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The coding of time in growth curve models has important implications for the
interpretation of the resulting model that are sometimes not transparent. The authors
develop a general framework that includes predictors of growth curve components
to illustrate how parameter estimates and their standard errors are exactly deter-
mined as a function of recoding time in growth curve models. Linear and quadratic
growth model examples are provided, and the interpretation of estimates given a
particular coding of time is illustrated. How and why the precision and statistical
power of predictors of lower order growth curve components changes over time is
illustrated and discussed. Recommendations include coding time to produce readily
interpretable estimates and graphing lower order effects across time with appro-
priate confidence intervals to help illustrate and understand the growth process.

The analysis of change over time has been the focus
of considerable theoretical interest and attention his-
torically (e.g., Gompertz, 1820, 1825; Harris, 1963;
Quetelet, 1835/1980; Reed & Pearl, 1927; Tucker,
1958; Wishart, 1938). Recent decades have seen the
development of sophisticated quantitative approaches
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to address questions of stability and change over time
(e.g., Collins & Horn, 1991; Joreskog, 1979; Meredith
& Tisak, 1984, 1990; Rogosa, Brandt, & Zimowski,
1982; Tisak & Tisak, 2000). One approach to exam-
ining questions of stability and change is the analysis
of individual growth curve trajectories. Excellent and
accessible didactic articles describe how to estimate
growth curve models using either multilevel models,
also known as random coefficient or hierarchical lin-
ear models, or structural equation models (SEMs;
e.g., Bryk & Raudenbush, 1987; Chou, Bentler, &
Pentz, 1998; MacCallum, Kim, Malarkey, & Kiecolt-
Glaser, 1997; Raudenbush & Bryk, 2002; Singer,
1998; Willett & Sayer, 1994).

As welcome as the development of sophisticated
techniques for addressing questions of stability and
change has been, the practical utility of statistical
models is limited by the ability of researchers to ap-
propriately analyze data and draw substantive conclu-
sions. Of particular concern for growth curve models
are the ramifications of how time is coded for the
estimation and interpretation of growth curve trajec-
tory parameters. The past several years have seen re-
searchers publishing articles and chapters that contain
incorrect interpretations of their model parameters. A
common misinterpretation is the meaning of the in-
tercept given a particular coding of time and specified
functional form of growth (e.g., linear, quadratic, cu-
bic). For example, Kurdek (1999, pp. 1283, 1287) and



CODING TIME IN GROWTH CURVE MODELS 31

Windle (1997, pp. 57-59) both have interpreted the
intercept as initial status when, according to how they
have coded time in their models, it was actually the
average expected value across assessments.

Misinterpretations or concerns regarding the rela-
tionships among growth parameters (e.g., intercepts
and slopes) across individuals appear frequently as
well. Covariances among growth parameters across
individuals have been interpreted as (a) indicative of
multicollinearity and thus potentially problematic
(e.g., Smith, Landry, & Swank, 2000, p. 38), (b) re-
gression to the mean (Wickrama, Lorenz, & Conger,
1997, p. 156), or (c) apparently not even modeled and
thus implicitly constrained to zero (e.g., Barnes, Reif-
man, Farrell, & Dintcheff, 2000, p. 181). Because, as
we demonstrate in this article, these covariances are
directly determined by the choice of how to code
time, the common thread linking these examples is the
need to know the direct impact of different codings of
time on parameter estimates and, consequently, the
interpretation of these estimates. It is possible to
equivalently reformulate and reexpress these models
to achieve these researchers’ desired interpretations as
well as many other possibilities simply by recoding
time. Although the choice of how to code and scale
time may at times appear arbitrary, the interpretation
of the resulting solution is not.

In growth curve models, as their name implies,
change on a variable (growth) is modeled as a func-
tion of time. Within the context of multiple regres-
sion, the impact of predictor scaling choices on pa-
rameter estimates and their interpretation has received
considerable attention (e.g., Aiken & West, 1991;
Belsley, 1984; Cohen, 1978; Marquardt, 1980; Snee
& Marquardt, 1984; Wainer, 2000; West, Aiken, &
Krull, 1996), but little work has been done in the more
complex case of growth curve models.'

Notable exceptions to this include the groundbreak-
ing work of Rogosa and Willett (1985; see also
Rogosa, Brandt, & Zimowski, 1982), who derived
exact expressions for the impact of recoding time on
the relationship between the intercept and linear com-
ponents of linear growth curve models. In the multi-
level modeling tradition, Raudenbush and colleagues
have repeatedly emphasized parameterizing growth
curve models to address the specific substantive ques-
tions of import to the researcher (Raudenbush, 2001a;
2001b; Raudenbush & Bryk, 2002). In addition,
Schuster and von Eye (1998) recently argued that, just
as in multiple regression, coding choices for growth
curve models are critical for producing interpretable

parameter estimates (see also Kreft, de Leeuw, &
Aiken, 1995; Mehta & West, 2000; Muthén, 2000).
However, there has not been a systematic treatment of
the impact of different choices of coding time on all
parameters and corresponding standard errors of a
growth curve model that includes predictors of growth
curve components.

The purpose of this article is thus to demonstrate
analytically how growth curve parameters and their
standard errors change in a deterministic manner un-
der different codings or parameterizations of time and
to illustrate the substantive and interpretative impact
of these changes. First we briefly review the interpre-
tation of regression parameters and their relationship
to growth curve models. Next, through an empirical
illustration using linear and quadratic growth models,
we present general analytic results demonstrating how
to determine different parameter estimates as well as
their standard errors in growth curve models as a
function of recoding time and the interpretation of
those parameter estimates. Using the quadratic growth
model as an example, we examine and discuss cen-
tering time and orthogonal polynomial contrast codes
as default coding strategies. However, we encourage
researchers not to adopt these default strategies and
instead to use the formulas developed in this article to
graph lower order effects in growth curve models over
time with appropriate confidence intervals (CIs) in
order to provide new insights and link the graphical
presentation of the growth process to their original
specific substantive questions. Finally, we illustrate
and discuss how the precision of predictors of the
growth process and their statistical power change as a
function of recoding time and depend in large part on
the underlying growth process.

Coding Time and Interpreting Parameter
Estimates in Growth Curve Models

Consider the one-predictor regression equation
where person i’s observed value on a variable of

! Mehta and West (2000) recently emphasized the impor-
tance of appropriately and precisely measuring time in
growth curves. Noting that relationships among linear
growth curve components change when the scale of time
changes, if individuals are measured at different points in
time, but coded similarly, biases in estimation can result.
Using a time-balanced design for illustrative purposes, we
develop general formulas for understanding the different
solutions that result given different codings of time given a
precise measurement of time.
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interest (y;) is modeled as a linear function of time

(0):
Yie = Moi T Mitic + & ()

This represents a linear growth curve model for a
single individual. The regression coefficient m; is the
expected change in y for a 1-unit change in time for
person i. The intercept m; is the expected value of y
at the origin of time (i.e., when ¢ equals 0). Thus the
choice of where to place the origin of time has a direct
and predictable effect on the estimate and interpreta-
tion of the intercept for person i.

Interpreting regression coefficients for a single re-
gression equation as in Equation 1 is straightforward.
However, growth curve models estimate growth
curves for many individuals simultaneously. This in-
volves moving from considering an isolated regres-
sion equation for a single individual to examining the
relationship of observations across individuals. As an
illustration, consider a set of individuals, each of
whom has a growth curve as in Equation 1 and, with-
out loss of generality, shares the same assessment
schedule. The covariance matrix and mean of obser-
vations across individuals across time can be ex-
pressed as follows:?

2, =AYA+0O,,
and
B= A, (22)
where
)
A= 1 1, (2b)
1 ¢

The loading matrix A; specifies the coding of time
as well as the functional form of the individual growth
curves over the ¢ + 1 repeated observations which, in
this case, is linear. The two columns of A; correspond
to the intercept and linear components of time, respec-
tively. Observations may or may not be made at
equally spaced intervals. Estimates of the variances of
intercept and linear trajectory components across in-
dividuals as well as their covariance are contained in
the W matrix. Uniquenesses associated with each ob-
served variable are contained in the ®,, matrix. The
mean of the regression coefficients across individuals
is estimated and provided in the vector p, .

