brief review of the properties of 2SLS and ML show that both

estimators have desirable asymptotic properties: consistency, asymptotic

unbiasedness, asymptotic normality, and estimable asymptotic covariance
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matrix. The 2SLS estimator is an asymptotically efficient estimator among

single-equation estimators, and the ML estimator is an asymptotically effi-

cient estimator among system-wide, asymptotically unbiased estimators.

As a full information estimator that utilizes information from the whole

system of equations, we expect the asymptotic efficiency of the ML estima-

tor to be better than 2SLS provided that the model is correct and that there

is no excess multivariate kurtosis in the data. But practically speaking, we

need to interpret these asymptotic results with caution. We do not know

how well they characterize the sample sizes and models that are typical in

practice. As we noted earlier, there is little information on the finite sample

properties of the ML. There is more research on the 2SLS estimator, but

still some gaps in knowledge. Finally, the relative efficiency is uncertain

when there is excess multivariate kurtosis or misspecification in the model.

Monte Carlo simulations that examine both 2SLS and ML estimators in

latent variable SEMs are rare. The only exceptions we have found are two

simulation studies by Hägglund (1983) and Brown (1990). Both studies

include the ML and the Jöreskog–Hägglund–Madansky 2SLS estimators

and use confirmatory factor analysis models with uncorrelated distur-

bances. The Jöreskog–Hägglund–Madansky 2SLS and Bollen’s (1996b)

2SLS estimators are equivalent under these restrictive conditions and

assumptions.5 Hence, Hägglund’s (1983) and Brown’s (1990) results are

relevant to our study.6

Hägglund (1983) studied two-factor analysis models, one with two fac-

tors and 6 indicators and another with three factors and 12 indicators. The

factor loadings were moderately high (.889 and .714), and the sample

sizes were 100, 200, 400, and 1,000. Considering a perfectly specified

model, he found that the biases were small for ML and 2SLS. At sample

size 100, there tended to be a slight negative bias for the factor loadings

for 2SLS and a slight positive bias for ML. Hägglund also found small dif-

ferences in the standard deviations of the factor loadings across the estima-

tors. The ML gave somewhat smaller standard deviations than 2SLS for

N > 100. Overall, Hägglund concluded that the differences across estima-

tors were small.

Brown’s (1990) factor analysis model had eight indicators and two fac-

tors. The factor loadings ranged from .4 to .9, and he looked only at a sam-

ple size of 500. He varied the distribution of the indicators from normal to

highly skewed. When the indicators came from normal to moderately non-

normal distributions, Brown found that 2SLS and ML performed similarly

under correct specification. In the cases with the highest degrees of non-

normality, Brown found that the ML factor loadings had less bias than
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2SLS, but the ML estimate of the covariance of the factors was more

biased than the covariance estimate of 2SLS.

Kaplan (1988) conducted a small simulation study that included a gen-

eral latent variable SEM rather than just a factor analysis model and

looked at misspecification in the model. He found that the ML estimator

tended to spread bias throughout a model and 2SLS was better at isolat-

ing specification error. However, Kaplan used the Jöreskog–Hägglund–

Madansky 2SLS estimator, and for his model this estimator differs from

Bollen’s (1996b) 2SLS estimator. Lance et al. (1988) also looked at a gen-

eral SEM with latent variables and compared the ML estimator to their

version of a 2SLS model. They also found greater robustness to misspeci-

fied models for 2SLS than for ML. But we caution that their 2SLS estima-

tor differs from Bollen’s (1996b) for their models.

The econometric literature on simultaneous equations, a special case of

SEM, has the largest number of Monte Carlo simulations that looked at

the ML and 2SLS estimators. Two things stand out about these econo-

metric simulation results. One is that the ranking of the relative perfor-

mance of the two estimators varies across the studies. The other is that the

overwhelming majority of these simulations look at sample sizes that are

much smaller than is typical in latent variable SEMs.

Consider first the inconsistency in results of the simulation studies.

Donatos and Michailidis (1996) simulated a two-endogenous-variable

model with four exogenous variables. They found that 2SLS had less bias

than ML (or than OLS) for normal and nonnormal disturbances. Compare

this to Cragg (1967), who had three endogenous variables and seven exo-

genous variables in a simultaneous equation model and found that ML had

lower median bias than 2SLS. In Mikhail’s (1975) simulation study of two

models that differ in the degree to which the disturbances are correlated,

Mikhail found differences in the 2SLS and ML estimators. The ML esti-

mator showed slightly less bias than 2SLS for some coefficients when the

disturbance correlation was low, whereas these estimators showed no sig-

nificant differences in the magnitude of bias when the disturbance correla-

tion was high. Johnston (1972:410) surveyed simulation studies of ML,

2SLS, and other estimators for simultaneous equations and concluded that

. . . the consistent estimators [e.g., 2SLS and ML] show some finite sam-

ple bias, but the means of the sampling distributions are not usually sig-

nificantly different from the true values, and the variation in the bias of

the consistent estimators is neither large nor systematically in favor of

one consistent estimator vis-�a-vis another. (P. 410)
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Thus, the studies do not provide compelling evidence for ranking one esti-

mator above the other.

The other aspect of these econometric Monte Carlo simulation studies

comparing the ML and 2SLS estimators is that the majority used extre-

mely small sample sizes, particularly when considering sample sizes com-

monly encountered in applied social science research. Indeed, the modal

sample size from these prior simulation studies was N = 20; and it is rare

to find studies with sample sizes beyond 100. In contrast, most latent vari-

able SEMs have sample sizes of 100 or more. This small sample size in

the simulation studies is important to remember since we know from the

analytic work reviewed above that in some cases the 2SLS estimator’s

bias increases with the degree of overidentification of an equation when

the sample is small. Thus, the typically small N in the econometric simul-

taneous equation simulations raises questions about the generalizability of

their findings to larger sample sizes and to the latent variable models that

are of primary concern to us.

