
A Trifactor Model for Integrating Ratings Across Multiple Informants

Daniel J. Bauer, Andrea L. Howard,
Ruth E. Baldasaro, Patrick J. Curran,

and Andrea M. Hussong
University of North Carolina at Chapel Hill

Laurie Chassin
Arizona State University

Robert A. Zucker
University of Michigan

Psychologists often obtain ratings for target individuals from multiple informants such as parents or
peers. In this article we propose a trifactor model for multiple informant data that separates target-level
variability from informant-level variability and item-level variability. By leveraging item-level data, the
trifactor model allows for examination of a single trait rated on a single target. In contrast to many
psychometric models developed for multitrait–multimethod data, the trifactor model is predominantly a
measurement model. It is used to evaluate item quality in scale development, test hypotheses about
sources of target variability (e.g., sources of trait differences) versus informant variability (e.g., sources
of rater bias), and generate integrative scores that are purged of the subjective biases of single informants.
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When measuring social, emotional, and behavioral characteris-
tics, collecting ratings from multiple informants (e.g., self, parent,
teacher, peer) is widely regarded as methodological best practice
(Achenbach, Krukowski, Dumenci, & Ivanova, 2005; Achenbach,
McConaughy, & Howell, 1987; Renk, 2005). Similarly, the use of
multisource performance ratings (e.g., by supervisors, peers, and
subordinates; a.k.a. 360-degree assessment) is considered an opti-
mal method for evaluating job performance (Conway & Huffcutt,
1997; Lance, Hoffman, Gentry, & Baranik, 2008). Because each
informant observes the target within a specific relationship and
context, it is desirable to obtain ratings from multiple informants
privy to different settings to obtain a comprehensive assessment,
particularly when behavior may vary over contexts. Further, any
one informant’s ratings may be compromised by subjective bias.

For instance, depressed mothers tend to rate their children higher
on psychopathology than unimpaired observers, in part because of
their own impairment and in part because of an overly negative
perspective on their children’s behavior (Boyle & Pickles, 1997;
Fergusson, Lunskey, & Horwood, 1993; Najman et al., 2000;
Youngstrom, Izard, & Ackerman, 1999). In principle, researchers
can better triangulate on the true level of the trait or behavior of
interest from the ratings of several informants. The idea is to
abstract the common element across informants’ ratings while
isolating the unique perspectives and potential biases of the indi-
vidual reporters.

Although there is widespread agreement that collecting ratings
from multiple informants has important advantages, less agree-
ment exists on how best to use these ratings once collected. The
drawbacks of relatively simple analysis approaches, such as se-
lecting an optimal informant, conducting separate analyses by
informant, or averaging informant ratings, have been discussed at
some length (e.g., Horton & Fitmaurice, 2004; Kraemer et al.,
2003; van Dulmen & Egeland, 2011). In contrast to these ap-
proaches, psychometric models offer a more principled alternative
wherein the sources of variance that contribute to informant ratings
can be specified and quantified explicitly.

Several psychometric modeling approaches have already been
proposed for analyzing multiple informant data. Reviewing these
approaches, we identify the need for a new approach that is more
expressly focused on issues of measurement. We then propose a
new measurement model for multiple informant data, which we
refer to as the trifactor model (an adaptation and extension of the
bifactor model of Holzinger & Swineford, 1937). The trifactor
model stipulates that informant ratings reflect three sources of
variability, namely, the common (i.e., consensus) view of the
target, the unique (i.e., independent) perspectives of each infor-
mant, and specific variance associated with each particular item.
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Correlated (nonunique) perspectives can also be accommodated by
the model when some informants overlap more than others in their
views of the target, albeit at some cost to interpretability. We
demonstrate the advantages of the trifactor model via an analysis
of parent reports of children’s negative affect. Finally, we close by
discussing directions for future research.

Psychometric Models for Multiple Informant Data

A number of different psychometric models for multiple infor-
mant data have appeared in the literature. As noted by Achenbach
(2011), most of these models represent adaptations of models
originally developed for the analysis of multitrait–multimethod
(MTMM) data (Campbell & Fiske, 1959). Such data are often
collected with the goal of assessing convergent and discriminant
validity, as evidenced by the magnitude of intertrait correlations
after accounting for potential method–halo effects that could oth-
erwise distort these correlations (Marsh & Hocevar, 1988). Quite
often, the “methods” are informants, and the goal is then to isolate
trait variability from rater effects and measurement error (e.g.,
Alessandri, Vecchione, Tisak, & Barbaranelli, 2011; Barbaranelli,
Fida, Paciello, Di Giunta, & Caprara, 2008; Biesanz & West, 2004;
Eid, 2000; Pohl & Steyer, 2010; Woehr, Sheehan, & Bennett,
2005).1

One of the earliest proposed psychometric models for MTMM
data is the correlated trait–correlated method (CTCM) model
(Kenny, 1979; Marsh & Grayson, 1995; Widaman, 1985). Given
multiple trait ratings from each of multiple informants, the CTCM
model is structured so that each rating loads on one trait factor and
one method (i.e., informant) factor. Across methods, all ratings of
the same trait load on the same trait factor, and across traits, all
ratings made by the same method load on the same method factor.
Trait factors are permitted to correlate, as are method factors, but
trait and method factors are specified to be independent of one
another.

Although the CTCM structure nicely embodies many of the
ideas of Campbell and Fiske (1959), it has proven difficult to use
in practice. In particular, the CTCM model often fails to converge
(Marsh & Bailey, 1991) and suffers from potential empirical
underidentification (Kenny & Kashy, 1992). As a more stable
alternative, Marsh (1989) advocated use of the correlated trait–
correlated uniqueness (CTCU) model (see also Kenny, 1979). The
CTCU model maintains correlated trait factors; however, method
factors are removed from the model. To account for the depen-
dence of ratings made by the same informant, the uniquenesses
(i.e., residuals) of the measured variables are intercorrelated within
informant.

Due to the lack of explicit method factors, the CTCU model has
been criticized for failing to separate method variance from error
variance, potentially leading to underestimation of the reliability of
the measured variables (Eid, 2000; Lance, Noble, & Scullen, 2002;
Pohl & Steyer, 2010). Additionally, whereas the CTCM model
permits correlated method factors, in the CTCU model unique-
nesses are not permitted to correlate across methods. This feature
of the CTCU model has been considered both a strength and a
limitation. Marsh (1989) argued that if a general trait factor (i.e.,
higher order factor) influenced all trait ratings, then correlated
method factors might actually contain common trait variance. By
not including across-method correlations, the CTCU model re-

moves this potential ambiguity from the model. Yet this also
implies that if methods are truly correlated (e.g., informants are not
independent), then the trait variance may be inflated by excluding
these correlations from the model (Conway, Lievens, Scullen, &
Lance, 2004; Kenny & Kashy, 1992; Lance et al., 2002).

Several additional criticisms are shared by the CTCM and
CTCU models. Marsh and Hocevar (1988) and Marsh (1993)
noted that CTCM and CTCU models are typically fit to scale-level
data (i.e., total scores) with unfortunate implications. First, the
uniqueness of each manifest variable contains both measurement
error and specific factor variance, yet because only one measure is
available for each trait–rater pair, there is no ability to separate
these two sources of variance. Thus the factor loadings may
underestimate the reliability of the manifest variables to the extent
that the specific factor variance is large. Second, when specific
factors are correlated, as might occur when informants rate the
same items, this could artificially inflate the trait variances ob-
tained by analyzing the scale-level data. Marsh and Hocevar
(1988) and Marsh (1993) thus advocated using second-order
CTCM and CTCU models in which the traditional scale-level
manifest variables are replaced with multiple indicator latent fac-
tors defined from the individual scale items or item parcels.

At a more fundamental level, Eid (2000) and Pohl, Steyer, and
Kraus (2008) critiqued the CTCM and CTCU models for being
based largely on intuition, incorporating arbitrary restrictions, and
having ambiguously defined latent variables. To address these
shortcomings, Eid proposed the CTC(M � 1) model. This model
is defined similarly to the CTCM model except that the method
factor is omitted for a “reference method” chosen by the analyst
(e.g., self-reports). The remaining method factors (e.g., parent- and
peer-report factors) are then conceptualized as residuals relative to
the reference method. The notion is that there is a true score
underlying any given trait rating, and when this true score is
regressed on the corresponding trait rating from the reference
method, the residual constitutes the method effect (with an implied
mean of zero and zero correlation with the reference method trait
ratings). Eid, Lischetzke, Nussbeck, and Trierweiler (2003) also
extended the CTC(M � 1) model to allow for multiple indicators
for each method–trait pair, and to allow for trait-specific method
effects. This latter extension is important in relaxing the assump-
tion that method effects will be similar across heterogeneous traits.