Examining growth curves across individuals simul-
taneously allows us to ask questions of what factors or
variables predict growth curve components—a condi-
tional growth curve model. If predictors of the growth
curve components across individuals are centered
without loss of generality and included in the model,
the equations for predicting the intercept and slope
across individuals are as follows:

Noi = Mo + L'oX; + Lo
Ny =My + 01X+ G (3a)

In this conditional growth model, the covariance ma-
trix of observations across individuals across time can
be expressed as follows:

Y, = AP + W)A', +0,. (3b)

The matrix I' contains the regression weights of
predictors of the growth curve components across in-
dividuals, and the @ matrix is the covariance matrix
of the centered exogenous predictors X. In the condi-
tional growth curve model, the W matrix represents
the covariance matrix of the {s—residual growth
curve variability across individuals unaccounted for
by the predictors X. The vector p, is interpreted as an
intercept—the predicted growth curve when the set of
predictors X are all equal to 0—which is the mean for
centered predictors.

The move from considering a single individual’s
growth curve regression equation as in Equation 1 to
examining multiple individuals’ growth curves simul-
taneously raises questions of interpretation. How does
recoding time affect estimates across individuals and,
consequently, their interpretation? For the linear
growth curve model, Mehta and West (2000) demon-
strated how the choice of placing time’s intercept im-
pacts the variance of the intercept and the covariance
between intercept and slope across individuals (for a

2 These equations represent the SEM approach to growth
curve models. Several excellent articles illustrate how, un-
der some general conditions, the multilevel model and the
SEM approaches are equivalent formulations of the same
model (e.g., MacCallum, Kim, Malarkey, & Kiecolt-Glaser,
1997; Willett & Sayer, 1994; see also Raudenbush & Bryk,
2002). For ease of presentation, we focus primarily on the
SEM formulation, but note that all results and discussions
are equally applicable to the multilevel model and unbal-
anced data.
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more detailed discussion, see Rogosa & Willett,
1985). For growth curve models, the choice of how to
code the predictors (i.e., time) determines not only the
meaning of the regression parameters for each indi-
vidual but also how these parameters vary across in-
dividuals and how to interpret that interindividual
variability. To illustrate the determination and inter-
pretation of growth curve model parameters as a func-
tion of recoding time, we first examine a linear and
then quadratic empirical growth curve model and,
subsequently, extend this example to the conditional
quadratic growth curve model by including a predic-
tor of the growth curve parameters.

Empirical Illustrations

The linear growth curve model. As an illustra-
tion, we first examine changes in children’s weight.
The means, standard deviations, and correlation ma-
trix for the weight in pounds (1 Ib = 0.45 kg) of 155
children at ages 5, 7, 9, 11, and 13 obtained from the
National Longitudinal Survey of Youth (NLSY;
Baker, Keck, Mott, & Quinlan, 1993) are presented in
Table 1 and are the basis for all presented analyses.
First, suppose we are interested in children’s initial
weight at age 5 and its relationship with the rate of
change in weight growth from ages 5 to 9. Note that
we first use a linear growth curve model to examine
ages 5 to 9 and later use a quadratic model to examine
the wider age range of 5 to 13. To obtain estimates of
children’s weight at age 5, we place the origin of time
at age 5 by coding time = (age — 5), which results in
the following loading matrix for all individuals for the
first three assessments:

Table 1

To preserve years as the unit of time, the linear
component of the A matrix increases in increments of
2, as assessments of the children’s weight were made
every 2 years. The parameter estimates for this linear
growth model are presented in Table 2 under Model A
and represent the data well, Ty;; (1, N = 155) = 2.13,
ns, comparative fit index (CFI) = .999, incremental
fit index (IFI) = .999, Tucker-Lewis Index
(TLI) = .996, root-mean-square error of the approxi-
mation (RMSEA) = .086, 90% CI = .000-.250.
Note that the model test statistic 7y,; is asymptotically
distributed as a chi-square when the model assump-
tions are met (see Curran, Bollen, Paxton, Kirby, &
Chen, 2002). All models were estimated using maxi-
mum likelihood in Amos (Version 4.01; Arbuckle,
1999). The mean intercept value of 39.457 indicates
the average weight of the sample of children at age 5.
The variance for the intercept of 28.776 indicates that
there was substantial variability across children in
their weight at this age. The average linear trajectory
across children, 8.063, indicates that children, on av-
erage, were gaining just over 8 lbs a year. However,
the significant variance among linear slopes indicates
substantial individual variability in the rate of weight
gain across children. Note that the significant positive
covariance between the intercept and linear slope in-
dicates that at age 5 heavier children are gaining
weight at a faster rate than children who weigh less.

Now suppose that we are interested in understand-
ing children’s weight at a later age—specifically at
age 9. To obtain this information, we would place the
origin of time at age 9 by coding time = (age —9).
This would result in the following loading matrix:

1 —4
Ax=|1 =2
1 0

Intercorrelations Between Children’s Weight From Ages 5 to 13 and Mother’s Weight

Before Pregnancy (N = 155)

Weight 1 2 3 4 5 6
1. Child at age 5 —
2. Child at age 7 1947 —
3. Child at age 9 7264 .8569 —
4. Child at age 11 .6405 7866 .8651 —
5. Child at age 13 .6025 7447 7968 .8981 —
6. Mother 1592 2891 .3550 4175 4296 —
M 39.5480  55.3160  72.3350  96.2520  119.1030  127.1670
SD 6.1096  11.1546  17.8567  26.9084 33.4412 21.2030

Note. Weight is given in pounds (1 Ib. = 0.45 kg). Children at age 5 were between 55 and 60 months
old when assessed in 1988 in the National Longitudinal Survey of Youth.
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Table 2
Linear Unconditional Model Estimates and Standard Errors Under Three Time Coding Schemes for Ages 5 to 9
Model
A B C
Parameter Estimate SE Estimate SE Estimate SE

Variance

Intercept 28.776 6.143 260.032 33.037 111.599 13.522

Linear 8.201 1.470 8.201 1.470 8.201 1.470
Covariance

Intercept-linear 12.505 2.676 45.309 6.382 28.907 3912
M

Intercept 39.457 0.487 71.707 1.369 55.582 0.877

Linear 8.063 0.267 8.063 0.267 8.063 0.267
Unique variance

Age 5 8.319 5.280 8.319 5.280 8.319 5.280

Age 7 12.094 4.880 12.094 4.880 12.094 4.880

Age 9 57.168 15.992 57.168 15.992 57.168 15.992
Model Ty, (df = 1) 2.131 2.131 2.131

Note. The Ty, is the model test statistic and is asymptotically distributed as a chi-square when the model assumptions are met. Model loading
matrices were as follows for Models A, B, and C, respectively:

1 0 1 -4 1 -2
A= 1 2| Ag=|1 2] Ac=|1 0.
1 4 1 0 1 2
Parameters for the model with time’s origin at age fundamental growth process observed in the model
9 are distinguished from the previous model by the with the intercept at age 5. By recoding time, we are
addition of an asterisk. Estimating this model with the simply reorganizing or reparameterizing the same in-
intercept placed at age 9 does not alter or change the formation to provide answers to different specific sub-

Child’s Weight

5I 7| 9| Age (years)
| | |

0 2 4 Coding A

-4 -2 0 Coding B

-2 0 2 Coding C

Figure 1. Four hypothetical latent linear trajectories coding age under three different time
coding systems. The latent trajectories remain invariant regardless of how age is coded.
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stantive questions. This can be seen in Figure 1, which
illustrates four hypothetical latent linear trajectories
under several different time codings. Although the
coding of time and the interpretation of the model’s
parameters may change, the underlying latent trajec-
tories do not.

Consequently, we can analytically determine the
exact solution for a different coding of time, such as
the intercept at age 9, as a function of a previous
solution. Specifically, we can determine the covari-
ance matrix of the regression coefficients and their
means for the intercept placed at age 9 (i.e., W* and
u,* given A*) as a function of the solution when the
intercept was placed at age 5 (i.e., W and p, given A)
using a transformation matrix T, as follows (see the
Appendix for the derivation):

P =TT, 4)

and

w* =T n, )
where

T = (A A% A¥A.