Research Issues

Based on the analytical work and simulation research that we have

reviewed, we briefly outline the research issues and our expectations for

this simulation experiment:

1. When the model is correctly specified, we expect the bias of all esti-

mators to be negligible in the larger sample sizes, but we expect

some degree of bias at the smaller sample sizes. Both the ML and

2SLS estimators are consistent and asymptotically unbiased estima-

tors for a well-specified model. Although it is difficult to determine

at what sample size the estimators will be essentially unbiased,

based on previous simulations we expect that this will occur when

the sample contains several hundred cases. Simulations of the ML

estimator suggest some bias in the smaller sample sizes (Boomsma

1982). Analytic and simulation work suggests a negative bias for the

2SLS with a high degree of overidentification at the smaller sample

sizes, though Buse’s (1992) work suggests that this will not always

occur. We expect the 2SLS estimators with lower degrees of overi-

dentification to exhibit less bias at the smaller sample sizes.

2. When the model is incorrectly specified, we expect the bias of the

ML estimator to be greater than that of the 2SLS estimators and that

this bias will remain present across all sample sizes. Analytic work
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on the bias in the ML estimator in latent variable models is not

developed sufficiently to predict the exact conditions under which

bias will spread beyond a misspecified equation. However, in the

first part of our analysis, we will present results based on the popula-

tion covariance matrix that reveal the bias of each estimator under

different structural misspecifications when sampling variability is

removed. Furthermore, simulation work by Cragg (1968) suggests

that the ML estimator will be more susceptible to spreading bias in

one part of a multiequation system to other parts. Analytical work

presented in Bollen (2001) shows that if a given equation is not mis-

specified, it will be robust to misspecification in other equations as

long as the misspecifications elsewhere in the model do not change

the model-implied IVs for the given equation. Among the 2SLS esti-

mators, we expect that the ones that use fewer IVs will exhibit greater

robustness than those with many more IVs.

3. When the model is correctly specified, we expect the variance of the

ML estimator to be smaller than that of the 2SLS estimators in the

larger sample sizes. We have no prediction at the smaller sample

sizes. Analytical work on the ML shows that it is asymptotically

efficient among asymptotically unbiased estimators when the model

is correctly specified (Browne 1984). The 2SLS estimators are

asymptotically unbiased, but as limited information estimators, they

use less information in developing the estimates than does the FIML

estimator. In large samples we expect that the ML estimator will

have lower variances. However, we have little to guide us on the

magnitude of the differences in variances and how large the sample

must be to see these differences. Furthermore, we do not know the

relative variances of these estimators in smaller sample sizes.

4. When the model is incorrectly specified, we have no prediction

about the relative size of the variances of the estimators. The

asymptotic variance properties of the ML and 2SLS estimators are

derived under the assumption that the model is correctly specified.

Although it is tempting to assume that the full information nature of

the ML estimator will still lead to lower asymptotic variances than

the 2SLS estimators, we have no evidence to support this hypothesis.

We have no prediction about the variances in misspecified models at

the smaller sample sizes.

5. When the model is correctly specified, we expect that the Type I

error rates for the null hypothesis that the estimate equals the true

parameter will be accurate in the larger sample sizes for both ML
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and 2SLS. The accuracy of the Type I error rate of testing a true null

hypothesis about coefficients depends on the accuracy of the asymp-

totic standard errors, the asymptotic unbiasedness of the estimator,

and the accuracy of the asymptotic normality of the estimators. Ana-

lytical results suggest that the Type I error rates will be accurate in

large samples, though at what sample size this occurs is not known.

We would expect that the accuracy of the Type I error rates for the

ML and 2SLS estimators will be good in samples of several hundred

cases or more. We have no evidence to predict the accuracy in smal-

ler sample sizes.

6. When the model is incorrectly specified, we expect that the Type I

error rates will be inaccurate for those coefficients that are not

robust to the specification error. Generally, we expect the ML esti-

mator to have less accurate Type I error rates than 2SLS. When a

model is misspecified, at least some of the coefficient estimators will

be biased even in large samples. As a result, hypothesis tests that use

the population parameter as the null hypothesis will reject the null

hypothesis at the wrong error rate. Given our expectation that the

2SLS estimator will be more robust to specification errors than the

ML, we expect that the 2SLS estimator Type I error rate will be

accurate for more coefficient hypothesis tests than is true for the ML.

We used a Monte Carlo simulation experimental design to examine the

preceding six issues empirically. To isolate the specific impact of model

misspecification across a large number of conditions, we focused on data

drawn from a multivariate normal distribution.7

Design of the Monte Carlo Experiment

Model

One of our guiding goals for this study was to identify population mod-

els that would allow us to maximize the external validity of resulting find-

ings (for further details, see Paxton et al. 2001). To accomplish this, we

reviewed key journals in several areas of social science research to catalog

the most common types of SEM applications. Using this information in

combination with our own modeling experience, we selected our model in

Figure 1. We designed the model to represent features that are commonly

encountered in social science research. It is based on the frequent situation

of having applications with relatively few latent variables and few indicators
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per latent variable. The model contains nine measured variables and three

latent factors with three or four indicators per factor.8 Furthermore, we use

one correct and three incorrect specifications of the model.

All our models were fitted separately for one correct specification of the

model and three misspecifications. Our first specification is properly speci-

fied such that the estimated model matches the population model (Specifi-

cation 1). The three structurally misspecified models were Specification 2,

omitting only the path from Z2 to variable 7 (Y7); Specification 3, jointly

omitting the paths from Z2 to variable 7 (Y7) and from Z3 to variable 6

(Y6); and Specification 4, jointly omitting the paths from Z2 to variable 7

(Y7), from Z3 to variable 6 (Y6), and from Z1 to variable 4 (Y4).