The CTC(M � 1) model has the virtue of having well-defined
factors and a clear conceptual foundation. It has, however, been
criticized on the grounds that the traits must be defined with
respect to a reference method and the fit and estimates obtained
from the model are neither invariant nor symmetric with respect to
the choice of reference method (Pohl & Steyer, 2010; Pohl et al.,
2008). Eschewing the definition of method effects as residuals,
Pohl et al. (2008) argued that it is better to conceptualize method
factors as having causal effects on the underlying true scores of the

1 Less often, data are obtained from multiple informants on multiple
targets (e.g., siblings) for a single trait (e.g., Hewitt, Silberg, Neale, Eaves,
& Erickson, 1992; Neale & Stevenson, 1989; Rowe & Kandel, 1997;
Simonoff et al., 1995; van der Valk, van den Oord, Verhulst, & Boomsma,
2001). These models are often applied to twin data with the goal of
partitioning the trait variance into genetic and environmental components
without the contaminating influence of informant bias (e.g., Bullock,
Deater-Deckard, & Leve, 2006).
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trait ratings. As causal predictors, method factors would be implied
to have neither means of zero and zero correlation with the trait
factors (also construed to be causal predictors). The MEcom model
of Pohl and Steyer (2010) thus permits method factor means and
method–trait correlations to be estimated. The MEcom model also
obviates the need to select a reference method, thus allowing traits
to be defined as what is common to all raters. Finally, given
multiple indicators for each trait–method pair, the MEcom model
retains the advantage that trait-specific method factors can be
specified.

Despite these many advantages, the MEcom model also has
potential limitations. First, method effects are defined as contrasts
between informants (imposed through restrictions on the method
factor loadings), not as the effect of a given informant. Thus the
unique effects of the informants are not separated, complicating
the assessment of specific sources of rater bias. Second, some of
the common variance across informant trait ratings will be ac-
counted for by the method factors. That is, trait ratings made by
disparate informants will correlate not only due to the common
influence of the underlying trait but also due to the fact that they
are influenced by correlated methods. Although Pohl and Steyer
(2010) regarded such a specification as more realistic, it runs
counter to the argument made by Marsh (1989) that trait factors
should exclusively account for the correlations among trait ratings
across different methods. Third, due to the inclusion of trait–
method correlations (unique to this model), the variances of the
trait ratings cannot be additively decomposed into trait, method,
and error components.

In sum, a variety of psychometric models have been developed
with the goal of separating trait and method variability in infor-
mant ratings, and each of these models has specific advantages and
limitations. The common goal of all of these developments has
been to improve the analysis of MTMM data for evaluating con-
vergent and discriminant validity. Yet many researchers do not
collect multiple informant data with the intent of examining con-
struct validity. Often the primary goal is simply to improve con-
struct measurement. That is, researchers seek to generate inte-
grated scores of the construct of interest that optimally pool
information across informants who have unique access to and
perspectives on the target individuals. There is then less concern
with estimating intertrait correlations and greater concern with
scale development and the estimation of scores for use in substan-
tive hypothesis testing.

A New Approach

The psychometric modeling approach we develop in this article
is designed for the situation in which one wishes to evaluate and
measure a single construct for a single target based on the ratings
of multiple informants, and to extract integrated scale scores for
use in subsequent analysis. This situation clearly does not parallel
the usual MTMM design, and hence models initially developed for
MTMM data are not readily applicable.2 Bollen and Paxton (1998)
demonstrated, however, that one can often decompose informant
ratings into variation due to targets (reflected in all informants’
ratings, such as trait variation) and variation due to informants
(reflecting informants’ unique perspectives, contexts of observa-
tion, and subjective biases) even when data do not conform to the
traditional structure of an MTMM design. Bollen and Paxton noted

that this endeavor is greatly facilitated by the availability of
multiple observed indicator variables for the trait. In the present
article, we draw upon and extend this idea to present a novel model
for evaluating common and unique sources of variation in infor-
mant ratings.

Taking advantage of recent advances in item factor analysis, our
model is specified at the item level, leveraging the individual item
responses as multiple indicators of the trait. We stipulate a trifactor
model for item responses that includes a common factor to repre-
sent the consensus view of the target, perspective factors to rep-
resent the unique views (and biases) of the informants, and specific
factors for each item. It is conceptually advantageous to assume
these factors are independent contributors to informants’ ratings.
After introducing the model, however, we shall describe instances
in which one might find it useful or practically necessary to
introduce correlations between subsets of factors. It is also notable
that the trifactor model does not require that a specific informant
be designated as a reference (as required by the CTC(M � 1)
model), permitting the common factor to be interpreted as what is
common to all informants. Nor does the trifactor model represent
informant effects via contrasts between informants (as required by
the MEcom model), thus enabling the evaluation of putative
sources of bias for specific informants’ ratings.

The trifactor model has three primary strengths. First, with the
trifactor model we can evaluate the extent to which individual
items reflect the common factor, perspective factors, and item-
specific factors. This information can be quite useful in determin-
ing which items are the most valid indicators of the trait versus
those that are most influenced by the idiosyncratic views of the
rater. In contrast, scale-level data do not provide any information
on the validity of individual items. Further, many scales were
developed through item-level factor analyses conducted separately
by informant, yet such analyses cannot distinguish common factor
versus perspective factor variability. Thus an item may appear to
factor well with other items due to perspective effects alone even
if it carries little or no information about the trait. The trifactor
model separates these sources of variability to provide a more
refined psychometric evaluation of the items and scale.

A second strength of the trifactor model is that we can include
external predictors to understand the processes that influence in-
formants’ ratings. In particular, we can regress the common, per-
spective, and specific factors on predictor variables to evaluate
systematic sources of variability in trait levels, observer effects,
and specific item responses. For instance, we might expect the
child of a depressed parent to have a higher level of negative
affect, represented in the effect of parental depression on the
common factor. In addition, a parent who is depressed may be a
biased rater of his or her child’s negative affect. The latter effect
would be captured in the effect of parental depression on the
perspective factor of the depressed parent.

Finally, a third strength of the trifactor model is that it is
expressly designed to be used as a measurement model. That is, a
primary goal in fitting a trifactor model is to obtain scores on the

2 Indeed, many MTMM models are not identified for a single trait, at
least when fit to scale-level data. The availability of multiple items for each
method permits adaptation of some of these models to the measurement of
a single trait, although we are not aware of any single-trait applications of
these models in the literature.
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common factor. These scores provide an integrative measure of the
characteristic of interest that is purged of both known and un-
known sources of rater bias. Scores for the perspective factors may
also be of interest, for instance, when research focuses on why
informants evaluate targets differently. In this sense, the purpose in
fitting a trifactor model is quite different from the purpose of
fitting MTMM models, which are more typically aimed at evalu-
ating construct validity.

In sum, the trifactor model contributes to a strong tradition of
psychometric models for analyzing multiple informant data. It is
designed for the purpose of generating integrated scores from
item-level data across multiple informants, and it enables research-
ers to evaluate processes that influence both the common and
unique components of informant ratings. In what follows we
further explicate the trifactor model, and we discuss model esti-
mation and scoring. We then show how the model can be applied
through a real-data example.

The Trifactor Model for Multiple Informant Data

We begin by describing the decomposition of variability in
item responses that is the basis of the trifactor model. We then
describe how the model can be extended to incorporate predic-
tors. Following our description of the model, we discuss esti-
mation and scoring.

Unconditional Trifactor Model

The unconditional trifactor model consists of a set of observed
ratings from each informant, which we shall refer to as item
responses, and three types of latent variables. We assume that the
items all measure a single, unidimensional trait (an assumption
that, in practice, can be evaluated by goodness-of-fit testing). We
designate a given item response as yirt and its expected value as
�irt, where i indicates the item (i � 1, 2, . . . I), r indicates the rater
type (e.g., self, teacher, mother; r � 1, 2, . . . R), and t indicates the
target (t � 1, 2, . . . N). The item set and rater types are taken to
be fixed, whereas targets are assumed to be sampled randomly
from a broader population of interest. We shall initially assume
parallel item sets across raters, but later describe the application of
the model to differential item sets. The rater types may be struc-
turally different (e.g., coworker vs. supervisor) or interchangeable
(e.g., two randomly chosen coworkers), a distinction made by Eid
et al. (2008) for MTMM models (see also Nussbeck, Eid, Geiser,
Courvoisier, & Lischetzke, 2009, and the related concept of “dis-
tinguishability” as defined by Gonzalez & Griffin, 1999, and
Kenny, Kashy, & Cook, 2006). Latent variables represent sources
of variability in the item responses across targets. The three types
of latent variables are Ct, Prt, and Sit, representing, respectively, a
common factor, R unique perspective factors (one for each infor-
mant), and I specific factors (one for each item). The latent
variables are assumed to be normally distributed and independent.

The structure of the trifactor model is

gi(�irt) � �ir � �ir
(C)Ct � �ir

(P)Prt � �ir
(S)Sit. (1)

On the left side of the equation, gi(·) is a link function chosen to
suit the scale of yirt, such as the identity link for a continuous item
or the logit or probit link for a binary item. The link function can
vary across items, allowing for items of mixed scales types (Bar-

tholomew & Knott, 1999; Bauer & Hussong, 2009; Skrondal &
Rabe-Hesketh, 2004). The inverse of the link function, or gi

�1(·),
returns the expected value of the item response. For a continuous
item response the expected value would be a conditional mean, and
for a binary item response it would be a conditional probability of
endorsement (conditional on the levels of the factors).