Through the use of these two formulas, the solution
for the model with the intercept recoded to be at age
9 is readily and exactly obtained without the necessity
of separately estimating this new model. For example,
using Equation 4, the variance of the intercept at age
9 can be directly determined to be 260.032. For com-
parison, the solution estimated by Amos 4.01 is pro-
vided as Model B in Table 2.

Note that the direct determination of growth curve
components under a different coding of time holds
even when predictors of the growth curve components
are included in the model. For conditional growth
curve models—which include predictors of the
growth curve components—Equations 4 and 5 remain
unchanged, although these components are now in-
terpreted as residual variances and intercepts, re-
spectively. Equation 6 below describes how the
relationship between predictors and growth curve
components can be exactly determined as a function
of recoding time:

I =T'T. (6)

Standard errors for all parameter estimates under a
new recoding of time are exactly determined as well.
Thus we can determine, for example, that the standard
error of the variance of the intercept at age 9 is 33.037
without having to reestimate the model. The analytic
derivation of transforming standard errors is presented

in the Appendix, with this particular example illus-
trated in detail.

Parameter estimates for these two models are pre-
sented in Table 2. In addition, Model C in Table 2
provides the solution when time is centered within the
period of these first three observations—that is, cod-
ing time = (age —7). Although all three models,
which differ only in how time is coded, can be trans-
lated into each other exactly through Equations 4 and
5, it is worth considering the broad information con-
tained by each. These linear growth curve models tell
us about individual differences in children’s weight at
a specific age (i.e., the intercept) as well as the rates
of change in weight across time (i.e., the slope). The
choice(s) of where to examine individual differences
at a specific point in time depends on the specific
questions of interest to the researcher. The model can
be transformed to examine individual differences at a
different point in time. However, this raises a question
that requires clarification: Under what conditions do
Equations 4—6 hold for different codings of time or
other reparameterizations?

The technical requirement, outlined in the Appen-
dix, is that an exact relationship exists between A and
A* such that A* = AT, where T is a nonsingular
square matrix that transforms A into A*. Any rescal-
ing or recoding of time such that time* = a + b(time)
where b # 0 will satisfy this requirement, as it can be
specified through such a nonsingular T transformation
matrix. The size of the T matrix is determined by the
shape of the estimated growth function—the order of
the T matrix is the same as the number of growth
curve components and thus conforms with the A ma-
trix. This can be illustrated with the loading matrices
presented in the previous linear example:

A 1 -4 AT 1 01 4
=277 |1 20 1)

1 0 1 4

The T matrix for this particular recoding of time
reparameterizes the model—shifting time’s origin
from age 5 to age 9—and reorganizes the same basic
information present in the loading matrices. This is
done by simply subtracting 4 from the loadings for the
linear component. Note that any transformation, such
as recoding time, does not change the model’s overall
fit as it results in an equivalent model in the sense of
MacCallum, Wegener, Uchino, and Fabrigar (1993).
That is, the model-implied covariance matrix and the
model test statistic (Tyy ) are identical under these
transformations. These transformation equations do



36 BIESANZ, DEEB-SOSSA, PAPADAKIS, BOLLEN, AND CURRAN

not allow moving between different estimated func-
tional forms of growth such as transforming the linear
growth model into a quadratic growth model or mov-
ing between a linear growth model and an unstruc-
tured growth model in which some loadings are esti-
mated (e.g., Meredith & Tisak, 1990). The same
functional form of growth (e.g., linear, quadratic)
must be held constant, and the T transformation ma-
trix ensures that requirement.

Note that the T transformation matrix remains con-
stant regardless of when observations are made. For
example, recoding the intercept from age 5 to age 9
results in the same transformation matrix, irrespective
of the timing of the actual observations. For ease of
presentation, we consider in detail a balanced design
in which all individuals are assessed at the same time
points and there are no missing data. This allows the
interested reader to use Table 1 to recreate all analyses
presented in this article. However, this is not a re-
quirement or limitation. The difficulty presented with
unbalanced and missing data lies with estimating the
model. However, once a model is estimated, time can
be recoded using the equations developed in this ar-
ticle, as we illustrate briefly later with a fully unbal-
anced example.?

The quadratic growth curve model. We have pre-
sented the linear growth model across ages 5 to 9
primarily for expository purposes. Now we consider
changes in children’s weight across ages 5 to 13. Be-
cause the mean growth pattern across these years evi-
dences curvature, we examined the following qua-
dratic growth model for each child:

_ 2
Yie = Mo + Ny + Mol + € @)

The interpretation of the highest order coefficient,
),, in the present example, is unaffected by the place-
ment of time’s origin, whereas the interpretation of
lower order terms (i.e., M,; and m;;) is conditional on
this placement (Aiken & West, 1991; Cohen, 1978).
The intercept and linear components, n; and m,;, are
the predicted value and the instantaneous rate of
change, respectively, when time equals zero. The qua-
dratic component, m,;, indicates acceleration in
growth. More specifically, 2* m,,, the second deriva-
tive of Equation 7 with respect to time, is the rate of
change in the linear component for a 1-unit change in
time which, in the examples presented so far, has been
a year. Placing the origin of time at age 5 results in the
following loading matrix for the quadratic model:

1 0 O
1 2 4
A=] 1 4 16
I 6 36
1 8 64

Table 3, Model A, presents the results of the qua-
dratic growth model with the origin of time placed at
age 5. The overall quadratic growth model adequately
represents change in weight over time, 7Ty, (6,
N = 155) = 26.53, p <.001, CFI = .993,
IFI = 994, TLI = .984, RMSEA = .149, 90% CI
= .094-.209. The mean intercept value of 39.563
indicates the average weight at age 5 and is very close
to the estimate from the linear model based on ages 5
to 9. The mean linear and quadratic components of
6.998 and 0.373, respectively, indicate the average
rate at which children are gaining weight at age 5 and
the acceleration of that weight gain. However, there is
significant variability among children in their weight
and rate of change at age 5 (intercept and linear com-
ponents, respectively) as well as in their acceleration
in weight gain across time.

Now consider the impact of several other codings
of time presented in Table 3: centering time at age 9
(Model C) and placing the origin of time at age 13
(Model B). The interpretation of Model OP, which
uses the quadratic orthogonal polynomial contrast
codes commonly found in analysis of variance text-
books for five observations (e.g., Keppel, 1991;
Snedecor & Cochran, 1989), is discussed in more de-
tail shortly.

What is the impact of recoding time in the more
complicated quadratic model? Equations 4-6, exam-
ined first in the context of the linear model, represent
general solutions to understanding the impact of re-
coding time for growth curve models. Consequently,
we can use these equations to determine how shifting
the model from the intercept coded at age 5 to, for
example, age 9 or age 13 affects the variances and
covariances of the intercept, linear, and quadratic
components as well as the mean vector. The analyti-
cally derived parameter estimates and standard errors
correspond exactly with the estimated solutions for

3 To illustrate the unbalanced design using the NLSY
child weight data, we conducted several additional analyses
in which 20% of the data points were randomly deleted and
reestimated the model using Amos 4.01. The estimated
models under different codings of time corresponded ex-
actly with the analytic transformations.
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Table 3
Quadratic Unconditional Model Estimates and Standard Errors Under Four Time Coding Schemes for Ages 5 to 13
Model
A B C op
Parameter Estimate SE Estimate SE Estimate SE Estimate SE
Variance
Intercept 33.913 6.818 1,078.68 132.19 274.56 33.56 297.487 34.907
Linear 10.749 2.277 35.968 6.372 13.512 1.694 54.049 6.778
Quadratic 0.154 0.040 0.154 0.040 0.154 0.040 2.462 0.644
Covariance
Intercept-linear 10.238 3.532 170.796 25.924 52.689 6.760 117.987 14.649
Quadratic—intercept 0.126 0.385 6.431 1.724 0.817 0.726 8.192 3.117
Quadratic-linear —-0.443 0.248 2.019 0.479 0.788 0.204 6.305 1.632
M
Intercept 39.563 0.489 119.357 2.721 73.489 1.372 76.474 1.409
Linear 6.988 0.322 12.960 0.557 9.974 0.307 19.949 0.614
Quadratic 0.373 0.042 0.373 0.042 0.373 0.042 1.493 0.168
Unique variance
Age 5 2.942 5.514 2.942 5.514 2.942 5.514 2.942 5.514
Age 7 15.084 3.689 15.084 3.689 15.084 3.689 15.084 3.689
Age 9 44.858 7.150 44.858 7.150 44.858 7.150 44.858 7.150
Age 11 85.200 13.755 85.200 13.755 85.200 13.755 85.200 13.755
Age 13 73.285 34.486 73.285 34.486 73.285 34.486 73.285 34.486
Model T, (df = 6) 26.531 26.531 26.531 26.531
Note. The Ty is the model test statistic and is asymptotically distributed as a chi-square when the model assumptions are met. OP =
orthogonal polynomial. Model loading matrices were as follows for Models A, B, C, and OP, respectively:
1 0 0 1 -8 64 1 -4 16 1 2 2
12 4 1 -6 36 1 =2 4 1 -1 -1
Ag=| 1 4 16 |Lag=] 1 =4 16 [, Ac=] 1 0 0 |andAg=| 1 0 -2
1 6 36 1 2 4 1 2 4 11 -1
1 8 64 1 0 O 1 4 16 1 2 2