In the first part of the Results section, we report the coefficient values

when analyzing the population covariance matrix for all four specifica-

tions. This will reveal which coefficients are biased, even when the popu-

lation is available, and the degree of bias. Since we do not have

population information in practice, we then look at the sampling results

across a range of sample sizes. Due to the high degree of similarity of

results across many experimental conditions combined with space con-

straints, we report only the results of the first, correctly specified model

(Specification 1) and another moderately misspecified model (Specifica-

tion 3) in graphical and tabular form for the Monte Carlo simulations. The

Figure 1

Simulation Model

Y3 Y5 Y6Y4 Y8Y7Y2Y1

.51 .51 .51 .2895 51 .2895 .2895 .51 .51

Y9

1.0 1.010

.30

η1 η2 η3
.60 .60

.30.30

.3136

1.0101.01.0101.0

.3136.49

Note: Dashed lines represent paths that are omitted in misspecified models.
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pattern of results is similar in the auxiliary misspecifications that have

fewer (Specification 2) or more (Specification 4) omitted paths.

Model Parameterization

Parameter values were selected to result in a range of effect sizes (e.g.,

communalities and R2 values ranging from 49 percent to 72 percent) and

for the misspecified conditions to lead to both a wide range of power to

detect the misspecifications (e.g., power estimates computed using the

method of Satorra and Saris [1985] ranged from .07 to 1.0 across all sam-

ple sizes) and a range of bias in parameter estimates (e.g., absolute bias

ranged from 0 percent to 37 percent). See Paxton et al. (2001) for a com-

prehensive description of our model parameterization.

Estimators

We examined four estimators: the ML estimator and three 2SLS esti-

mators. We use the ML estimator from equation (2). The three 2SLS esti-

mators differ only in the number of IVs used. We vary the number of IVs

because our earlier review of the analytic work suggested that the degree

of bias and the variance of the 2SLS in simultaneous equation models can

differ depending on the number of IVs, especially when N is small to

moderate. The 2SLS-ALLIV uses all possible IVs for an equation. This

leads to the highest degree of overidentification for an equation. The

2SLS-OVERID1 and 2SLS-OVERID2 use reduced sets of IVs such that

the former has one more IV than is needed for identification and the latter

uses two more IVs than required for identification. In these latter two

cases, we choose IVs from the list of all eligible IVs, selecting those that

lead to the largest increment in the R2 from the first-stage regression.

Sample Size

We chose seven sample sizes to represent those commonly encountered

in applied research, and these range from very small to large: 50, 75, 100,

200, 400, 800, and 1,000.

Data Generation and Estimation

We used the simulation feature in Version 5 of EQS (Bentler 1995) to

generate the raw data and EQS’s ML estimation to fit the sample models.
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Population values for each parameter were used as initial start values, and

a maximum of 100 iterations was allowed to achieve convergence.

Distribution

We generated data from a multivariate normal distribution.

Replications

There were a total of 28 experimental conditions (four specifications

and seven sample sizes), and we generated up to 500 replications for each

condition.

Convergence

We eliminated any replication that failed to converge within 100 itera-

tions or that did converge but resulted in an out-of-bounds parameter

estimate (e.g., ‘‘Heywood cases’’). We adopted this strategy because the

research hypotheses were directly related to proper solutions in SEM, and

the external validity of findings would be threatened with the inclusion of

improper solutions. To maintain 500 replications per condition, we gener-

ated an initial set of 650 replications for the two smallest sample sizes and

550 for the larger sample sizes. We then fit the perfectly specified model

to the generated data and selected the first 500 proper solutions. The sam-

ples that generated these solutions were used to estimate the remaining

misspecified models. This resulted in 500 proper solutions for all properly

specified and most misspecified experimental conditions, but there were

several misspecified conditions that resulted in fewer than 500 proper

solutions at the smaller sample sizes. See Table 1 for details on the sam-

ples generated, the samples used, and mean values for a variety of com-

mon fit indicators.

Only the ML solutions had any failures to converge or have proper

solutions. The 2SLS estimators are noniterative and as such do not face

this difficulty. This does raise a limitation of our simulation that should be

kept in mind: Nonconvergence or improper solutions are likely to repre-

sent some of the worst estimates for the ML estimator. By removing them

from the simulation, we are in essence trimming the ML outliers, while no

such trimming is done for the 2SLS estimators. As with all prior research

in comparing 2SLS and ML, our empirical results tend to favor the ML
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estimates relative to the 2SLS estimates to an unknown degree. We dis-

cuss the potential implications of this in greater detail later.

Results

Analysis of Population Covariance Matrix

The simulation methodology gives us the advantage of knowing the

population covariance matrix of the observed variables. Analysis of this

population covariance matrix with the ML and 2SLS estimators reveals

the biases of the estimators free of sampling error. Table 2 presents the

parameter values when using the ML and 2SLS estimators on the popula-

tion covariance matrix under all four specifications. The 2SLS-ALLIV,

2SLS-OVERID1, and 2SLS-OVERID2 all give the same values of the

Table 1

Number of Replications and Mean Fit Statistics

by Sample Size and Specification

Sample Size

50 75 100 200 400 800 1,000

Total samples generated 650 650 550 550 550 550 550

Samples generating improper

ML solutions

104 28 16 0 0 0 0

Percentage of samples rejected 16 4 3 0 0 0 0

Specification 1

Number of samples 500 500 500 500 500 500 500

Mean model χ2 23.64 23.01 23.32 22.58 22.18 21.89 21.74

Mean model χ2 p value .44 .45 .45 .47 .49 .50 .51

Specification 2

Number of samples 471 493 497 500 500 500 500

Mean model χ2 25.70 25.30 25.97 26.69 30.14 36.59 38.49

Mean model χ2 p value .40 .41 .39 .36 .26 .12 .11

Specification 3

Number of samples 463 492 495 500 500 500 500

Mean model χ2 27.50 27.60 28.95 31.84 39.32 54.26 60.19

Mean model χ2 p value .37 .36 .32 .24 .11 .02 .01

Specification 4

Number of samples 467 492 495 500 500 500 500

Mean model χ2 31.32 32.42 35.84 44.17 63.50 100.01 117.56

Mean model χ2 p value .29 .25 .18 .07 .01 .00 .00

Note: ML=maximum likelihood.
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parameters when analyzing the population covariance matrix. Therefore,