On the right side of the equation, one can see the usual setup for
a factor-analytic model with an intercept vir and factor loadings
�ir

(C), �ir
(P), and �ir

(S) for the three types of factors. Conditional on
the factors, item responses are assumed to be locally independent.
An example trifactor model for 13 items rated by two informants,
mothers and fathers, is shown in path diagram form in Figure 1.
Note that each item loads on one of each type of factor: the
common factor, a unique perspective factor for the informant, and
a specific factor for the item.

The factors are conceptually defined and analytically identified
by imposing constraints on the factor loadings and factor correla-
tions. To start, all informant ratings are allowed to load on the
common factor Ct. This factor thus reflects shared variability in
the item responses across informants. It is considered to represent
the consensus view of the target across informants. This consensus
will reflect trait variability as well as other sources of shared
variability (Kenny, 1991). Informants may observe the target in the
same context, may relate to the target in similar ways, or may
directly share information with one another. For instance, mothers
and fathers both serve the role of parent, and both observe their
child’s behavior principally within the home environment. Parents
may also communicate with each other about their children’s
problem behavior. Given data from both parents, as in Figure 1, Ct

would represent the common parental view of the child’s behavior,
whatever its sources (trait, context, common perspective, mutual
influence). If the goal of fitting the model is to isolate general trait
variability within Ct, then other sources of shared variability
should be minimized in the research design phase, for instance, by
selecting dissimilar informants who observe the child in different
contexts (e.g., teacher and parent; Kraemer et al., 2003).

The unique perspective factors, P1t, P2t, . . . , PRt, each affect
only a single informant’s ratings and are assumed to be orthogonal

Figure 1. Unconditional trifactor model for parent report ratings on 13
items. The observed ratings are numbered by item; M and F subscripts
differentiate ratings of the mother and father, respectively. Intercepts and
random error terms are not shown in the diagram.
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to Ct and to each other. By imposing the constraint that the factors
are orthogonal, we ensure that each factor P captures variance that
is unique to a specific informant and that is not shared (i.e., does
not covary) with other informants (in contrast to Ct, which repre-
sents shared variability across sets of ratings, including shared
perspectives). Independent sources of variation across informants
might include distinct contexts of observation, differences in the
opportunity to observe behaviors, differences in informants’ roles
(e.g., mother, father, teacher), and subjective biases.

Finally, when the same item is rated by multiple informants, we
anticipate that the item responses will be dependent not only due
to the influence of the common factor but also due to the influence
of a factor specific to that item. For instance, if the item “cries
often” was administered as part of an assessment of negative
affect, we would expect informant ratings on this item to reflect
not just negative affect, globally defined across items, but also
something specific to the behavior crying. The specific factors, S1t,
S2t, . . . , SIt, account for this extra dependence. A given specific
factor, Sit, is defined to affect the responses of all informants to
item i but to no other items. The specific factors are also assumed
to be orthogonal to one another and all other factors in the model.
With these constraints, the specific factors capture covariation that
is unique to a particular item. As noted by Marsh (1993), modeling
specific factors for items rated by multiple informants is essential
to avoid inflating the common factor variance.

Further restrictions on the model parameters should be imposed
when some or all informants are interchangeable (Eid et al., 2008;
Nussbeck et al., 2009). For example, suppose that a researcher has
obtained self-ratings as well as the ratings from two randomly
chosen peers for each target. The self-ratings are structurally
different from the peer ratings, whereas the peers are interchange-
able. The trifactor model should be specified so that all parameters
(e.g., item intercepts, factor loadings, and perspective factor means
and variances) are constrained to equality across interchangeable
informants but allowed to differ across structurally different infor-
mants (Nussbeck et al., 2009).

For structurally different informants, the question may be raised
whether all parameters should differ across informant types. For
instance, mothers and fathers are structurally different, yet it may
be that both parents engage in a similar process when rating their
children. As in the broader literatures on measurement and struc-
tural invariance, similarity may be seen as a matter of degree, and
this can be assessed empirically within the model through the
imposition and testing of equality constraints (see, e.g., Gonzalez
& Griffin, 1999; Kenny et al., 2006, for tests of distinguishability
among dyad members). Equal item intercepts and factor loadings
would imply that informants interpret and respond to the items in
the same way. If, additionally, perspective factor variances are
equal, then this would imply that the decomposition of variance in
the item responses is identical across informants. Finally, if the
perspective factor means are also equal, this would imply that there
are no systematic differences across informants in their levels of
endorsement of the items. Indeed, if all of these equality con-
straints can be imposed, then the informants do not interpret the
items differently, nor does one type of informant provide system-
atically higher or more variable ratings than another, and the model
obtains the same form as the model for interchangeable raters. In
contrast, when some but not all equality constraints are tenable,
this may elucidate important differences between informants. For

instance, compared to mothers, fathers may be less likely to rate
their children as displaying negative affect (Seiffge-Krenke &
Kollmar, 1998), resulting in a mean difference between the unique
perspective factors for mothers and fathers. As such, empirical
tests of equality constraints across informants may provide sub-
stantively important information on whether and how the ratings of
structurally different informants actually differ.

As with all latent variable models, some additional constraints
are necessary to set the scale of the latent variables. We prefer to
set the means and variances of the common and specific factors to
0 and 1, respectively. For interchangeable informants, we similarly
standardize the scale of the perspective factors. In contrast, for
structurally different informants, we standardize the scale of one
perspective factor, while estimating the means and variances of the
other perspective factors.3 To set the scale of the remaining per-
spective factors, the intercept and factor loading for at least one
item must be equated across informants. Last, when only two
informants are present, the factor loadings for the specific factors
must be equated across informants, in which case the specific
factor essentially represents a residual covariance.

Standardizing the scale of the latent factors has the advantage
that all nonzero factor loadings can be estimated and compared in
terms of relative magnitude. Comparing �ir

(C) to �ir
(P) sheds light

on the subjectivity of the item ratings. A high value for �ir
(P)

indicates that responses to this item largely reflect the idiosyncratic
views of the informants, whereas a high value for �ir

(C) indicates
that the item responses largely reflect common opinions of the
target’s trait level. Similarly, if �ir

(S) is large relative to �ir
(C) and

�ir
(P), then this suggests that the item is not a particularly good

indicator of the general construct of interest (as most of the
variability in item responses is driven by the specific factor).
Inspection of the relative magnitude of the factor loadings can thus
aid in scale evaluation and development.

Conditional Trifactor Model

The conditional trifactor model extends the model described
above by including predictors of the different factors. Adding
predictors to the model serves at least two potential purposes. First,
by incorporating predictors, we bring additional information into
the model by which to improve our score estimates, a topic we will
explore in greater detail in the next section. Second, we can
evaluate specific hypotheses concerning sources of systematic
variability in the factors. For instance, if we think that a given
predictor influences trait levels, then we can regress the common
factor on that predictor. Alternatively, if we think that informants
with a particular background are more likely to rate a target’s
behavior in a specific direction, then we can use this background
characteristic to predict the perspective factors. We might also
regress perspective factors on contextual variables that vary within

3 Note that the model fit and interpretation are invariant to the choice of
which perspective factor to standardize. This choice influences the means
and variances of the remaining perspective factors, and hence also the scale
of the perspective factor scores for these informants (though not the scale
or scores of the common factor). Comparison of the perspective factor
means, variances, and scores across informants are only meaningful if
equality constraints can be imposed on the intercepts and factor loadings of
all (or many) items, implying factorial invariance (or partial factorial
invariance).
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informant type, such as amount of time spent with the target.
Finally, if we think that some items are more likely to be endorsed
for certain targets than others (irrespective of their global trait
levels), then we can regress the specific factors of these items on
the relevant target characteristics.

It is conceptually useful to distinguish between predictors that
vary only across targets and predictors that vary across informants
for a given target. For instance, if parental ratings of negative
affect were collected, predictors of interest might include the
child’s gender, whether the mother has a lifetime history of de-
pression, and whether the father has a lifetime history of depres-
sion. Child gender is a target characteristic, whereas history of
depression is informant specific. By designating target character-
istics by the vector wt and informant-specific characteristics by the
vectors xrt (one for each rater r), regression models for the factors
can be specified as follows:

Ct � �
(C)

� wt
'�(C) � �

r�1

R

xrt
� �r

(C) � �t
(C) (2)

Prt � �r
(P) � xrt

� �r
(P) � �rt

(P) (3)

Sit � �i
(S) � wt

'�i
(S) � �it

(S), (4)

where � designates an intercept term, � designates a vector of
target effects, � designates a vector of informant-specific effects,
� designates unexplained variability in a factor, and parenthetical
superscripts are again used to differentiate types of factors. The
trifactor model previously illustrated in Figure 1 is extended in
Figure 2 to include target and informant-specific effects on the
common factor and perspective factors. Specific factors can also
be regressed on target characteristics, but these paths are not
included in Figure 2 to minimize clutter. For interchangeable
informants, all parameters should again be equated across raters,
including the effects contained in the vectors �r

(C) and �r
(P) in

Equations 2 and 3, and the intercepts and residual variances of the
perspective factors. For structurally different raters, these param-
eters may be permitted to differ or may be tested for equality.