the models presented in Table 3. The placement of
time’s origin provides information about individual
differences in weight and individual differences in the
rate of change in weight growth at specific ages—
ages 5, 13, and 9, respectively, in the present example.
The mean and variance across individuals of the high-
est order coefficient for time (quadratic in the present
case) are unaffected by different placements of the
origin. The choice of where to place the origin of time
has to be substantively driven. Because this choice
determines that point in time at which individual dif-
ferences will be examined for the lower order coeffi-
cients, the answer to which coding(s) of time to ex-
amine in detail lies with the researcher’s specific
substantive questions of interest.

Conditional models: Predicting growth curve com-
ponents. We now extend the quadratic growth
model and include the mother’s weight before preg-
nancy as a predictor of the growth curve components

across children. This involves extending Equation 7
and predicting each of the growth curve components
as follows:

MNoi = Peno + YoM + Loss
N = M +VIM; + &5
Mo = M + YoM, + Gy

Note that mother’s weight (M,) is centered in all
analyses. Table 4, Model A, presents the results of the
quadratic growth model with the origin of time placed
at age 5, which fits the data adequately, T, (8,
N = 155) = 26.68, p < .01, CFI = .994, IFI = .994,
TLI = .985, RMSEA = .123, 90% CI = .073-.176.
Mother’s weight is only marginally related to her
child’s weight at age 5 (the intercept) but is positively
related to the rate of weight growth at age 5 (the linear
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Table 4
Quadratic Conditional Model Estimates and Standard Errors Under Three Time Coding Schemes for Ages 5 to 13
Model
A B
Parameter Estimate SE Estimate SE Estimate SE
Residual variance
Intercept 32.709 6.691 861.401 107.934 233.365 28.404
Linear 9.623 2.170 29.854 5.741 10.539 1.365
Quadratic 0.144 0.039 0.144 0.039 0.144 0.039
Residual covariance
Intercept-linear 9.403 3.439 134.646 21.986 41.678 5.502
Quadratic—intercept 0.029 0.378 5.087 1.542 0.258 0.667
Quadratic—linear -0.518 0.243 1.782 0.449 0.632 0.183
Intercept
Intercepts 39.564 0.483 119.370 2.451 73.489 1.271
Linear 6.987 0.312 12.965 0.522 9.976 0.274
Quadratic 0.374 0.041 0.374 0.041 0.374 0.041
Mother’s weight as a predictor of:
Intercept 0.045 0.023 0.697 0.116 0.304 0.060
Linear 0.048 0.015 0.115 0.025 0.081 0.013
Quadratic 0.004 0.002 0.004 0.002 0.004 0.002
Unique variance
Age 5 3.221 5.447 3.221 5.447 3.221 5.447
Age 7 15.065 3.677 15.065 3.677 15.065 3.677
Age 9 44.732 7.123 44732 7.123 44732 7.123
Age 11 84.470 13.450 84.470 13.450 84.470 13.450
Age 13 76.392 33.427 76.392 33.427 76.392 33.427
Model Ty (df = 8) 26.681 26.681 26.681
Note. The Ty, is the model test statistic and is asymptotically distributed as a chi-square when the model assumptions are met. Mother’s

weight before pregnancy is centered at the mean. Model loading matrices were as follows for Models A, B, and C, respectively:

10 0 1 -8 64 1 -4 16
12 4 1 -6 36 12 4
A=l 1 4 16 |Aag=] 1 4 16 A= 1 0
1 6 36 12 4 1 4
18 64 1 0 1 16

component), as well as being significantly related to
acceleration in weight gain.

Care, as always, must be taken in interpreting the
remaining components of the growth curve model.
The variances and covariances of the growth curve
components across children now reflect residual vari-
ability—variability across children that is not ac-
counted for by differences among their mothers’
weight. For example, the residual variance of the lin-
ear component indicates the variability across chil-
dren in their rate of weight growth at age 5 not ac-
counted for by their mother’s weight.

Equations 4-6 present the general solution of how
all parameters of a growth curve model can be deter-
mined when the scaling or coding of time is changed.

Again, we provide the solution for the model with
time centered at age 9 (see Model C, Table 4) and at
age 13 (see Model B, Table 4). All solutions can be
derived precisely from each other from these equa-
tions and correspond exactly with the estimated mod-
els. Again, because the interpretation of most model
parameters depends on this choice of how to code
time, the choice of which model to examine in detail
depends on the specific substantive questions of in-
terest.

Fully unbalanced data. Thus far we have pre-
sented empirical examples based on balanced data in
which all individuals were assessed at the same time
points. The interested reader can thus use Table 1 to
recreate the presented analyses. However, often indi-
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viduals may be assessed at different time points and
the number of assessments for each individual may
vary, resulting in an unbalanced design. The ability to
determine results analytically based on recoding time
is certainly not limited to balanced data.

As an illustration, individuals i and j may have
idiosyncratic loading matrices around a common ori-
gin—for example, age 5—resulting in assessment
schedules such that A; # A;. Recoding time by, for
example, placing the origin at age 9 simply involves
changing each individual’s loading matrix in the same
manner. Thus A¥ = AT and A¥ = AT, where T is
the same transformation matrix. Consequently
T = AFAH T AFA, = (AFAH T AFA;, and it
is clear that the equations for transforming parameter
estimates (Equations 4—6) as well as for transforming
standard errors (Equations A19-A21) are not depen-
dent on a balanced design (a more detailed argument
is presented in the Appendix).

This may be seen as well in a brief empirical ex-
ample. Over a 2-week interval 2 months into the fall
semester, 140 undergraduates enrolled within a lon-
gitudinal personality study and completed the Rosen-
berg Self-Esteem Scale (Rosenberg, 1965) using a
0-8 point response scale (for more complete proce-
dural details, see Biesanz, West, & Graziano, 1998;
Biesanz & West, 2000). A total of 136 participants
completed another self-esteem assessment an average
of 15.12 days later (SD = 3.95). Also, an additional
self-esteem assessment was available on 117 partici-
pants who were present for an in-class testing session
at the beginning of the semester. This resulted in an
unbalanced design with three assessments available
for most, but not all, participants coupled with differ-
ing assessment schedules over the semester.

We estimated a linear growth model of self-esteem
over the course of the semester using SAS Proc Mixed
and maximum likelihood. The origin of time was set
at the beginning of the semester, and the units of time
were days. On average, participants reported moder-
ately high self-esteem at the beginning of the semester
(o = 5.90301552) with a significantly positive av-
erage slope (p,; = 0.00327923). Note that although
there were significant individual differences in self-
esteem at the beginning of the semester, the variance
in slopes across individuals was not significant.

Reestimating the model with the origin of time set
near the end of the semester (90 days after the first
assessment) resulted in a solution that corresponded
exactly with the analytically derived transformation.
For example, the estimated mean level of self-esteem

90 days into the semester was fi,, = 6.198144660,
which corresponds to 6 decimal places with the esti-
mated solution of (5.90301552 + 90*0.00327923).
Using the presented equations to transform the initial
model resulted in a solution for means, variances, and
standard errors—even for nonsignificant effects—that
corresponded perfectly with the estimated model.