we can treat all the 2SLS results the same, and we show these results on

the right side of Table 2. The main cell entries are the percentage of bias

in the parameter value. Blank cells represent cells where both estimators

are unbiased. The ‘‘—’’ stands for parameters that are omitted within

a model specification. Shaded cells represent parameters that are part of a

structurally misspecified equation. The first column under Specification 1

has neither bias nor any shaded area for either estimator since Specifica-

tion 1 is the correct model and both estimators should and do provide the

population parameters.

The rest of the table shows the results in models that contain structural

misspecifications. There are several interesting findings. First, the nonzero

percentage biases that occur outside the shaded cells are biases that occur

in equations that are correctly specified. That is, as predicted, there is

evidence of bias that spreads beyond the misspecified equation. It also is

clear from Table 1 that the ML estimator spreads bias throughout the

model to a greater extent than the 2SLS estimator, as anticipated from past

research. For instance, Specification 3 omits one cross-loading from the

Table 2

Percentage of Biases When ML and 2SLS Estimators Are Applied

to Population Covariance Matrix of Observed Variables

ML 2SLS

Specification Specification

Parameters 1 2 3 4 1 2 3 4

λ21

λ31

λ41 +23% — 0% —

λ42 −6% +20% 0% +21%

λ62 −4% +28% +23% 0% +23% +23%

λ63 +10% — — 0% — —

λ72 — — — — — —

λ73 +33% +33% +34% +28% +28% +28

λ93

b21 −7% +5% 0% 0%

b32 +8% +22% +18% 0% +13% +13%

Note: ML=maximum likelihood; 2SLS= two-stage least squares; blank cells= no bias in

either estimator; —= omitted parameter in specification; shading= parameter from misspe-

cified equation.
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sixth indicator and one from the seventh indicator equations. Even though

the fourth indicator’s equation is correct and the latent variable equations

are correct, their parameter values are biased by the misspecification of

the sixth and seventh indicator equations. In contrast to these four biased

coefficients from the ML estimator, in the 2SLS estimator only the b32

parameter is biased. In addition, its bias in 2SLS is 13 percent compared

to 22 percent for the same parameter using ML. More generally, when the

2SLS estimator shows bias, it typically is smaller than the ML estimator

for the same parameter. And we know from the analytic conditions in

Bollen (2001) that this bias in 2SLS occurs only when the misspecification

leads a researcher to use a set of IVs that differs from the model-implied

IVs of the true model.

Overall, this analysis of the population covariance matrix reveals two

general results. First, the 2SLS estimator better isolates biases caused by

structural misspecifications to the misspecified equation than does ML.

Second, even when there is bias in the 2SLS estimator, its magnitude is

generally smaller than the ML estimator.

Of course, in practice we do not have the population covariance matrix.

These results do not tell us the relative bias and variability of the 2SLS

or ML estimator in small to moderate samples. Nor do these population

results give us the relative bias of the 2SLS estimators when different

numbers of IVs are used. To address these important and practical issues,

we examine the behavior of these estimators in finite samples using Monte

Carlo simulations.

Bias of Estimators

Our major prediction for the correct model was that all estimators

would have negligible bias in large samples (Research Issue 1). Figure 2

plots the relative bias for each estimator, and percentage of relative bias is

calculated as

% Bias= θ̂− θ

θ

 !
× 100,

where θ is the coefficient parameter and θ̂ is the estimate of the para-

meter.9 We consider absolute values of % Bias exceeding 10 percent to

reflect meaningful bias.

We calculate the mean of the % Bias for each of the three parameter

values in the model: .3, .6, and 1.0.10 Figure 2 shows these % Bias plots by

sample size for Specification 1, the correctly specified model. As expected,
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the bias in all four estimators is negligible for sample sizes of 400 or more.

With the exception of the 2SLS-ALLIV, even in the smallest sample sizes

the estimators exhibit bias of at most 6 percent. The greatest % Biases are

for the 2SLS-ALLIV estimator that is as negative as −15 percent for the

1.0 loadings and as positive as 7 percent for the .3 cross-loading parameters.

The magnitude of the % Biases is not too different for the 2SLS-OVERID1

and the ML estimators for the .3 and .6 parameter values. However, the bias

for the ML is larger than that for the 2SLS-OVERID1 for the parameters

Figure 2

Percentage of Bias in Four Estimators by Sample Size and Parameter

Value in Specification 1, the Correctly Specified Model
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Note: ML=maximum likelihood; 2SLS= two-stage least squares.
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that are 1.0. Compared to both ML and 2SLS-OVERID1, the 2SLS-

OVERID2 estimator has slightly greater % Bias at sample sizes of 100 or

less. Overall, the 2SLS-OVERID1 has the least bias across sample sizes and

parameter values, followed closely by the ML and then the 2SLS-OVERID2

estimator. The 2SLS-ALLIV has the most bias when the model is correct.

However, these biases are hardly evident in any estimator when there are

several hundred cases or more for the correct specification (Specification 1).