In Equation 2 the common factor is affected by both target and
informant characteristics. In our example, girls may be higher in
negative affect than boys—a target effect. Having a depressed
mother and/or father may also predict higher negative affect—an

Figure 2. Conditional trifactor model for parent report ratings on 13 items. The observed ratings are numbered
by item; M and F subscripts differentiate ratings of the mother and father, respectively. The predictor w is a target
characteristic, and the predictors xM and xF are informant-specific predictors. Intercepts and error terms and
disturbances are not shown in the diagram.
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informant-specific effect. These effects on the common factor are
shown as directed arrows in Figure 2 (child gender would be w and
parental history of depression would be xM and xF for mothers and
fathers, respectively). In contrast, for perspective factors, the focus
is exclusively on informant-specific predictors. Equation 3 shows
that the perspective factor of a given informant is predicted by his
or her own characteristics but not the characteristics of other
informants. For instance, an informant with a history of depression
might provide positively biased ratings of target negative affect. A
history of depression for one parent does not, however, necessarily
bias the ratings of the other parent. Thus, in Figure 2, xM exerts an
effect on the perspective factor for the mother, and xF exerts an
effect on the perspective factor for the father. Last, the regression
model for the specific factors includes only target effects. For
instance, child gender could be allowed to influence the item “cries
often” if this symptom was more likely to be expressed by girls
than boys even when equating on levels of negative affect. The
model shown in Figure 2 would then be extended to include a path
from w to the specific factor for “cries often.”

With the incorporation of these predictors, the assumptions
previously made on the factors in the unconditional trifactor model
now shift to the residuals. Specifically, each residual � in Equa-
tions 2–4 is assumed to be normally distributed and orthogonal to
all other residuals. Conditional normality and independence as-
sumptions for the factors may be easier to justify in practice. For
instance, suppose that parents with a lifetime history of depression
provide positively biased ratings of their children’s negative affect.
This bias is detectable when one parent and not the other has
experienced depression, but suppose that both parents have expe-
rienced depression. In the unconditional trifactor model, this
would result in a higher score for the child on the common factor
for negative affect, because the bias is shared across both parents’
ratings. The conditional trifactor model, in contrast, would account
for this shared source of bias, removing its contribution to the
common factor and making the assumption of conditional inde-
pendence for the perspective factors more reasonable.

Similarly, the constraints needed to identify the model shift from
the factor means and variances in the unconditional model to the
factor intercepts and residual variances in the conditional model.
For the conditional model, we generally prefer to set the intercepts
and residual variances of the common factor and specific factors to
0 and 1. For interchangeable raters, the same constraints are placed
on the perspective factor intercepts and residual variances. In
contrast, for structurally different raters, we prefer to standardize
the scale of one perspective factor while freely estimating the
intercepts and residual variances of the remaining factors. This
choice requires the intercept and factor loading of at least one item
to be set equal across informants (see Footnote 3).

These scaling choices are convenient but not equivalent to
setting the marginal means and variances of the factors to 0 and 1,
as we recommended for the unconditional model. Two implica-
tions of this scaling difference are noteworthy. First, the raw
intercept and factor loading estimates for the items are not directly
comparable between the unconditional and conditional models.
Second, unlike the unconditional model in which the marginal
variances of the factors were equated (except possibly for some
perspective factors), the marginal variances of the factors will
generally differ within the conditional model. For this reason, one
cannot directly compare the magnitudes of the raw factor loading

estimates across types of factors in the conditional model. In both
instances, however, such comparisons can be made when using the
conditional model by computing standardized estimates.

Potential Modifications to the Model Structure

In both the unconditional and conditional trifactor model
structures, we imposed certain assumptions to improve the
clarity of the model and its interpretation. Not all of these
assumptions are strictly necessary to identify the model, and in
certain cases, some may be viewed as theoretically unrealistic or
inconsistent with the data. These assumptions may then be relaxed,
albeit with the risk of muddying the conceptual interpretation of
the factors. We revisit two of these assumptions here, beginning
with the assumption that all factors are uncorrelated.

Within the unconditional model, the assumption of orthogonal-
ity enables us to define the perspective factors as the nonshared,
unique components of variability in the item responses of the
informants. It also allows us to state that the common and specific
factors alone account for the shared variability across informants,
with the common factor representing the broader construct of
interest (as defined by the full item set) and the specific factors
representing narrower constructs (as defined by single items).
Within the conditional model, these same definitions of the factors
pertain after controlling for the predictors (which may also account
for some common variability across items and/or informants).

In some cases, however, a researcher may have a theoretical
rationale for permitting correlations among a subset of factors in
the model. For instance, if the content of two items overlapped,
such as “often feels lonely” and “feels lonely even when with
others,” then one might allow the specific factors for the two items
to correlate. In effect, the correlation between these specific factors
would account for the influence of a minor factor (loneliness) that
jointly affects both items but that is narrower than the major factor
of interest (negative affect). Failing to account for local depen-
dence due to minor factors can lead to the locally dependent items
“hijacking” the major factor, as evidenced by much higher factor
loadings for these items relative to other items. For the trifactor
model, in particular, failing to account for local dependence among
the specific factors would be expected to distort the factor loadings
for the common factor, as this is the only other factor in the model
that spans between informants. Introducing correlated specific
factors may thus aid in avoiding model misspecifications that
would otherwise adversely impact the estimation of the common
factor. The trade-off, however, is that the conceptual distinctions
between the factors become blurred: The common factor no longer
reflects all common variability across raters other than that unique
to particular items, since some common variability is now ac-
counted for by the correlations among specific factors. More
cynically, the introduction of many correlated specific factors
could be motivated solely by a desire to improve model fit, and
might occlude a more profound misspecification of the model
(e.g., a multidimensional common factor structure). The inclusion
of correlated specifics should thus be justified conceptually (not
only empirically).

As with the specific factors, the perspectives of some informants
may be more similar than others. For instance, research on em-
ployee evaluations suggests that an average of 22% of the variance
in job performance ratings can be attributed to common rater
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“source” effects (i.e., informants originating from the same con-
text), over and above variance attributable to idiosyncratic rater
characteristics (Hoffman, Lance, Bynum, & Gentry, 2010; see also
Mount, Judge, Scullen, Sytzma, & Hezlett, 1998; Scullen, Mount,
& Goff, 2000). Similarly, if the informants were mothers, fathers,
and teachers, one might expect mother and father ratings to be
more similar to one another than to teacher ratings. We might then
find much higher factor loadings for the parental ratings than the
teacher ratings, as the common factor would be required to account
for the higher similarity of the parent ratings. Introducing a cor-
relation between the parent perspective factors would account for
overlapping role and context effects for mothers and fathers,
enabling the common factor to integrate the across-role, across-
context ratings of teachers and parents more equitably. It is im-
portant to recognize, however, that introducing correlated perspec-
tive factors for informants originating from a common setting or
context changes the definition of the common factor, in effect
reweighting how information is integrated across informants. The
conceptual definition of the common factor is then determined
predominantly by which perspective factors remain uncorrelated.

The other assumption that we shall revisit concerns which types
of predictors are allowed to affect which types of factors. Equa-
tions 2–4 included only a subset of theoretically plausible associ-
ations between known characteristics of the targets and informants
and the latent factors that underlie informant ratings. Specifically,
we allowed both target and informant characteristics to affect the
common factor, but we restricted the predictors of the perspective
factors to informant characteristics and the predictors of the spe-
cific factors to target characteristics. These restrictions are not
strictly necessary and could be relaxed if there was a conceptual
motivation or an empirical imperative to do so. For instance, if
mothers rate girls as higher than boys on negative affect but fathers
do not, then the perspective factor for one or the other parent could
be regressed on child gender by adding target characteristic effects
to Equation 3. Cross-informant effects could potentially also be
added to Equation 3. Similarly, Equation 4 could be expanded to
include informant characteristics or item-specific predictors (e.g.,
a predictor differentiating whether an item is positively or nega-
tively worded). We regard the simpler specifications in Equations
2–4 to be conceptually and practically useful for a wide variety of
potential applications of the trifactor model, but decisions about
which predictors to include should be driven by the theoretical
underpinnings of a given application.

Aside from these two assumptions of the model, we shall also
reconsider one assumption we have made concerning the data. To
this point, we have assumed for simplicity that item sets are
parallel across informants, that is, that all informants provide
ratings on the same set of items. This parallelism is theoretically
desirable because it allows for the estimation of the specific factors
and the separation of specific factor variance from random error.
But the use of parallel items may not always be feasible, particu-
larly when informants observe the target in different contexts with
different affordances for behavior (e.g., behaviors at school or
work vs. behaviors at home). The trifactor model is still applicable
with nonparallel item sets; however, for items rated by only one
informant, the specific factors must be omitted from the model
specification. For these items, the analyst must be mindful that
specific factor variance is conflated with random error. One im-
plication is that the reliability of the item may be underestimated.