Examining Default Strategies for Coding Time

Centering time and the use of orthogonal polyno-
mial contrast codes in growth curve models, in par-
ticular, have appeared frequently in recent years (e.g.,
Bates & Labouvie, 1995; Brekke, Long, Nesbitt, &
Sobel, 1997; DeGarmo & Forgatch, 1997; Kurdek,
1999). Although there are strong logical arguments
for centering predictors in multiple regression (e.g.,
Aiken & West, 1991) and using orthogonal polyno-
mial contrast codes to conduct trend analyses in the
multivariate analysis of variance framework (e.g.,
Keppel, 1991), their apparent use in growth curve
models as default coding strategies requires careful
consideration.* We discuss centering and orthogonal
polynomial codings as default strategies with an em-
phasis on the interpretation of the resulting solution.
Later we illustrate how neither approach maximizes
precision or statistical power with respect to predic-
tors of growth curve components.

# Concern about multicollinearity in growth curve models
is frequently expressed (e.g., Brekke, Long, Nesbitt, & So-
bel, 1997; Huttenlocher, Haight, Bryk, Seltzer, & Lyons,
1991; Smith, Landry, & Swank, 2000; Stoolmiller, 1995).
Elements in the loading matrix (A) may be correlated with
each other, or the covariances in growth curve components
across cases may be substantial given certain codings of
time. Changes in multicollinearity from recoding time de-
rives from what Marquardt (1980) termed nonessential mul-
ticollinearity: Although the interpretation of lower order
terms changes with different codings of time, the essential
relationships of the growth curve model parameters do not
(see Figure 1). The only real potential concern for growth
curve models is that the computational efficiency of esti-
mates produced by different statistical packages may de-
pend somewhat on their specific algorithms and these levels
of multicollinearity (e.g., Hoel, 1958; Randall & Rayner,
1990). Regardless, the transformations presented in this ar-
ticle allow researchers to efficiently produce and check pa-
rameter estimates for different codings of time and their
appropriate standard errors. The apparent issue of multicol-
linearity does not and should not affect the choice of coding
time to examine specific substantive questions.
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Centering Time

Centering predictors is often recommended in mul-
tiple regression for interpretational reasons. The av-
erage score is often a meaningful estimate of an un-
derlying population mean and therefore a logical
place to interpret and generalize effects (Aiken &
West, 1991; see Wainer, 2000, for a similar argu-
ment). However this logic does not generally hold for
growth curve models. Different researchers may
choose to conduct assessments at varying time points.
Consequently, the mean assessment point in one de-
sign is unlikely to afford generalization to other re-
search designs. Centering time as a default strategy
for coding time places a strong dependence on when
observations were made during the growth process.
For example, parameter estimates for the centered
model would likely be very different if we had mod-
eled data for ages 11 to 18 as opposed to ages 5 to 13.
Different observational windows on the growth pro-
cess would then focus on individual differences at
different points in time and would not be fully com-
parable. The choice(s) of how to code time instead
should be made so as to best answer specific substan-
tive questions.

Orthogonal Polynomial Codes

Although the solution from regular polynomial
codings of time can be exactly transformed into the
solution for orthogonal polynomial coding of time
(e.g., see Table 3), the coefficients obtained via or-
thogonal polynomial contrast codes can be difficult to
properly interpret. These interpretational difficulties
derive from differences in the scaling of time across
components and the meaning of lower order coeffi-
cients and can create difficulties in determining the
temporal precedence of lower order effects.

The first difficulty in interpreting orthogonal poly-
nomial growth curve models concerns the scaling of
time across different growth curve components. As an
illustration, consider the transformation in the qua-
dratic growth curve model from when time is centered
at age 9 (see Model C in Table 3) to the orthogonal
polynomial coding (see Model OP in Table 3). The T
matrix that produces this particular transformation is
illustrated as follows:

1 0 =2
Aop=AcT, where T=| 0 172 0 | (8)
0 0 1/4

The -2 in the first row transforms the intercept

from the predicted value at the center of the observa-
tional window (age 9) to the average value across the
assessments. In quadratic and higher order polyno-
mial models, these are likely to be different values as
evidenced by the mean values for the intercept in
Table 3 for the centered and orthogonal polynomial
models. The differences in scaling time between these
two codings are readily apparent in the 1/2 and the 1/4
on the main diagonal of T, which correspond to the
linear and quadratic components, respectively. Linear
coefficients in the orthogonal polynomial coding are
twice as large as in Model C, with the linear variance
being 4 times greater. Quadratic coefficients in the
orthogonal polynomial coding are 4 times greater than
those from Model C, with the quadratic variance com-
ponent being 16 times greater (see Table 3). This
scaling difference has a profound effect on interpre-
tation of the linear and quadratic coefficients. Recall
that the unit of time is 1 year for Model C. The or-
thogonal polynomial model, in contrast, has different
units of time for the linear and quadratic compo-
nents—the unit of time is 2 years for the linear com-
ponent and 4 years for the quadratic component. Prop-
erly interpreting the coefficients presented in Table 3
for the orthogonal polynomial codes requires recog-
nizing these differences in scaling across the compo-
nents. With the use of standard integer orthogonal
polynomial codes (e.g., Keppel, 1991) or orthonor-
malized codings, the scaling change across the differ-
ent components of the orthogonal polynomial model
depends both on the order of the polynomial model
examined and the number of assessments and is not
readily apparent.

The second, and more serious, potential difficulty
with orthogonal polynomial contrast codes lies with
the meaning of the lower order coefficients. As an
illustration, under regular polynomial coding such as
Models A, B, and C, lower order coefficients in the
model are interpreted at the origin of time. In contrast,
under orthogonal polynomial coding, all lower order
coefficients refer to the average value of the regular
polynomial growth components across the observa-
tions—what Stoolmiller (1995) referred to as time-
averaged coefficients—with a potential rescaling of
the units of time. In terms of understanding the po-
tential interpretational impact this has for growth
curve models, it is worth briefly reexamining what
orthogonal polynomial codes accomplish. Orthogonal
polynomial codes are independent (uncorrelated and
hence orthogonal), rendering growth curve compo-
nents that are unrelated at the level of each individual
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i (e.g., Mo;» Ny;» and M,; are uncorrelated intraindividu-
ally for person i). However, this does not imply that
growth curve components across individuals will be
orthogonal. Clearly, as is evident in Table 3, interin-
dividual covariances in growth curve components are
still substantial with orthogonal polynomial codes.

The price paid to obtain intraindividual orthogonal-
ity is the loss of the ability to specify when lower
order coefficients occur. Two cases with an identical
average value may differ on when in the course of
their respective trajectories they experienced that
value. Thus, when one examines interindividual cor-
relates of the intercept (average value), there is im-
plicit variability in the assessment point (i.e., time)
across individuals as well. One consequence of this is
that determining temporal precedence for lower order
terms—for example, with respect to predictors or im-
portant outcomes such as a randomized treatment con-
ducted right after the middle observation—may be
difficult if not impossible. This, in turn, leads to an
inability to infer causality in even ideal experimental
circumstances for certain lower order terms (Cook &
Campbell, 1979).

One apparent benefit that may arise from centering
or the use of orthogonal polynomial codes is that, with
available computer programs, estimation of the over-
all growth curve model may be more readily achieved
(e.g., see Raudenbush & Bryk, 2002, chap. 6). Re-
gardless, the choice of which codings of time to ex-
amine in detail should be driven by specific substan-
tive questions and not by computational difficulties in
analyzing the data. With the use of the formulas pre-
sented in this article, the solution for other codings of
time can be exactly determined once estimation has
converged on a solution.

How Should Time Be Coded?

We have argued against using default coding strat-
egies such as orthogonal polynomial contrast codes.
How then should time be coded? Our recommenda-
tions are twofold. First, time should be coded to pro-
duce parameter estimates that are more easily and
readily interpretable (e.g., “regular” polynomial codes
such as Models A, B, or C in Tables 3 and 4). Second,
because each coding of time can be viewed as pro-
viding a detailed snapshot or summary of the growth
process at a particular point in time, time should be
coded to focus attention and understanding where the
primary substantive questions lie. If one is primarily
interested in understanding effects, relationships, and
individual differences at the beginning of the assessed

growth process, then placing the origin of time at the
initial assessment will provide that information. Simi-
larly, if it is important to understand effects and rela-
tionships at the end of the assessed growth process,
then one should place the origin of time at the last
assessment.