We next turn to the case where the model is misspecified. As outlined

above, our misspecified model (Specification 3) omits two paths, the path

from Z2 to variable 7 (Y7) and the path from Z3 to variable 6 (Y6), both

of which have population values of .3. The rest of the model is correct.

Figure 3 plots the % Bias for the four estimators across the different sam-

ple sizes and parameter values. Figure 3 includes only the coefficients

from equations that are correctly specified. We do this to determine the

degree to which specification error in one equation has consequences for

the estimates of parameters from equations that are correctly specified. We

expect that the ML estimator is more likely to spread the bias due to mis-

specification because it is a full information estimator. This expectation is

met for the ML estimator for the .3 cross-loading and .6 latent variables’

coefficient values, and it is a bias that persists at the larger sample sizes.

However, the ML estimator for the 1.0 factor loadings is more robust

than it is for the .3 and .6 coefficients. The 2SLS-ALLIV estimator exhi-

bits less bias than the ML for the .3 and .6 coefficients but generally has

greater (negative) bias for the 1.0 coefficient. Finally, the 2SLS-OVERID1

and 2SLS-OVERID2 estimators are quite robust for the .3 and 1.0 coeffi-

cients. These same two estimators exhibit specification bias for the .6

coefficient, but the bias is roughly half of that for the ML. A more detailed

examination of the two .6 coefficients revealed that the 2SLS estimators

are robust for the path from Z1 to Z2. All the bias in the 2SLS estimators

are in the estimates of the path from Z2 to Z3. Overall, these results in the

misspecified model suggest that the 2SLS-OVERID1 has the best perfor-

mance, closely followed by the 2SLS-OVERID2 estimator. The 2SLS-

ALLIV comes next except for the 1.0 factor loadings in the smaller

sample sizes.11

We also examined the % Bias of coefficient estimates from the equa-

tions in which the specification errors occurred. All estimators were biased

in these situations where a path is omitted. However, the magnitude of bias

was greatest for the ML estimator compared to the 2SLS estimators.

If we consider all four estimators across correct and incorrect specifi-

cations, it appears that the 2SLS-OVERID1 estimator exhibits the least bias.
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The 2SLS-OVERID2 estimator has slightly larger bias than ML at smaller

samples sizes for the correct model specification. However, its greater

robustness than ML under the misspecified model would lead us to put

2SLS-OVERID2 second in its resistance to bias. The relative ranking of

2SLS-ALLIV and ML is complicated. On one hand, the 2SLS-ALLIV

estimator has greater robustness than the ML estimator for the .3 and .6

coefficients in the misspecified models. On the other hand, in the correct

specification at the smaller sample sizes, the ML has less bias than the

2SLS-ALLIV estimator. At the larger sample sizes, the greater robustness to

misspecification would give the edge to the 2SLS-ALLIV compared to ML.

Figure 3

Percentage of Bias in Four Estimators by Sample Size and Parameter

Value in Specification 3, in Which Two Paths Are Omitted
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Variability of Estimators

In addition to bias, it is important to know the variability of an estima-

tor (see preceding Research Issues 3 and 4). In this section, we examine

the mean of the standard deviations for coefficient estimators across the

replications in the simulation. Since the standard deviations are influenced

by the magnitude of the parameter, we calculate the mean standard devi-

ations separately by the magnitude of the coefficients. Mean standard

deviations are constructed by calculating the standard deviation for each

parameter across the replications, then averaging the standard deviations

for a given parameter value. Asymptotic theory predicts that with a cor-

rectly specified model the ML estimator should have smaller variances in

large samples than do the 2SLS estimators (see Research Issue 3), though

we do not know whether this would hold at smaller sample sizes or in mis-

specified models (Research Issue 4).

Figure 4 plots the mean standard deviations for each estimator and for

each parameter across the different sample sizes for Specification 1, the

correctly specified models. Based on the asymptotic efficiency of the ML

estimator, we predicted that its mean standard deviations would be smaller

than those of the 2SLS estimators in large samples. This pattern is most evi-

dent for the parameters with population values of .3 (the cross-loadings),

where the ML estimator has a lower mean standard deviation than the other

estimators at all but the smallest sample size. However, we did not expect

to find how close in magnitude were the standard deviations of the ML and

2SLS estimators for the other parameters, especially in the larger samples

(≥ 400). Indeed, with the exception of the population value of .3, it is hard

to distinguish the lines representing the standard deviations for the different

estimators. The variability advantage of ML is even less evident at the

smaller sample sizes. In fact, the 2SLS-ALLIV estimator has a smaller

mean standard deviation than ML for the 1.0 coefficients at sample sizes of

400 or smaller. This same pattern is evident in the graphs of the mean stan-

dard deviations for Specification 3, the misspecified model, in Figure 5, so

we do not repeat the description of the graphs.

In sum, we find that the mean standard deviations of all four estimators

are quite close in the larger sample sizes in the correct and misspecified

models. Exceptions are the parameters representing cross-loadings (popula-

tion value of .3), where the ML estimator shows modestly smaller variance.

In the smaller sample sizes, we see some slight differences with the 2SLS

estimator sometimes having a smaller standard deviation. The number of

instruments used in the 2SLS estimator is negatively related to the variance
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of the estimates, as each instrument provides additional information. In

general, we find little evidence of a great efficiency gain of the ML over the

2SLS estimators, at least under the conditions that we studied here.

In a supplemental analysis (results not shown), we also examined the

accuracy of the standard errors by comparing them to the empirical stan-

dard deviations of the sampling distributions of each point estimate. We

found that the standard errors from all estimators were close to their corre-

sponding empirical standard deviations, with very little difference across

Figure 4

Mean Standard Deviation of Estimates From Four Estimators

by Sample Size for Parameter Estimates From Specification 1,

the Correctly Specified Model
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estimators. There was a slight tendency for the mean of the standard errors

to be too small for the ML in sample sizes less than 400. But this underes-

timation was generally less than 10 percent.