Nevertheless, perspective and common factor loadings can be
estimated and compared for these items. For structurally different
informants, equivalence tests should be restricted to the subset of
parallel items (if any).

Estimation

Estimation of the trifactor model is straightforward if all ratings
are made on a continuous scale. The model can then be fit by
maximum likelihood in any of a variety of structural equation
modeling (SEM) software programs (or by other standard linear
SEM estimators). When items are binary or ordinal, however,
estimation is more challenging. We provide a cursory review of
this issue here; for a more extensive discussion of estimation in
item-level factor analysis, see Wirth and Edwards (2007).

Maximum likelihood estimation with binary or ordinal items is
complicated by the fact that the marginal likelihood contains an
integral that does not resolve analytically and must instead be
approximated numerically. Unfortunately, the computing time as-
sociated with the most common method of numerical approxima-
tion, quadrature, increases exponentially with the number of di-
mensions of integration. As typically implemented, the dimensions
of integration equal the number of factors in the model. Given the
large number of factors in the trifactor model (1 � R � I), this
approach would seem to be computationally infeasible. Cai
(2010c), however, noted that for certain types of factor-analytic
models, termed two-tier models, the dimensions of integration can
be reduced. The trifactor model can be viewed as a two-tier model
where the common and perspective factors make up the first tier
and the specific factors make up the second tier. Under Cai’s
approach, the dimensions of integration for the trifactor model can
then be reduced to a more manageable number, and computation-
ally efficient estimates can be obtained by maximum likelihood
with quadrature. Another option is to implement a different
method of numerical approximation, for instance, Monte Carlo
methods. In particular, the Robbins–Monro Metropolis–Hastings
maximum likelihood algorithm developed by Cai (2010a, 2010b)
is also a computationally efficient method for fitting the trifactor
model. Similarly, Bayesian estimation by Markov chain Monte
Carlo (MCMC) approximates maximum likelihood when priors
are selected to be noninformative (Edwards, 2010).

An alternative way to fit the trifactor model is to use a tradi-
tional, limited-information method of estimation that is somewhat
less optimal statistically but quite efficient computationally. Mo-
tivating this approach is the notion that binary and ordinal re-
sponses can be viewed as coarsened versions of underlying con-
tinuous variables (Christoffersson, 1975; Muthén, 1978; Olsson,
1979). For instance, the binary item “lonely” reflects an underlying
continuous variable “loneliness.” Assuming the underlying contin-
uous variable to be normally distributed corresponds to a probit
model formulation (e.g., choosing g in Equation 1 to be the probit
link function). Based on this assumption and the observed bivariate
item response frequencies, polychoric correlations can be esti-
mated for the underlying continuous variables. Finally, the model
is fit to the polychoric correlation matrix with a weighted least
squares estimator. The theoretically optimal weight matrix is the
asymptotic covariance matrix of the polychoric correlations, but
this weight matrix is unstable except in extremely large samples
(Browne, 1984; Muthén, du Toit, & Spisic, 1997). In practice, a
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diagonal weight matrix is often employed as a more stable alter-
native (Muthén et al., 1997). Simulation studies have demonstrated
that this diagonally weighted least squares (DWLS) estimator
performs well even at relatively modest sample sizes (Flora &
Curran, 2004; Nussbeck, Eid, & Lischetzke, 2006).

Several issues beyond computational efficiency may also influ-
ence estimator selection. Practically, weighted least squares and
DWLS are widely accessible and easily implemented in a variety
of SEM software programs. Further, analysts using these estima-
tors have access to well-developed tests of model fit and goodness-
of-fit criteria from which to judge the suitability of the model for
the data. Maximum likelihood and Bayesian MCMC estimation
approaches, however, more favorably accommodate missing data.
In this context, missing data are most likely to occur due to
informant nonresponse, such that all items for a given informant
are missing. Both maximum likelihood and MCMC estimation
include cases with partial data under the assumption that the
missing data are missing at random. In contrast, weighted least
squares estimators are often implemented under the assumption of
complete data, requiring listwise deletion and implicitly assuming
missing data are missing completely at random. Within some
software (e.g., Mplus), partially missing data are permitted with
weighted least squares or DWLS under the assumption that the
missing data process may be covariate dependent (Asparouhov &
Muthén, 2010).4

Another issue that may influence estimation is factor loading
reflection (Loken, 2005). Specifically, an equivalent fit to the data
can be obtained by reversing the polarity of a factor (e.g., multi-
plying all factor loadings for a factor by �1). In practice this
problem is most likely to affect doublet specific factors (occurring
when only two informants rate each item). For maximum likeli-
hood and weighted least squares estimation, factor loading reflec-
tion is largely a nuisance that can be avoided by providing positive
start values for the factor loadings or by judiciously implementing
positivity constraints. With MCMC estimation, however, factor
loading reflection can be a more serious problem as the iterative
process constructs a bimodal posterior distribution by sampling
positive and negative values for the factor loadings but “converg-
ing” on neither estimate. Informative priors, particularly for dou-
blet specific factor loadings, can help to mitigate this problem.

Scoring

After fitting the model, it will often be of interest to obtain score
estimates for the sample that can be used in later data analyses. For
instance, the primary goal behind our development of the trifactor
model was to obtain negative affect scores that we could subse-
quently use in longitudinal analyses to predict the onset of sub-
stance use disorders (Hussong, Jones, Stein, Baucom, & Boeding,
2011). Rather than include the mother’s ratings and father’s ratings
of the child as separate measures, we wished to obtain a single,
integrated, multi-informant measure that would be purged of the
idiosyncratic views of the specific informants, including potential
rater bias. Thus our focus was on obtaining valid and reliable
common factor scores. In other applications, however, the perspec-
tive factor score estimates may be of equal or greater interest. For
instance, Lance et al. (2008) and De Los Reyes (2011) argued that
rating discrepancies across informants are substantively meaning-

ful and should not be regarded simply as a type of measurement
error.

Score estimates for the factors are obtained similarly regardless
of the method of estimation used to fit the trifactor model. Spe-
cifically, score estimates are computed as either the mean or the
mode of the posterior distribution of the factor for the individual
given his or her observed item responses and the parameter esti-
mates for the model (see Skrondal & Rabe-Hesketh, 2004, Sec-
tions 7.2–7.4). With continuous items, the mean and mode coin-
cide and can be computed via the regression method
(Bartholomew & Knott, 1999; Thomson, 1936, 1951; Thurstone,
1935). With binary or ordinal items the mean and mode are not
equal but tend to be highly correlated. In the literature on item
response theory, the mean is usually referred to as the expected a
posteriori (EAP) estimate, and the mode is usually referred to as
the modal a posteriori (MAP) estimate, with the latter being
somewhat easier to compute (Thissen & Orlando, 2001).5

Both EAPs and MAPs are “shrunken” estimates, meaning that
the scores generated for the target will be closer to the factor mean
(across targets) as the amount of information available for the
target (e.g., number of items rated) decreases. Conceptually, we
are using what we know about the population in general to im-
prove our score estimates for each specific individual. In the
unconditional trifactor model, all scores for a given factor are
shrunken toward the same marginal mean. In contrast, in the
conditional trifactor model, scores are shrunken toward the con-
ditional mean of the factor given the values of the predictors
(Bauer & Hussong, 2009). In other words, rather than use the
overall average to improve our score estimate for the target, we can
use the average for people who are similar to the target with
respect to the predictors. For example, if the common factor is
regressed on the sex of the target, then scores for girls will be
shrunken toward the conditional mean for girls and scores for boys
will be shrunken toward the conditional mean for boys. In this
sense, the scores obtained from a conditional trifactor analysis are
“tuned” to the characteristics of the target and informants.

Summary

In total, the trifactor model provides a number of key advantages
for modeling multi-informant data. First, the model does not
require ratings on multiple traits or multiple targets, as the focus is
not on construct validity but on construct measurement. Second,
because the model is fit to item-level data from multiple infor-
mants, it is possible to evaluate item quality in a way that is not
possible when analyzing scale-level data or single-informant item-
level data. Third, the conditional formulation of the trifactor model
permits tests of hypotheses about putative sources of trait variabil-
ity, informant differences, and item properties. Finally, the model
can be used to create and evaluate scores for the factors for use in
subsequent analyses. When generated from the conditional trifac-

4 See Schafer and Graham (2002) for an accessible overview of missing
data processes and their implications for data analysis.

5 Note that even if the factors are restricted to be marginally orthogonal
in the fitted model, the score estimates may nevertheless be correlated. For
continuous items, one can ensure orthogonality of the score estimates by
using the alternative scoring method of Anderson and Rubin (1956). The
regression method score estimates are, however, more efficient (having
smaller standard errors).
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tor model, these scores are tuned to the specific characteristics of
the targets and informants.

We now turn to an empirical application of the trifactor model
to illustrate these advantages of the model.