Presenting and Understanding the
Growth Process

It is very likely that no one coding of time will
answer all questions that researchers and readers may
have. For example, it may be important to understand
effects at both initial and final assessments as well as
at certain specific points in between. Consequently,
we encourage researchers to provide graphs of the
growth process. This provides the strong benefit of
reducing the dependence of the initial choice of how
to code time in order to estimate the model and may
provide substantive insights not readily apparent from
summary output such as that presented in Table 4.

Growth curve models can be viewed as modeling
interactions with time—in the present example, the
effect of a variable such as mother’s weight on the
predicted growth in her child’s weight is dependent on
another variable (the child’s age or time). Because
lower order effects represent elements of an interac-
tion with time, these “first order effects do not repre-
sent a constant effect across the range of [time]”
(Aiken & West, 1991, p. 102). In the presence of
interactions in the context of multiple regression (e.g.,
X and Z interact in predicting Y), Aiken and West
recommended graphing simple slopes to help display
the nature of the interaction—such as the relationship
between X and Y at 1 standard deviation below Z’s
mean, at Z’s mean, and at 1 standard deviation above
Z’s mean.

We encourage similar procedures in the context of
growth curve models. Symbolically, we can express
the predicted weight of a child (¥,) as a function of his
or her age (Age;) and his or her mother’s weight (M,)
with the following equations:”

5 The usefulness of graphing a modeled relationship de-
pends entirely on the ability of the model to adequately
represent the underlying data. Figures 2—4 present the mod-
eled relationship between child’s weight, mother’s weight,
and the child’s age and are thus dependent on the specific
chosen model to represent the underlying data. It is also
critical to include all terms—significant or not—in the
equation if the overall model adequately represents the data.
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Yie =Mo; + N1 ALE;, + NoiAges + £
where
MNoi = Pno + YoM; + Loss
MNi; = Pt +YiIM; + 8y
Moi = Pz + YoM + &y
Substituting the information contained in Model A,
Table 4, and reducing the symbolic equations to a

single expression results in the following:

9, =(39.564 + .045M,) + (6.987 + .048M,)(Age,, — 5)
+(0.374 + 0.004M,)(Age,, — 5)%,

or equivalently,

9, =13.979 + 3.247 Age,, + 374 Age;,
+ (=095 + .008 Age,, + .004 Age;)M,.  (9)

Following Aiken and West (1991, p. 68), Figure 2
presents the predicted growth pattern for several dif-
ferent mothers’ weights. This represents one graphical
summary of Equation 9. However, in the context of
growth curve models, it may prove useful to examine
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Figure 2. Predicted average child’s weight growth as a
function of his or her mother’s weight before pregnancy.
11b = 0.45 kg.

and provide several other graphs based on the model
expressed in Equation 9 to complement Figure 2. For
example, one may be interested in the predictive re-
lationship between mother’s weight and children’s
weight at different ages and how this changes over
time. How does mother’s weight relate to individual
differences among children’s weight? As well, one
may be interested in examining how mother’s weight
is related to the rate of change in children’s weight
growth and how this relationship changes over time.

To illustrate, Figure 3 presents the predicted rela-
tionship between mother’s weight and individual dif-
ferences in children’s weight from ages 5 to 13
coupled with a 95% CI. Each of these graphed points
thus represents the relationship (regression coeffi-
cient) between mother’s weight and the intercept if
time had been coded to have its origin at that age.
These exact relationships can be determined from
either Equation 6 or Equation 9, as the regres-
sion coefficient for mother’s weight is simply
(—.095 +.008 Age,, + .004 Age?), which results in the
slight quadratic relationship with age observed in Fig-
ure 3. Thus, all of the information, including the abil-
ity to produce the 95% CI, is contained within the
output from a single growth curve model.® The
graphed value at age 5 (.045) is the relationship be-
tween mother’s weight and the intercept in Model A
in Table 4—where the intercept of time was placed at
age 5. Similarly, the graphed values at age 9 (.304)
and at age 13 (.697) correspond to the relationships
between mother’s weight and the intercept for Models
C and B in Table 4, respectively. Each point on this
graph represents a simple slope—the relationship be-
tween mother’s weight and individual differences in
children’s weight at a given age.

Presenting the results of the growth curve analysis
as in Figure 3 may provide insights that are not readily
apparent from the model output contained in Table 4.
For example, we readily observe that although moth-
er’s weight is not significantly related to individual
differences in children’s weight at age 5, this predic-
tive relationship increases steadily through age 13 and
is significant shortly after age 5.

The substantive questions of import may focus on
rates of change as well. Figure 4 graphs the rela-

S An additional Appendix containing a SAS Proc IML
program using the data from Model A in Table 4 to produce
the data graphed in Figures 3 and 4 is available both on the
Web at dx.doi.org/10.1037/1082-989X.9.1.30.supp. and
from Jeremy C. Biesanz for 2 years after publication.



CODING TIME IN GROWTH CURVE MODELS 43

0.8 +

0.7 +

0.6 +

0.2

Relationship of Mother's Weight to Child's Weight

0.1 1

s

Child's Age (years)

Figure 3. Effect of mother’s weight on child’s weight from age 5 to age 13 with a 95%
confidence interval (vertical bars). The graphed value is the relationship between mother’s
weight and the intercept for that child’s age coded as the origin of time.

tionship between mother’s weight and the linear
component for different ages. These points repre-
sent the tangents to the curve—the instantaneous
rate of change—presented in Figure 3. This line
can be determined directly from the first derivative
of Equation 9 as a function of age, which results
in a regression coefficient for mother’s weight as
(.008 + .008 Age;,). Note that the graphed values at
age 5 (.048) and at age 13 (.115) correspond identi-
cally to the relationship between mother’s weight and
the linear component presented in Table 4 (Models A
and B, respectively) as well as to the first derivative of
Equation 9 if more significant digits are carried
through the calculations. Through visual inspection
alone, it is apparent that mother’s weight is signifi-
cantly related to the rate of weight growth for children
during the observed age range of 5 to 13 and that this
relationship is increasing over time.’

Obtaining these graphs is remarkably simple. More
important, providing graphs and examining effects
that correspond to the specific research questions of
interest across the observational window reduce the
dependence on how time was originally coded.
Graphing and examining effects across the observa-
tional window may also provide clearer insights and
understanding of the modeled growth process.

Precision of Estimates and Power Analyses

In determining a choice of coding time, it would
seem natural to consider the statistical power that
would result for different choices. It is clear from
Figure 3 that the relationship between mother’s and
child’s weight is different at age 5 than at age 13 and
that their respective standard errors differ as well. The
statistical power to detect the relationship between a
mother’s and her child’s weight thus depends on the
age of the child. We note that any difference in sta-
tistical power as a function of recoding time reflects a
change in the question asked—the relationship be-
tween mother’s and child’s weight is a fundamentally
different question at age 5 than at age 13 if children
are growing at different rates. Nonetheless, consider-
ing how statistical power and the precision of esti-

7 The slope of the line in Figure 4 represents the relation-
ship between mother’s weight and the quadratic component.
Recall that 2 times the quadratic component represents the
acceleration in the growth process. Thus half of the slope in
Figure 4 represents the relationship between mother’s
weight and the quadratic component—that is, .008/
2 = .004, the relationship between mother’s weight and the
quadratic component presented in Table 4.
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Figure 4. Effect of mother’s weight on the instantaneous linear rate of change in child’s
weight at different ages with a 95% confidence interval (vertical bars). The graphed value is
the relationship between mother’s weight and the linear component for that child’s age coded

as the origin of time.

mates change as a function of coding time highlights
the importance of understanding the overall growth
process for interpreting effects.