Type I Error Rate

We next examined the accuracy of significance testing of the estimators

by testing the null hypothesis that the parameter is equal to the generating

Figure 5

Mean Standard Deviations of Four Estimators by Sample

Size for Parameter Estimates From Specification 3, in Which

Two Factor Loadings Are Omitted
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parameter (either .3, .6, or 1.0) using a Type I error of .05.12 Ideally, we

would expect the hypothesis to be rejected for 5 percent of the samples.

The accuracy of the test depends on the unbiasedness of the estimator, the

accuracy of the estimated asymptotic standard errors, and the accuracy of

the asymptotic normality of the estimator. In this sense, the significance

test provides a good check on whether the several components of the test

combined result in accurate inferences.13 We would expect our tests to be

relatively accurate for all estimators in large samples and in correctly spe-

cified models (see Research Issue 5). Figure 6 supports this prediction for

samples greater than 400. The least accurate test is the 2SLS-ALLIV esti-

mator, which rejects too frequently for 400 cases or fewer when the para-

meter value is 1.0, whereas its Type I error is more accurate for the

smaller coefficients of .6 and .3. For example, when the parameter value is

1.0, the Type I error rates for 2SLS-ALLIV are .128, .113, and .10 for sam-

ple sizes of 50, 75, and 100, respectively. At sample size 50 and a para-

meter value of .3, all estimators reject too infrequently, though this bias is

less evident for all estimators at the parameter value of .6. Overall, for the

2SLS-OVERID1, 2SLS-OVERID 2, and the ML estimators, Type I errors

are relatively accurate, with the possible exception of the smallest sample

size with the smallest parameter value.

The situation changes substantially when the model is misspecified

(Research Issue 6). For example, Figure 7 shows the rejection rates for the

four estimators for tests done on parameter estimates that come from cor-

rect equations in the model that omits two cross-loadings. Most obvious in

this figure is that the rejection rate for the ML-based tests is too high and

grows as the sample increases in size for the parameter values of .6 and .3.

Indeed, Type I error rates range from .216 (N = 200) to .814 (N = 1,000)

for the parameter value of .60. This marked inflation is attributable to ML

spreading specification error in one part of the system to other parameter

estimates. The inflated Type I error rates for the ML in Figure 7 are thus

due to the corresponding positive bias in the coefficient estimates. The

2SLS estimators exhibit too frequent rejection for the parameter value of

.6, but the biases in the error rate are less than that for ML. The parameter

value of .3 exhibits the greatest distinction between the Type I error rates

for the ML and for the 2SLS estimators. The 2SLS estimators are far more

accurate due to their robustness to specification errors. All of the estima-

tors maintain accurate Type I error rates for the parameter value of 1.0 in

samples of 200 or more.

In sum, in the correctly specified model and for N ≥ 400, we find rela-

tively accurate Type I error rates for all estimators. The 2SLS-ALLIV
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rejected too frequently at smaller sample sizes for the parameter value

of 1.0 but performed better for the other parameter values. The 2SLS-

OVERID1, 2SLS-OVERID2, and ML estimators had fairly accurate Type

I error rates with the exception of sample sizes 50 and 75 for the parameter

value of .3. In the misspecified models, the ML exhibited the least accurate

Type I errors for the parameter values of .6 and .3; the 2SLS estimators

had less extreme bias for the .6 coefficient and negligible bias in Type I

error for the .3 parameter value.

Figure 6

Type I Error Rate of Four Estimators by Sample Size for Parameter

Estimates From Specification 1, the Correctly Specified Model
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Summary and Conclusions

Here, we compare the original research issues and expectations about

the performance of the ML and 2SLS estimators to the simulation results:

1. When the model is correctly specified, we expect the bias of all esti-

mators to be negligible in the larger sample sizes, but we expect

some degree of bias at the smaller sample sizes. Our simulation

Figure 7

Type I Error Rate for Four Estimators by Sample Size

for Parameter Estimates From Specification 3, in Which

Two Factor Loadings Are Omitted
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results were consistent with this expectation in that for samples of

400 or more, we found little bias in 2SLS-ALLIV, 2SLS-OVERID1,

2SLS-OVERID2, and ML. The greatest bias occurred at the smallest

sample sizes. But even here, with the exception of the 2SLS-ALLIV

estimator the biases were within ± 6 percent. Overall, the 2SLS-

OVERID1 had the lowest mean bias.

2. When the model is incorrectly specified, we expect the bias of the

ML estimator to be greater than that of the 2SLS estimators and

that this bias will still be present in larger sample sizes. This pre-

diction was also largely supported by the analysis of the population

covariance matrix and by the simulation results. The analysis of

the population covariance matrix showed that the ML estimator

spread bias beyond the structurally misspecified equations, whereas

the 2SLS estimators better isolated it to the misspecified equations.

In addition, the magnitude of the bias was generally larger for the

ML than for the 2SLS estimators. The simulation results for finite

samples exhibited similar patterns. For the parameter coefficients

of .6 and .3, the ML mean bias ranged from about 8 percent to 16

percent, and this bias was fairly stable across sample sizes. The

2SLS estimators had roughly 2 percent to 9 percent bias for the .6

coefficient. The 2SLS-OVERID1 and 2SLS-OVERID2 estimators

had negligible bias for the .3 coefficient (less than 3 percent), while

the 2SLS-ALLIV was only slightly more biased at the lowest sample

size for the same coefficient. Interestingly, all but the 2SLS-ALLIV

estimator at the smaller sample sizes had little bias for the 1.0 coeffi-

cient. Considering these bias results as a whole, the 2SLS-OVERID1

and 2SLS-OVERID2 estimators had the best performance.