Example: Parent-Reported Negative Affect

Our demonstration derives from an integrative data analysis of
two longitudinal studies of children of alcoholic parents and
matched controls (children of nonalcoholic parents): the Michigan
Longitudinal Study (MLS; Zucker, Ellis, Fitzgerald, Bingham, &
Sanford, 1996; Zucker et al., 2000) and the Adolescent and Family
Development Project (AFDP; Chassin, Rogosch, & Barrera,
1991). As noted by Curran et al. (2008), a major challenge in
conducting integrative data analysis is measurement (see also
Bauer & Hussong, 2009; Curran & Hussong, 2009). In combining
longitudinal studies, in particular, one must be sensitive to age-
related changes in the construct and the age appropriateness of the
items. In the present case, we sought to obtain a measure of
negative affect for children between 2 and 18 years of age based on
ratings provided by both mothers and fathers. In fitting the trifactor
model to this data, our aims were threefold. First, we sought to
explicate the sources of variance, both random and systematic,
that underlie parent ratings of negative affect. Second, we
wished to evaluate potential study, age, familial risk, and gen-
der differences in negative affect, both as broadly defined
across the item set and as narrowly measured by specific items.
Third, we sought to generate valid and reliable negative affect
scores that would account for potential rater biases, for in-
stance, due to parental depression.

Sample

Like many psychometric models, the trifactor model assumes
independence of observations. This assumption would be violated

if we applied the model directly to the full set of longitudinal data.
We thus pursued the strategy recommended by Curran et al. (2008)
to select ratings randomly from a single age for each participant for
inclusion in the trifactor analysis. We refer to this cross-sectional
draw from the data as the calibration sample (N � 1,080). It is this
sample that is used to fit, evaluate, and refine the model. Once the
optimal model has been determined, however, the estimates ob-
tained from the calibration sample can be used to generate factor
score estimates for the full set of observations, facilitating subse-
quent longitudinal analyses.

To check the stability of our results, we also randomly selected
a second set of ratings for each target (excluding the ages selected
for the calibration sample) and refit the final model. We shall refer
to this second cross-sectional sample as the cross-validation sam-
ple (N � 975). More ideally, we would cross-validate the model on
a truly independent sample; nevertheless, this second sample pro-
vided an opportunity to evaluate the stability of the parameter
estimates and scores obtained from the model.

Table 1 shows the number of observations at each age from each
study present in the original longitudinal sample, the calibration
sample, and the cross-validation sample.

Measures

Thirteen binary items present in both the MLS and AFDP
studies (originating from the Child Behavior Checklist; Achenbach
& Edelbrock, 1978) were identified as indicators of negative affect
for inclusion in the trifactor analysis, as shown in Table 2. For
conditional models, target-specific characteristics of interest were
study (58% from MLS), gender (64% male), and age (M � 12.07
years, SD � 3.84; range: 2–18). Informant-specific characteristics
of interest were lifetime history of an alcohol use disorder (AUD;
24% of mothers, 65% of fathers), depression or dysthymia (14% of
mothers, 9% of fathers), or antisocial personality disorder (ASP;
1% of mothers, 12% of fathers). ASP almost always co-occurred

Table 1
Number of Observations by Age and Study

Age (years)

Full longitudinal
sample Calibration sample

Cross-validation
sample

MLS AFDP MLS AFDP MLS AFDP

2 11 2 2
3 137 45 24
4 111 27 27
5 91 30 20
6 127 29 29
7 122 31 29
8 107 25 30
9 160 41 42

10 150 32 43 9 38 12
11 131 107 36 42 31 27
12 172 191 55 55 55 73
13 154 266 45 96 48 82
14 149 294 48 89 43 103
15 159 247 54 84 33 87
16 146 150 54 64 32 42
17 139 54 50 15 35 19
18 25 4 9 0 8 4

N 2,091 1,345 626 454 526 449

Note. MLS � Michigan Longitudinal Study; AFDP � Adolescent and Family Development Project.
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with an AUD; thus impairment was assessed via three binary
parental impairment variables indicating (a) history of depression
or dysthymia, (b) history of an AUD without ASP, and (c) history
of an AUD with ASP.

Fitting the Trifactor Model

Unconditional model. We fit the model shown in Figure 1 to
the calibration sample data using the WLSMV (DWLS) estimator
in Mplus version 6.1 (Muthén & Muthén, 2010).6 Because mothers
and fathers are structurally different informants, the underlying
process by which they rate the negative affect of their child may
differ. As such, we initially allowed the model parameters to differ
across the two informants. Each factor was scaled to have a mean
of 0 and variance of 1 with the exception that the father perspective
factor mean and variance were freely estimated. Identification
constraints were imposed to equate the intercepts and factor load-
ings of one item across mothers and fathers. Since the specific
factors were doublets, we avoided the factor loading reflection
problem by imposing boundary constraints on the loadings of these
factors. Overall, this model provided good fit to the data,
�2(261) � 550.69, p 	 .001, root-mean-square error of approxi-
mation (RMSEA) � .03, 90% CI [.028, .036], comparative fit
index (CFI) � .96, Tucker–Lewis index (TLI) � .95.

We next evaluated the degree of structural similarity between
mothers’ and fathers’ ratings. We began by imposing equality
constraints only on the item intercepts and factor loadings (i.e.,
factorial invariance). The fit of this model was still good,
�2(297) � 569.73, p 	 .001, RMSEA � .03, 90% CI [.026,
.033], CFI � .96, TLI � .96, but significantly worse than the
unrestricted model, 
�2(36) � 62.50, p � .004.7 Because the
chi-square difference test is sensitive to sample size, potentially
having power to detect even trivial differences between param-
eter values, Cheung and Rensvold (2002) suggested retaining
invariance constraints that do not lead to a meaningful decre-
ment in goodness-of-fit indices (i.e., RMSEA, CFI, TLI). More
recently, however, Fan and Sivo (2009) argued that changes in
goodness-of-fit indices are insensitive to misspecification of the
mean structure, particularly in large models. Consistent with the

latter observation, further inspection of the results suggested
that, all else being equal, fathers were more likely to endorse
Item 3 and mothers were more likely to endorse Items 5, 6, and
12 (see Table 2). Allowing only the intercepts of these four
items to differ across informants resulted in a nonsignificant
chi-square difference relative to the unrestricted model,

�2(32) � 45.02, p � .06.

Given this partial invariance of the factor structure across
mothers and fathers, we proceeded to test whether the perspec-
tive factor means and variances differed between the two in-
formants. Equating these parameters (i.e., setting the perspec-
tive factor mean and variance to 0 and 1, respectively, for both
informants) did not significantly worsen the fit of the model,

�2(2) � 1.34, p � .51, and the absolute fit of this model was
also good, �2(295) � 511.16, p 	 .001, RMSEA � .03, 90% CI
[.022, .030], CFI � .97, TLI � .97. Thus, mothers and fathers
functioned similarly to interchangeable raters, with the impor-
tant exception that they differentially endorsed four out of 13
items.

Conditional model. In extending to the conditional trifactor
model, we adopted the scaling convention to set the intercept
and residual variance of the factors to 0 and 1, respectively. The
model was then fit in a sequence of steps, ordered by theoretical
priority. First, we regressed the common factor on potential
sources of target variability. We evaluated target effects of
study, gender, age (including linear, quadratic, and cubic
trends), and all two-way interactions between these predictors,

6 We also fit the unconditional trifactor model using the two-tier and
Robbins–Monro maximum likelihood algorithms as well as by MCMC.
Accounting for differences between the logit and probit scales, the param-
eter estimates obtained by these methods were similar to those obtained by
DWLS, and the factor score estimates were very highly correlated.

7 Use of the WLSMV estimator within Mplus produces a robust, mean-
and variance-adjusted chi-square test statistic of overall model fit. Chi-
square difference tests between nested models cannot be computed as the
simple difference in these values. Therefore, throughout this article, robust
chi-square difference tests were computed with the approach developed by
Satorra (2000) and Satorra and Bentler (1999) and implemented in Mplus
with the DIFFTEST command (Asparouhov & Muthén, 2006).

Table 2
Numbers of Nonmissing Values (N) and Endorsement Rates for Negative Affect Items in the
Calibration Sample

Item

Mother Father

N Endorse N Endorse

1. Lonely 1,048 0.17 905 0.18
2. Cries a lot 1,048 0.17 906 0.14
3. Fears do something bad 1,047 0.16 904 0.20
4. Has to be perfect 1,049 0.41 905 0.39
5. No one loves him/her 1,048 0.23 906 0.18
6. Worthless or inferior 1,049 0.22 904 0.16
7. Nervous/tense 1,049 0.21 906 0.22
8. Fearful/anxious 1,048 0.18 906 0.16
9. Feels guilty 1,049 0.11 906 0.09

10. Sulks a lot 1,047 0.27 907 0.25
11. Sad/depressed 1,048 0.23 907 0.19
12. Worries 1,048 0.38 905 0.29
13. Others out to get him/her 1,048 0.10 906 0.10
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trimming nonsignificant interactions from the final model.8 In
Figure 2, this block of predictors replaces the single predictor
w. Simultaneously, we included informant-specific effects of
parental impairment on the common factor.9 The parental im-
pairment variables thus replace xM and xF in Figure 2, with
paths included from these predictors to the common factor. The
effects of the parental impairment variables were initially al-
lowed to differ over informants, and this model provided good
fit to the data, �2(596) � 876.41, p 	 .001, RMSEA � .02, 90%
CI [.019, .025], CFI � .95, TLI � .95. Constraining these
effects to be equal did not significantly worsen model fit,

�2(3) � 2.10, p � .55; �2(599) � 860.60, p 	 .001,
RMSEA � .02, 90% CI [.018, .025], CFI � .96, TLI � .95. We
thus retained these equality constraints.