We focus our attention on understanding the rela-
tionship between a mother’s weight and her child’s
weight and linear rate of change in weight that cor-
respond to the graphs presented in Figures 3 and 4.
Regardless of how time is coded, the statistical power
to detect the relationship between mother’s weight
and the highest order term—quadratic rate of
change—remains constant. These predicted relation-
ships are exactly determined from the summary equa-
tion (Equation 9). However, for the relationship be-
tween mother’s and child’s weight, why is it that the
precision of estimates (i.e., the tightness of the CI) is
best at age 5 and increases with age? Similarly, for the
relationship between mother’s weight and the linear
rate of change in child’s weight, why are estimates
most precise just after age 8? Although Equations
A18 and A20 describe the mechanics of how the vari-
ance of each estimate changes with different codings
of time, they do not provide an explanation.

An understanding of these effects can be obtained
from considering the following consistent estimate of

the covariance matrix of the vector of regression co-
efficients (Verbeke & Molenberghs, 2000; Zeger,
Liang, & Albert, 1988):®

P -
cov) = {E[x;A'(A\IrA' +0,,)'AX] }‘,

i=1

P . _ -1
COV(I‘*):{E[X;T’A’(A\IIA’+®ES) ATXi]} .
=1

(10)

The residual variance contained in the inner inverse
(AWA’ + @,,) remains unchanged after recoding
time. Because recoding time simply reweights this
residual variance, we can understand the variance of
the regression coefficients—and hence their preci-

8 Finite samples result in a larger estimated covariance
matrix because of sampling variability derived from esti-
mating the variance components (see McCulloch & Searle,
2001); nonetheless, this estimate is useful for understanding
changes in the variance of regression coefficients. For all
graphs, however, we present the actual estimated variances.
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sion—as a complex function of the three components
contained within this inner inverse. First, the precision
of the regression coefficient estimates will be im-
pacted by the heterogeneity among the uniquenesses,
if any, of the assessments. Within the current data set
such heterogeneity—differences in the unique vari-
ances across assessments—has no immediately appar-
ent impact. Second, the timing of assessments, con-
veyed by the A matrix, impacts the precision of the
regression coefficients. Estimates of effects at the
center of the assessment schedule will generally be
more precise. Third, the residual variance of the
growth curve components is closely tied to the preci-
sion of the regression coefficients. We consider these
latter two effects in detail.

Figure 3 shows that the precision of the relationship
between the mother’s weight and her child’s weight
decreases with age. As is seen in Figure 5A, the in-
crease in the variance of the intercept’s regression
coefficient corresponds almost perfectly with the
monotonic increase in the residual variance in the
intercept (child’s weight) with age. Note that the
graphed values in Figure 5A at ages 5, 9, and 13
correspond to the estimated values from Models A, C,
and B, respectively, in Table 4, for the intercept re-
sidual variance and the square of the standard error of
mother’s weight as a predictor of the intercept (i.e.,
the intercept regression coefficient variance). This
strong correspondence between the variance of the
residual growth curve components and the variance of
the regression coefficient is seen as well in Figure 5B
for the linear rate of change, whose graphed values
correspond as well to Table 4. Examining the linear
rate of change reveals the influence of the assessment
schedule in the precision of regression coefficient es-
timates. The linear residual variance is smallest at
approximately 6.8 years of age. In contrast, the re-
gression coefficient is most precise (has the lowest
variance) at approximately 7.4 years of age—closer to
the middle of the assessment schedule.

Combining regression coefficient estimates with
their variance allows us to explore how the estimated
statistical power for the intercept and linear compo-
nent changes throughout the range of observed data.
Figures 6A and 6B present the estimated statistical
power for this study to detect the relationship between
the mother’s weight and her child’s weight and linear
rate of change in weight, respectively, at different
child’s ages. Plotted concurrently is the chi-square
noncentrality parameter used to determine statistical
power. The noncentrality parameter is the Wald sta-

tistic, calculated by squaring the regression coeffi-
cient and then dividing by its variance (Bollen, 1989).

The statistical power to detect the relationship be-
tween mother’s and child’s weight and linear rate of
change is substantial for both effects after age 6. Sta-
tistical power peaks at approximately age 12.4 and 8.4
for the intercept and linear components, respectively.
Although the regression coefficients for both of these
effects are increasing monotonically throughout the
assessment window, the variance of the regression
coefficient increases faster after these ages. Consid-
ering Figures 6A and 6B together, it is clear that no
one coding of time will result in maximal precision or
statistical power. Orthogonal polynomial coding does
not offer a solution either—the noncentrality param-
eters for orthogonal polynomial coding are 29.87 and
38.05 for the intercept and linear components, respec-
tively, and below their maximum values of 34.96 and
39.2.

It is clear from Figures 2 and 3 that mother’s weight
strongly predicts individual differences among child’s
weight and that this relationship increases from age
5 to age 13. The precision of that relationship depends
primarily on the individual differences not accounted
for by mother’s weight—the residual variance com-
ponent—and on the timing of the assessments. This
highlights the importance of study design—when to
gather assessments—and the specification of a priori
and focused hypotheses. To illustrate, let us suppose
that we ask the seemingly simple question of whether
a mother’s weight predicts her child’s weight. In the
present example, we observe from Table 4 that the
mother’s weight is not significantly related to her
child’s weight at age 5, an effect examined with rela-
tively low power, but that statistical power increases
dramatically after that age and is significant at both
age 9 and age 13. Although the question seems
simple, the answer is not as long as children are grow-
ing at different rates—regardless of whether mother’s
weight predicts the quadratic growth component. Any
answer to that question must be qualified by consid-
ering the age of the child or, for the case of orthogonal
polynomials, by averaging across ages 5 to 13, and
must be driven by specific hypotheses.

Examining only one coding of time by itself will
not provide a full and complete picture of the growth
process, nor will any one coding of time provide
maximal statistical power or precision for all esti-
mates. Understanding the growth process and changes
in the precision of estimates and statistical power re-
quires understanding how individual differences are
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changing across time. Graphing effects and individual
differences (variances) across time provides one route
to achieving that understanding.

Summary and Conclusions

Identifying and estimating growth curve models re-
quires choosing how to code time, and the interpre-
tation of parameters in the resulting model depends
critically on this choice. For alternative codings of
time, however, parameter estimates and their standard
errors can be directly determined analytically. Conse-
quently, the choice of where to examine individual
differences on the construct of interest and on com-

ponents of change depends on the specific substantive
questions and the research design. Furthermore, in-
stead of presenting only one specific coding of time,
which provides detailed information on a quick snap-
shot or brief summary of the growth process, we en-
courage researchers to graphically present the growth
process in manners that correspond to the primary
substantive questions. For example, researchers
should present traditional graphs such as Figure 2
coupled with graphs of the simple effects of substan-
tively important lower order coefficients in the growth
model across the observational window. These graphs
represent a more complete analysis of the growth pro-
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cess implied by the model coupled with regions of
significance of effects. Presenting these relationships
and the nature of growth implied by a model may help
in both interpreting and conveying the rich and useful
information contained in growth curve models and
provides opportunities to gain new insights into the
growth process.
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Appendix

Transforming Parameter Estimates and Standard Errors in Growth Curve Models

Let y be a matrix of observed responses at different points
in time for every case, A the loading matrix that specifies
the functional form of growth, n the matrix of unobserved
growth coefficients across cases, and € the matrix corre-
sponding to disturbances at each assessment for each case.
For ease of presentation, we initially assume the balanced
case without any loss of generality and later discuss the
unbalanced case:

y=An+e. (A1)

The predicted mean value across cases at each assessment
(uy) is thus related to the mean growth coefficient across
cases (u,,) as follows:

By =Ap,. (A2)

Equation Al implies a covariance matrix across cases for
the different assessments:

3, =AZ A+ 0O, (A3)
Suppose T is a nonsingular transformation matrix such that:
A*=AT,
and (A4)
=T 'n.
It then follows that
y=A*n*+g, (AS5)
By = Afp., (A6)
and
Sy = A A+ O (A7)

Equations A5 to A7 presume that the loss function used to
estimate the model is unaffected by the scaling transforma-
tion in Equation A4. Scale-free estimators such as maxi-

mum likelihood satisfy this condition, and, consequently
from Equations A3 and A7,
A A +0O = A L L AT+ O,

Because O, drops out, the form and restrictions on unique-
nesses are immaterial to scaling transformations defined by
Equation A4:

nFEN*

AEMA’ = A*En*n*/\*’,
and
A*’AEMA' = A*’A*En*n*A*’.