3. When the model is correctly specified, we expect the variance of the

ML estimator to be smaller than that of the 2SLS estimators in the

larger sample sizes. We have no prediction at the smaller sample

sizes. The efficiency advantage of the ML estimator did not clearly

emerge. Rather, in the larger samples the standard deviations were

very similar across estimators. The only separation clearly visible

was for the standard deviations of the estimators for the .3 coeffi-

cient where the ML standard deviation was lower, but even here the

difference was far from dramatic. We did not expect this result for

several reasons. One is that the simulation conditions tended to

favor the ML estimator. This is because the variables came from

normal distributions as assumed for the ML estimator; in this first

set of results, the model was correctly specified, and we did not use
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any replication samples where the ML estimator did not converge or

converged to an improper solution. These combine to favor the ML

since the most extreme cases are removed from the sample and if

included they would tend to increase the standard deviations. At the

smaller sample sizes the standard deviations were fairly close, with

the exception of the 2SLS-ALLIV estimator having the smallest at

the lower sample sizes for the 1.0 coefficient. This would be an

attractive property for the 2SLS-ALLIV, except for the greater bias

that it has in small samples. Overall, these results do not strongly

favor any of the estimators based on efficiency arguments.

4. When the model is incorrectly specified, we have no prediction

about the relative size of the variances of the estimators. Although

we made no prediction for these results, our simulation conclusions

were similar to those described in the model with the correct specifi-

cation, and we do not repeat them here.

5. When the model is correctly specified, we predict that the Type I

error rates will be accurate in the larger sample sizes. In the sam-

ples with N ≥ 400, we did find that the empirical Type I error rates

were close to the .05 expected value, with the exception that the

2SLS-ALLIV, on average, rejected too frequently for the 1.0 coeffi-

cient value. At the smaller samples, the 2SLS-OVERID1, 2SLS-

OVERID2, and ML generally had good accuracy, with the exception

that the error rate was too low for the .3 coefficient at the smallest

sample sizes. Overall, the simulation results for a correctly specified

model support the use of 2SLS-OVERID1, 2SLS-OVERID2, and

ML for accuracy of Type I error rates in testing coefficient estimates.

6. When the model is incorrectly specified, we expect that the Type I

error rates will be inaccurate for those coefficients that are not

robust to the specification error. The simulation results were con-

sistent with the predictions of this hypothesis. When examining the

bias of the estimators, we found that all of them were relatively

insensitive to the misspecifications for the 1.0 coefficient. The

results for the Type I error rate for the 1.0 coefficient are similar to

those just described. However, in the section on bias we found that

the ML was the most sensitive to misspecification for the .6 and .3

coefficient values, and this sensitivity to bias is manifested in the

inaccurate Type I error rates for those coefficients when the ML is

used. The 2SLS estimators had some bias for the .6 coefficient, and

due to this, they also have inaccurate Type I errors, although they

are not as biased as the ML’s. Finally, the 2SLS estimator’s Type I
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errors are very accurate for the .3 coefficient, and this is largely due

to their robustness to the specification errors. Overall, these results

favor the 2SLS-OVERID1 and 2SLS-OVERID2 estimators for their

relative accuracy of Type I error across the most conditions.

To our knowledge, this simulation is the first to compare the ML and

2SLS estimators in latent variable SEMs. These results have several impli-

cations. First, they illustrate that the tendency of 2SLS estimators to have

greater robustness to structural misspecification than the ML estimator

found in simultaneous equation models carries over to latent variable

models.14 Unless the researcher has tremendous confidence in the correct-

ness of his or her model, it would be prudent to consider a 2SLS estimator

as a complement or substitute for the ML estimator that might better iso-

late the impact of these structural misspecifications.

Second, the asymptotic efficiency advantage claimed for ML estimators

was far less than expected. The efficiency advantage could be greater in

other types of models, but for the correct and incorrect ones we considered

and for the different coefficient values, the advantage was not that evident.

This was even more surprising because the simulation conditions favored

the ML in that variables came from normal distributions and we trimmed

the ML estimator by eliminating sample replications that did not converge

or that had improper solutions.

Third, we also found that the degree of overidentification for the 2SLS

estimator matters. In general, not using all possible IVs worked better than

including a large number of IVs with respect to minimizing bias in small

samples, though using all available instruments lowered the variance of the

2SLS estimator. Specifically, the 2SLS-OVERID1 and 2SLS-OVERID2

outperformed the 2SLS-ALLIV estimator. This was mostly true in small

samples since the 2SLS estimators had fewer differences in larger samples.

These results suggest that researchers should consider using 2SLS

when they suspect that their models have omitted paths or other incorrect

structures. Although none of the estimators prevent bias in the equation

that is misspecified, the 2SLS estimators exhibited greater resistance to

spreading the bias to other correctly specified equations. Furthermore,

among the 2SLS estimators we examined, we would recommend the

2SLS-OVERID1 and 2SLS-OVERID2 estimators because of their lack of

bias across a range of conditions. As we stated earlier, the 2SLS estimator

is robust when the nature of the specification error does not change

the IVs used (Bollen 2001). The 2SLS-OVERID1 and 2SLS-OVERID2

use fewer IVs and hence are less likely to include ineligible IVs under
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misspecification. At the same time, the empirical standard deviations of

these estimators in moderately sized samples were competitive with the

other estimators. The 2SLS-ALLIV exhibited greater bias at the smaller

sample sizes, despite its greater efficiency with a small N.