Second, we regressed each perspective factor on the impairment
indicators for the corresponding informant. Referring again to
Figure 2, we added the paths from xM and xF to PM and PF, where
each x stands for a set of impairment variables. Here it is important
to differentiate the two effects of the parental impairment vari-
ables. The regression of the common factor on the impairment
variables captures the potentially real elevation of negative affect
of children with one or more impaired parents. To the extent that
the negative affect of children of impaired parents is actually
higher than that of other children, this should be reflected in the
ratings of both parents, as transmitted by the common factor,
irrespective of which parent might be impaired. Prior literature
suggests, however, that impaired parents may also provide artifi-
cially elevated ratings of negative affect. The regression of the
perspective factors on the impairment variables captures this pos-
sible source of rater bias, which should be observed only in the
ratings of the impaired parent and not an unimpaired coparent. We
again initially allowed these effects to differ by informant,
�2(593) � 846.54, p 	 .001, RMSEA � .02, 90% CI [.018, .024],
CFI � .96, TLI � .95, and then constrained them to be equal,
�2(596) � 838.79, p 	 .001, RMSEA � .02, 90% CI [.017, .024],
CFI � .96, TLI � .96. As the chi-square difference test, 
�2(3) �
2.37, p � .50, was not significant, we retained the more parsimo-
nious structure with equal effects across informants.

The fit of the conditional trifactor model at this step was
already quite good; nevertheless, to be conservative, we pro-
ceeded to evaluate potential target effects on the specific factors
that, if falsely excluded from the model, might distort the
pattern of effects observed for the common factor (akin to the
assessment of differential item functioning in item response
theory). Because we had no theoretical predictions concerning
the specific factors, we identified these effects using an empir-
ical approach. Specifically, we examined modification indices
to identify items for which target-specific effects might explain
systematic variation. The mechanical use of modification indi-
ces in structural equation models has been criticized (appropri-
ately) for failing to identify model misspecifications accurately
(MacCallum, Roznowski, and Necowitz, 1992), but more tar-
geted uses of modification indices in measurement models have
proven beneficial (Glas, 1998; Yoon & Millsap, 2007). Addi-
tionally, to reduce the likelihood of capitalizing on chance, we
adopted a conservative criterion for effect inclusion: a modifi-
cation index exceeding 6.64, the critical value for a single
degree-of-freedom chi-square test with an alpha level of .01.

Predictors of the specific factors were added to the model one
at a time, beginning with the effect displaying the largest
modification index. Using this approach, we detected target
effects for the specific factors of Items 1, 2, 3, 4, 8, 9, and 12
(see Table 2). The fit of the final model including these effects
was excellent, �2(586) � 718.34, p � .001, RMSEA � .015,
90% CI [.011, .019], CFI � .98, TLI � .98.

Interpretation

Raw and standardized intercept and factor loading estimates
for the final trifactor model are presented in Table 3. The
standardized solution is particularly informative, as the magni-
tudes of the standardized factor loadings are directly compara-
ble and indicate the relative effects of the common, perspective,
and specific factors on the items. Comparing columns of Table
3, one can see that the common factor loadings are often lower
than the perspective and specific factor loadings. Thus the
negative affect common factor often contributes less to the item
ratings than variation uniquely associated with the informant or
that is specific to a given item. Comparing rows of Table 3, one
can see which items most reflect the common factor and are
least susceptible to perspective differences. At the extreme, one
can see that the item “has to be perfect” has a very small loading
on the common factor. Endorsement of this item co-occurs with
other items almost exclusively due to unique perspective ef-
fects, something that would not be revealed in a factor analysis
of a single informant’s ratings. It is encouraging to note, how-
ever, that the items that might be considered core features of
negative affect also tend to have the highest common factor
loadings (e.g., Items 1, 5, 6, 10, 11, and 13).

Table 4 presents raw and partially standardized estimates for
the effects of the regressors on the factors. The partially stan-
dardized estimates are computed by standardizing the factors
but leaving the regressors in their raw scales, and are particu-
larly useful when predictors are binary (e.g., study, gender, and
impairment) or have a meaningful metric (e.g., age). Sex-
specific patterns of developmental change were detected for the
common factor, as depicted in Figure 3. A study difference was
also observed for the common factor: Targets from MLS dis-
played lower levels of negative affect than targets from AFDP.
In addition, parental impairment effects on the common and
perspective factors indicate that depressed or ASP parents in-
deed have children with higher negative affect levels, but
depressed parents in particular perceive the negative affect of
their children to be even greater than it is commonly perceived
to be (i.e., their ratings are biased).

The last effects listed in Table 4 are for the specific factors.
Most of these effects are for study, with some items being
endorsed less frequently in the MLS sample than would be
expected due to study differences on the common factor alone.
Age trends are observed for several items as well. In particular,
“lonely” and “cries a lot” show steeper declines with age than
the common factor. “Has to be perfect” also follows a distinct

8 To facilitate estimation and interpretation given the presence of power
terms and interactions, age was centered at 10 years.

9 Given some missing data on the impairment variables, the sample size
for this and subsequent models was reduced to 947.
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age trend, but this is not terribly surprising given that this item
did not load on the common factor. Finally, there is a gender
difference on the item “cries a lot.” This item is more likely to
be endorsed for girls than boys even after accounting for gender
differences in the common factor of negative affect.

Sensitivity Analysis

To examine the stability of the final model, we refit the final
conditional trifactor model to the cross-validation sample, once
again obtaining excellent fit, �2(586) � 782.42, p 	 .001,
RMSEA � .02, 90% CI [.016, .023], CFI � .97, TLI � .96. The
intercepts, loadings, and factor regression parameter estimates
obtained from the two samples are compared in Figure 4.
Although some discrepancies were observed for more extreme
estimates, the two sets of estimates were generally quite similar
and were correlated at .91. We also examined the stability of the
scores obtained from the final model. Specifically, we gener-
ated both common factor and perspective MAP factor scores for
the full longitudinal data based on each set of estimates. The
correlations between the two sets of scores were between .97
and .98, as shown in the scatterplots in Figure 5, indicating a
high level of stability.

Comparison to Usual Practice

We also considered whether the scores generated by the
trifactor model differed meaningfully from what might be ob-
tained with more conventional strategies. The alternative scor-
ing strategies we implemented ranged from simple to complex.
The simplest approach was to average the proportion of items
endorsed by the mother with the proportion of items endorsed
by the father. The next simplest approach was to compute the
proportion of items endorsed by either the mother or the father.
The more complex approaches we considered involved factor
analyzing the item responses of mothers and fathers separately,
obtaining factor scores for each reporter and then an average
factor score. In the first variant of this approach, we obtained
the factor scores from a standard two-parameter logistic item
response theory model (without differential item functioning).
In the second variant, we implemented a moderated nonlinear
factor analysis model to allow for predictor effects on the factor
as well as potential differential item functioning (Bauer &
Hussong, 2009). In contrast to the trifactor model, the appro-
priate application of these alternative scoring approaches is
less clear when data are missing for an informant. In those
instances scores were based solely on the ratings of the avail-
able informant.

Table 3
Raw and Standardized Intercept and Factor Loading Estimates From the Conditional Trifactor Model Fit to the Calibration Sample
(Final Model)

Item Intercept

Factor loading

Common Perspective Specificity

Raw estimates
1. Lonely �0.85 0.73 0.62 0.49
2. Cries a lot �0.60 0.65 0.59 0.81
3. Fears do something bad �0.82 (M), �0.76 (F) 0.41 0.70 0.59
4. Has to be perfect 0.45 0.11 0.78 0.80
5. No one loves him/her �0.42 (M), �1.08 (F) 0.97 0.71 0.40
6. Worthless or inferior �1.18 (M), �1.61 (F) 1.06 1.00 0.67
7. Nervous/tense �2.34 0.66 1.60 1.85
8. Fearful/anxious �1.18 0.37 1.16 0.65
9. Feels guilty �2.49 0.87 1.52 1.11

10. Sulks a lot �0.50 0.66 0.70 0.00
11. Sad/depressed �1.22 0.99 0.87 0.01
12. Worries 0.26 (M), �0.24 (F) 0.58 1.18 0.76
13. Others out to get him/her �2.05 0.76 0.67 0.40

Standardized solution
1. Lonely �0.53 0.52 0.39 0.50
2. Cries a lot �0.33 0.41 0.33 0.69
3. Fears do something bad �0.55 (M), �0.51 (F) 0.31 0.48 0.43
4. Has to be perfect 0.28 0.08 0.50 0.58
5. No one loves him/her �0.24 (M), �0.64 (F) 0.65 0.42 0.23
6. Worthless or inferior �0.59 (M), �0.81 (F) 0.60 0.51 0.34
7. Nervous/tense �0.84 0.27 0.59 0.67
8. Fearful/anxious �0.62 0.22 0.62 0.50
9. Feels guilty �1.00 0.40 0.62 0.49

10. Sulks a lot �0.35 0.52 0.49 0.00
11. Sad/depressed �0.69 0.64 0.51 0.00
12. Worries 0.14 (M), �0.12 (F) 0.35 0.63 0.43
13. Others out to get him/her �1.33 0.56 0.44 0.26

Note. Intercepts that differed between mothers and fathers are labeled M or F, respectively, to specify the informant. Standardized factor loading estimates
differ slightly between mothers and fathers (never exceeding a difference of .04). Values for mothers are reported.
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The relations among the scores, as observed within the cal-
ibration sample, are summarized in correlation form in Table 5.
Squaring the correlations, one can see that the common factor
scores obtained from the trifactor model share approximately
60%–70% of their variance with the scores obtained from more
conventional approaches. By contrast, it is interesting that the
conventional scores are much more highly correlated, sharing
between 86% and 94% of their variance, despite considerable
differences in the complexity of the methods by which they
were obtained.