Assuming that (A*'A*) is nonsingular (i.e., that the col-
umns in the loading matrix in the model are not perfectly
multicollinear),

3 = (AF A TTAFAZ AAFAFAF) (A8)
From Equations A2 and A6,

Ap, = A¥p,., (A9)
and

Mo = (A A AF Ap,.

Because for a particular case, m = p,, + {, consequently
3, m = W and Equations A8 and A9 correspond to Equa-
tions 4 and 5, respectively.

Conditional Growth Model

Extending this model to include predictors of growth
curve components where (X) is the set of predictors and (I")
is the relationship between X and v results, for a single case,
in the following:

n=pp, +I'X+E (A10)
and

N = P + DX + L5, (All)



CODING TIME IN GROWTH CURVE MODELS 51

Note that p,,, and p,, . are now intercept vectors that ex-
press the value of the growth curve components when the
predictors are all zero. Consequently, the covariance among
the ys and between X and y and the means of y may be
expressed as follows:
3, =ATPI" + ¥A' + 0O, = A¥(T*PI*’
+ WHA* + 0O, (A12)

Exyzil)["/\’ =PI A* | (A13)
and
uy = Ao, + I'X) = A*(up + T*X). (A14)

Solving Equations A12, A13, and A14 for W*, I'*, and .
results in the following:

W =T 'WT ™", (A15)
Bons=T"" By, (A16)

and
=TT, (A17)

where T™! = (A*'A*)"'A*' A and T is as defined in Equa-
tion A4.

Although this represents the impact of transformations in
the conditional growth model, note that Equations A15 and
A16 correspond, respectively, to Equations A8 and A9 from
the unconditional growth model.

Transforming Standard Errors in Growth
Curve Models

Just as all parameter estimates in a growth curve model
are exactly determined from a transformation such as re-
coding time, so are the standard errors of transformed pa-
rameter estimates. As an illustration, let @ be a p x 1 vector
of latent growth curve model parameter estimates given a
particular coding of time with asymptotic covariance matrix
ACOV (0,0"), and let 6* be the vector of model parameter
estimates under a transformation of time such as those de-
scribed earlier in the Appendix. Let Jg-_,g be the Jacobian
matrix of partial derivatives of the transformation of
0% to & (see Searle, 1982, section 12.10.d):

; a0\ | 00; S
oob=| | =| = | forij=1L---.p.
T a6, |,

Suppose that for a given parameter estimate, say 61, we
wish to determine its standard error after a time coding
transformation results in a transformed estimate 0" From
the multivariate delta method for distributions 0f trans-
formed variables (Bishop, Fienberg, & Holland, 1975, sec-
tion 14.6; see also Cudeck & O’Dell, 1994, for a parallel
example),

AVAR(7) = (J;)'ACOV(0.0)(J;;).  (A18)

where J;;) is the jth column of Jg._. Consequently, the
asymptomatic standard error of B* is VAVAR(@*) Note that

although we are interested in dAetermlng the standard error of
0 when transformed from ), obtaining the appropriate
partial derivatives requires using the Jacobian matrix of the
transformation from 0 to ;.

Applying this technique to growth curve models neces-
sitates determining analytically the Jacobian matrix Jg._¢
for the different sets of parameter estimates of interest. Be-
low we derive the relevant Jacobian transformation matrices
for p, I', and W and then present a brief example illustrating
how to compute these transformed standard errors.

For the vector of estimated latent growth curve means (or
intercepts in the case of the conditional model),

o\’ T 'w\"
Jp*ﬁu—(¥> —(T =T (A19)

For the vector of regression coefficients of predictors of
growth curve components, that is, vec(I'),

avec(I'*) [’
Jvec(l"*)%vec(l‘) = [m]
[6(1 ® T_l)vec(l"):| !
a avec(I")
=I®RT. (A20)
Note that the order of I equals the number of columns of I'
(i.e., the number of predictors). The vec() operator stacks
the columns of a matrix one under each other and thus turns
a matrix into a vector (see Searle, 1982, section 12.9.a).
For the vector of the covariance matrix of latent growth
curve components, that is, vec(W), that includes redundant
elements,

dvec(W*) |’
Jvec(‘l’*)—)vec(‘l’): W
) [a(T" ®T-1)vec<‘lf>]’
= dvec(W)
:(T_l ®T_1),- (AZI)

Note that this transformation applies for unconditional as
well as conditional models.

We present a brief illustration on how to obtain trans-
formed standard errors for elements of the covariance ma-
trix of latent growth components. Consider the linear
growth model in Table 2 and the transformation from Model
A to Model B where

10 1 -4
Model AA=| 12 | and Model BA*=| 1 -2
14 1 0

Define W, as the variance of latent intercepts, W as the
variance of the latent slopes, and W as the covariance
between intercept and slope. The estimated covariance ma-
trix of the parameter estimates of W from Amos 4.01 for
Model A is as follows:

(Appendix continues)
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v, 37.73111857
ACOV (. W Ve —4.44960714
Cov (W, W) = W, —4.44960714

v, 4.55185580

—4.44960714  —4.44960714  4.55185580
7.16164762 7.16164762  —.12705333
7.16164762 7.16164762  —.12705333
—.12705333 —.12705333 2.16180421

Note the necessary redundant elements in the covariance
matrix of parameter estimates for cov(W,¥) to conform
with vec(W). The square root of the elements on the main
diagonal corresponds to the standard errors for Model A
presented in Table 2.

Jvec(‘l’*)ﬁvec(‘l’) = (T_l ® T_l), =
1 4 1477
o:]eloil]-

To estimate avar(W?¥) requires extracting its correspond-
ing column from J,.ccp#) sveccwr, and pre- and postmulti-
plying acov(W¥, V) by that column:

1000
4100
4010
16 4 4 1

AVAR(W#) =
1
4
[14416] ACOV(W, W) [, | =1091.438463.
16

The standard error of W# is consequently V1091.438463
= 33.03693, which corresponds exactly to the standard
error in Table 2, Model B. For producing the standard errors
for the covariance between intercept and slope, either the
second or third columns of J,.cops) sveccwry Will suffice.
Finally, because the last column of J, . ey _sveccus) COITE-
sponds to the variance of the slope, it is apparent that its
standard error is unaffected by the transformation in the
location of the intercept of time.

Transforming Parameters in the
Unbalanced Design

Thus far we have been assuming a balanced design in
which each individual is assessed at exactly the same points
in time. However, it is common for individuals to have
assessments at slightly different points in time and for some
individuals to miss assessments. This may result in an un-
balanced design such that for persons k and I, A, # A,. As

we demonstrate, when a scale-free estimator such as maxi-
mum likelihood is used to estimate the overall model, hav-
ing an unbalanced design has no impact on transformations
of the resulting solution due to recoding time.

Even though in an unbalanced design individuals may be
assessed at differing points in time, the same transformation
is applied to each individual. Consequently, which individu-
al’s loading matrix is used for recoding time is immaterial,
as can be seen below:

AFAD AF A= (AFA) AP A =T
(A22)
Furthermore, as in the balanced design, the observed val-
ues at a specific set of points in time (e.g., A,), the popu-
lation mean values, and the covariance across assessments
at those points in time are unaffected by the recoding of
time:

Yi=Am,+e=Ani+e, (A23)
By, = Aty = Ay, (A24)

and
3 . =AWAL+ 0O, = AfPHAF +O,,.. (A25)

Yk, Yk

With unbalanced data, the log of the likelihood for the
sample for a given solution is (e.g., see Jennrich & Schluch-
ter, 1986) as follows:

N
InL=—-1/2, [p; In(2m) + IniS

k=1

,Yk)’kl

+ (V= 1) = = )

where p, is the number of assessments for the kth indi-
vidual. Raw or direct maximum likelihood seeks to maxi-
mize this likelihood using all available data. What is appar-
ent from this likelihood function is that even in the
unbalanced design, the likelihood function is unaffected by
the recoding of time, so long as the same recoding is applied
to the entire sample. Consequently, all of the results pre-
sented here apply equally to balanced and unbalanced de-
signs.
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