When an equation is overidentified (i.e., more IVs than the minimum

required), it is possible to test whether all IVs are uncorrelated with the

equation disturbance, as is required for proper IVs. Two tests are based on

the idea that if the overidentifying restrictions for a particular equation are

correct, then the corresponding IVs should not explain any additional var-

iance in the dependent variable when added to the right-hand side of the

equation. Based on this, Anderson and Rubin (1949) developed a w2 test

statistic and Basman (1960) developed an F test of the null hypothesis that

the residual sum of squares for a regression estimated without the vari-

ables to be excluded is the same as the residual sum of squares for the

regression estimated with the variables to be excluded. A third test statistic

evaluates the appropriateness of the overidentifying restrictions by per-

forming an OLS regression of the IVs on the residuals from the equation,

forming NR2, where N is the sample size and R2 is the squared multiple

correlation. This statistic follows a w2 distribution with degrees of freedom

equal to the number of excess IVs and tests the null hypothesis of whether

all IVs are uncorrelated with the disturbance term (Bollen 1996b; David-

son and MacKinnon 1993:236). These equation-by-equation tests contrast

with the overall w2 test of overidentification routinely used with the ML

estimator, and these former tests might be helpful in localizing the sources

of specification error.15

We close with a cautionary note. As with all simulation results, our

results might be dependent on the models, distributions, and other specific

conditions considered. It is possible that different experimental conditions

could alter our findings. Our experimental conditions treat a broader range

of conditions than other simulations of simultaneous equations that com-

pare these estimators, but we would encourage researchers to develop

other models with which to explore these estimators.

Notes

1. See Bollen (2002) for a definition of latent variables.

2. Our simulation looks at variables that are incorrectly omitted from some equations in

the model but appear in at least one equation. Other possible omitted variables are ones that

are part of the true model but that do not appear anywhere in the system.
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3. A Wald test is a straightforward method for this. Bollen (2001) provides the asympto-

tic covariance matrix for all coefficients in the model that would enable simultaneous tests of

coefficients in a single equation or in multiple equations. Also note that an overidentification

test of whether all instrumental variables (IVs) are uncorrelated with the equation distur-

bances is available for each overidentified equation (e.g., see Bassman 1960).

4. More formally, we can write the assumptions about the IVs for the two-stage least squares

(2SLS) estimator as plim 1
N

V0jZj

� �=ΣVZj, plim 1
N

V0jVj

� �=ΣVVj, and plim 1
N

V0juj

� �= 0, where

plim refers to the probability limit as N goes to infinity. The first assumption indicates that the

covariance matrix of the IVs and the variables in Zj must exist. Furthermore, this must be a non-

zero association. Similarly, the covariance matrix of the IVs must exist and be nonsingular. A

key requirement of the IVs in Vj is that they are uncorrelated with the disturbance of the equation.

Finally, we assume that EðujÞ= 0 and Eðujuj0Þ= σ2
uj

I. We can modify the homoscedasticity

assumption (see Bollen 1996a), but we do not consider this further.

5. A minor exception is that the original Jöreskog–Hägglund–Madansky 2SLS estimator

did not include intercepts, whereas Bollen’s version of two-stage least squares (2SLS) does.

However, this has no impact on the Hägglund (1983) and Brown (1990) simulations. Note

also that Hägglund’s FABIN3 estimator is the one that is equivalent to Bollen’s (1996b)

2SLS under the conditions described in the text.

6. In addition, those studies that are done do not examine Bollen’s (1996b) type of 2SLS

estimator in the general case.

7. The combination of normality, omitting nonconverged solutions under maximum

likelihood (ML), and including some correct specifications should privilege ML, making our

comparison to the newer 2SLS a conservative comparison.

8. Although this is similar in structure to a simplex model with latent variables, it is not

intended as one. If it were, we would have introduced correlated errors for indicators that

were repeated over time. More generally, it represents a causal chain among the latent vari-

ables that leads the latent variable model to be overidentified, and each latent variable has

relatively few indicators, but enough to overidentify the measurement model.

9. Here and throughout our analysis, we report the unstandardized coefficients.

10. To save space, we do not report each individual parameter but group them by their

magnitude. In practice, the position of a parameter in a model can have an effect. Table 2

gives more specific information on the individual parameters and their biases under each

structural misspecification.

11. The pattern of results is the same if the two additional misspecified models are consid-

ered (omitting either one or three cross-loadings from the correct model).

12. The null hypothesis for the significance test is not that the parameter is zero, but that

it is equal to the true, generating parameter. This preserves the assumption that the null

hypothesis is true, and we can then estimate the Type I probability.

13. It is possible, but unlikely, that inaccuracies in these components would counterba-

lance each other and lead to an accurate test. But even in this case, we still would have infor-

mation on the accuracy of tests of significance when using the different estimators.

14. It might be thought that the misspecifications in the model using ML are less proble-

matic in that their existence would be detected by the likelihood ratio w2 test routinely reported

by structural equation modeling (SEM) software. However, there are at least two problems with

this perspective. One is that statistical power of the w2 test is not always sufficient, particularly
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in small samples, to detect structural misspecification. The mean p values of the w2 tests

reported in Table 1 illustrate this possibility. Furthermore, even when the w2 test is significant,

researchers often turn to alternative fit indices to assess model fit. Even in our misspecified

models, it was common to find large fit indices (e.g., Tucker–Lewis, comparative fit index) that

could lead a researcher to downplay a significant w2. Given current practice using ML, it is not

evident that researchers will be aware of the misspecifications in their models.

15. The Lagrangian multiplier (‘‘modification index’’) test (LM test) and the expected

parameter change (EPC) statistics are alternative ways to localize specification errors when

the full information estimators are used. It would be interesting to combine the equation-by-

equation overidentification tests of 2SLS with the LM test and EPC of the full information

estimators as diagnostics to locate structural misspecifications, though we are unaware of any

attempts to do so. Two of the authors are investigating the finite sample behavior of the over-

identification tests for equations that we mentioned in the text.
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