It is clear from these results that the common factor scores
generated from the trifactor analysis overlap with but are dis-
tinct from the scores provided by other approaches. The shared
variance between the scores reflects the fact that each approach
taps into the consensus view of the target to some extent. We
would argue, however, that the trifactor model provides a more
interpretable measure of the target because it formally separates
the unique perspective factor variance from the common factor
variance. With ad hoc scoring approaches perspective effects

(including rater bias) will often contaminate the combined
scores, particularly when there are relatively few informants
and these effects are unlikely to “average out.” Indeed, when we
examined the correlations between the ad hoc measures and the
perspective factor scores obtained from the trifactor analysis,
we found these correlations to be substantial (r � .47–.54).

Conclusions

Relative to simpler approaches for aggregating multiple in-
formant data, psychometric models offer an important advan-
tage: They embody an explicit theoretical model of the sources
of variation in informant ratings. The trifactor model proposed
here stipulates that the observed item responses reflect three
sources of variation: a common factor, a perspective factor for
the informant, and a specific factor for the item. In contrast to
models developed for MTMM data, which largely focus on
issues of construct validation, the trifactor model is principally
intended to serve as a measurement model. The trifactor model

Table 4
Effects Obtained From the Regression of Common, Perspective, and Specific Factors on Age,
Gender (Male), Study (Michigan Longitudinal Study), and Parental Impairment

Effect Estimate SE Partially standardized estimate

Common Factor
Age �0.003 0.042 �0.003
Age2 �0.015 0.003 �0.013
Age3 0.002 0.001 0.002
MLS �0.764 0.131 �0.669
Male �0.063 0.128 �0.055
Male � Age �0.061 0.031 �0.054
Parent alcoholism 0.095 0.088 0.083
Parent alcoholism � ASP 0.582 0.174 0.510
Parent depression 0.369 0.130 0.323

Perspective factors
Parent alcoholism 0.061 0.096 0.060
Parent alcoholism � ASP �0.145 0.179 �0.143
Parent depression 0.538 0.126 0.528

Specific factors
1. Lonely

Age �0.313 0.119 �0.196
2. Cries a lot

Age �0.295 0.079 �0.191
Male �0.633 0.197 �0.411

3. Fears do something bad
MLS �0.860 0.289 �0.796

4. Has to be perfect
Age 0.047 0.049 0.041
Age2 �0.019 0.005 �0.017
MLS �0.771 0.191 �0.672

8. Fearful/anxious
MLS �2.210 0.597 �1.522

9. Feels guilty
MLS �0.912 0.285 �0.836

12. Worries
MLS �0.847 0.239 �0.786

Note. Bold entries are significant at p 	 .05. Partially standardized estimates are computed by standardizing
the factors but leaving regressors in their raw scales. Age was centered at 10 years. All binary predictors are
named to indicate the presence of the characteristic (e.g., Michigan Longitudinal Study [MLS] is scored 1 for
targets from the MLS study, 0 for targets from the Adolescent and Family Development Project study). ASP �
antisocial personality disorder.
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provides information on the quality of the items, that is, the
extent to which the responses to each item reflect the common
factor versus perspective factors or specific factors. Addition-
ally, predictors may be incorporated into the model to test
putative sources of underlying target differences and/or rater

bias. Finally, we can obtain scores from the trifactor model that
separate the common view of the target from the unique views
of the individual informants, and that reflect the specific char-
acteristics of the target and informants.

Our development of the trifactor model draws upon a 100-
year tradition in factor analysis of defining and interpreting
factors in terms of the patterns of dependence they induce
among the manifest indicators (beginning with Spearman,
1904). The trifactor model also represents a straightforward
extension of the bifactor model originally developed by Holz-
inger and Swineford (1937), with a novel application to multi-
ple informant data (for other recent extensions and applications
of the bifactor model within psychological research, see Cai,
Yung, & Hansen, 2011; Gibbons et al., 2007; Gibbons &
Hedecker, 1992; Reininghaus, McCabe, Burns, Croudace, &
Priebe, 2011; Reise et al., 2011). In this sense, the trifactor
model is fully consistent with factor-analytic theory. It is im-
portant to recognize, however, that the conventional approach
to specifying and interpreting factor-analytic models has some-
times been criticized. Two specific concerns are that model
restrictions (e.g., independence of factors) sometimes appear
arbitrary and that the meaning of the latent variables is inferred
from intuition rather than formal psychometric theory (e.g., true
score, classical test theory). These issues are discussed in detail
for MTMM model specifications in Eid (2000), Pohl and Steyer
(2010), and Pohl et al. (2008), and with respect to closely
related latent state–trait models in Steyer (1989); Steyer, Fer-
ring, and Schmitt (1992); and Geiser and Lockhart (2012). The
trifactor model is potentially open to similar critiques. Yet we
are of the opinion that there are many different and useful ways
to define and interpret latent variables (see Bollen, 2002) and

Figure 3. Age trends in the common factor for negative affect for girls and boys (averaging over other
predictors).

Figure 4. Plot illustrating stability of parameter estimates across two
cross-sectional draws from the pooled longitudinal data.
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that a broad, inclusive approach enables the development of
models that are both conceptually appealing and practically
useful. In this sense, the ultimate utility of the trifactor model
will be borne out through empirical applications, similar to our
analysis of parent-reported negative affect.

There are, of course, many potential directions for future
research on the trifactor model. For instance, the data-analytic
conditions under which the trifactor model can be usefully
applied are presently unclear. Simulations examining parameter
recovery across variations in sample size, number of items, item
type (continuous vs. binary or ordinal), number of informants,
extent of missing data, number of predictors, and methods of
estimation would be informative in this regard but lie outside
the scope of the present study. The stability of our empirical
results and the face validity of our findings are suggestive that
the model will generally perform well with reasonably large
samples. Another interesting avenue of research would be to
apply the model in an experimental setting in which some
informants are intentionally manipulated to provide biased rat-

ings, to determine the extent to which the model can adequately
detect this bias and remove it from the common factor score
estimates.

Additionally, because the trifactor model is a type of SEM,
there are many potential ways that the model could be extended.
For instance, one could include latent predictors to estimate
regressor effects without biases due to measurement error.
Alternatively, one could include criterion variables predicted by
the common factor or perspective factors. Given the challenges
of estimating these models, however, we believe that the great-
est utility of the trifactor model is as a measurement model for
evaluating item quality and for generating scores. In most cases
an investigator will wish to generate scores for the common
factor, and perhaps also for perspective factors, for use in
subsequent analyses. For instance, the motivation behind our
example analysis was to generate negative affect scores so that
we could examine whether trajectories of negative affect over
childhood and adolescence could be used to predict substance
use disorders in adulthood. The trifactor model provided us

Figure 5. Scatterplots illustrating the stability of modal a posteriori scores generated from estimates obtained
from two nonoverlapping cross-sectional draws from the longitudinal data.

Table 5
Correlations Between Trifactor Analysis Common Factor Scores, the Average Proportion of Items Endorsed by Mothers and Fathers,
the Proportion of Items Endorsed by Either Mothers or Fathers, and the Average of Factor Score Estimates Obtained Separately for
Mothers and Fathers

Variable 1 2 3 4 5

1. Trifactor common factor scores —
2. Average proportion of items endorsed by mothers and fathers .79 —
3. Proportion of items endorsed by either mothers or fathers .79 .95 —
4. Average of factor score estimates obtained separately for mothers and fathers from a 2PL-IRT model .82 .97 .93 —
5. Average of factor scores estimates obtained separately for mothers and fathers from an MNLFA model .84 .97 .93 .99 —

Note. 2PL-IRT � two-parameter logistic item response theory; MNLFA � moderated nonlinear factor analysis.
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with a way to generate an integrated negative affect measure
based on ratings from both the mother and the father while also
controlling for possible rater biases. It is our hope that other
investigators will similarly find the trifactor model useful for
understanding and summarizing the information provided by
multiple informants in their own research.
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