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Structural equation mixture modeling (SEMM) integrates continuous and discrete
latent variable models. Drawing on prior research on the relationships between
continuous and discrete latent variable models, the authors identify 3 conditions
that may lead to the estimation of spurious latent classes in SEMM: misspecifica-
tion of the structural model, nonnormal continuous measures, and nonlinear rela-
tionships among observed and/or latent variables. When the objective of a SEMM
analysis is the identification of latent classes, these conditions should be considered
as alternative hypotheses and results should be interpreted cautiously. However,
armed with greater knowledge about the estimation of SEMMs in practice, re-
searchers can exploit the flexibility of the model to gain a fuller understanding of

the phenomenon under study.

In recent years, many exciting developments have
taken place in structural equation modeling, but per-
haps none more so than the development of structural
equation models that account for unobserved popula-
tion heterogeneity, or mixtures of unobserved groups.
Structural equation mixture models (SEMMs) are ide-
ally suited for testing theories where qualitatively
distinct types of individuals are thought to be charac-
terized by different structural relationships between
variables (and/or their means) and where group mem-
bership cannot be observed directly. For instance,
in the context of marketing research, Jedidi, Jagpal,
and DeSarbo (1997a) noted that market segments
must be defined by the differential appeal of product
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features, rather than by a priori classification. Simi-
larly, Arminger and Stein (1997) noted the desirabil-
ity of identifying unobserved heterogeneity in indi-
vidual lifestyles in sociological research. More
recently, drawing on the work of Nagin and Land
(1993) and Verbeke and Lesaffre (1996), B. O. Mu-
thén (2001) demonstrated how SEMMs could be used
in psychological and educational research to capture
heterogeneity in developmental pathways.

More formally, in SEMM, latent groups or classes
are defined at the distributional level. Each group is
composed of a collection of individuals who may dif-
fer in their individual scores but are homogeneous
with respect to the distribution from which they were
sampled. Specifically, their observed scores are
thought to be drawn from a common multivariate nor-
mal distribution, such that the same structural rela-
tionships among variables hold for all individuals
within the group. Population heterogeneity is then
indicated by the presence of two or more latent groups
in the population characterized by different distribu-
tions. Analyzing this type of population heterogeneity
has been the traditional domain of finite normal mix-
ture models (Everitt & Hand, 1981; McLachlan &
Peel, 2000; Titterington, Smith, & Makov, 1985). The
more recent synthesis of finite normal mixture mod-
eling with structural equation modeling represents a
major increase in the analytic capabilities of both
models (Arminger & Stein, 1997; Dolan & van der
Maas, 1998; Jedidi et al., 1997a; Jedidi, Jagpal, &
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DeSarbo, 1997b). B. O. Muthén (2001) even sug-
gested that SEMM represents a second-generation la-
tent variable model because it integrates both continu-
ous and discrete latent variable models. Indeed, we
may view SEMM as composed of two submodels, a
continuous latent variable submodel involving latent
factors and a discrete latent variable submodel com-
posed of latent classes, both of which are estimated
simultaneously. Although this new modeling architec-
ture is exciting and highly promising, much work re-
mains to be done to determine the specific strengths
and potential limitations of the model.

Our goals here are fourfold. First, we highlight that
SEMM represents the end result of more than a cen-
tury of analytic developments on continuous and dis-
crete latent variable models, each of which, in isola-
tion, has been carefully evaluated. We trace the
development of SEMM from these more traditional
latent variable models and discuss how SEMM may
serve as an integrative framework. Second, we argue
that although the assumptions of continuous and dis-
crete latent variable models are relatively well under-
stood when considered independently, the implica-
tions of synthesizing the two types of models have not
yet been fully investigated. We examine this issue by
identifying several analytical relationships that exist
between discrete and continuous latent variables that
may portend difficulty for some SEMM analyses.
Third, we formally extend these analytical develop-
ments to SEMM to demonstrate the conditions under
which the model may not optimally recover the popu-
lation structure; specifically, we focus on the spurious
identification of unobserved groups that do not actu-
ally exist in the population. Here our goal is only to
delineate general principles that may lead to the iden-
tification of spurious latent classes without attempting
to thoroughly evaluate the scope or potential impact
of these issues under specific sampling conditions.
Finally, we use these same general principles to iden-
tify several new opportunities for exploring complex
empirical relationships with these models when there
is little explicit interest in identifying “true” sub-
groups within the population.

Classical Continuous and Discrete Latent
Variable Models

We begin with an overview of two “first-
generation” latent variable models for continuous out-
comes, the common factor model of Thurstone (1947)
and the latent profile model of Gibson (1959). We

open with these models because they were developed
expressly as alternative approaches for latent variable
analysis. As such, much work has been conducted to
demonstrate their analytical similarities and differ-
ences. In addition, these models represent the initial
steps in a long line of research ultimately resulting in
the SEMM. We thus subsequently consider how the
analytical relationships revealed by these models gen-
eralize to SEMM.

Factor Analysis

Since its inception, one of the interpretations of the
correlation coefficient has been that it indicates two
variables share a common cause (e.g., Galton, 1888,
p. 135; see Stigler, 1986). Factor analysis, originating
with Spearman (1904) and greatly extended by Thur-
stone (1935, 1947), was developed as a tool for iden-
tifying these unobserved common causes or factors.
Traditionally, the common factor model assumes that
all of the shared variance (covariance or correlation)
among a set of observed variables reflects the pres-
ence of continuously distributed latent factors with a
common influence on the variables.' For example,
suppose that a study of high school youth revealed a
positive correlation between truancy and illicit drug
use. From the perspective of the common factor
model, this correlation might be viewed as evidence
for a continuously distributed underlying antisocial
behavior dimension. After the presence of this under-
lying common factor is accounted for, the residual
relationship between truancy and drug use would ap-
proach zero. This illustrates an idea known as the
axiom of local independence, which holds that once
all of the common factors are estimated, the residual
associations among the observed variables should be
zero, within sampling error.

The population model for the common factor model
may be expressed formally as

2 = APA’ + 0O, (1

where X is a g X g covariance matrix of the observed
variables, A is a ¢ x m factor loading matrix, ® is an
m X m covariance matrix of the common factors, and
O is a g X g covariance matrix of the residuals net of
the common factors. The assumption of local inde-

! Though he is best known for developing a model for
multiple continuous common factors, Thurstone (1935, pp.
51-52; 1947, p. 343) also considered the possibility of di-
chotomous latent factors.
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pendence is formalized by constraining @ to be a
diagonal matrix. With this assumption, the variances
on the diagonal of X are partitioned into common
factor variance and residual (unique) variance, but the
off-diagonal covariances in 2 are reproduced exclu-
sively by the relationship of the observed variables to
the common factors.

Two other assumptions are key to the common fac-
tor model. The first is that the observed variables can
be expressed as a linear combination of the latent
factors and the residuals. Nonlinearities in these rela-
tionships may force the estimation of difficulty or nui-
sance factors that do not reflect the true dimension-
ality of the factor space (Gibson, 1959; McDonald,
1967; Wherry & Gaylord, 1944). Second is the as-
sumption that the relationships among the measures
are sufficiently summarized by the second-order mo-
ments (variances and covariances), which is strictly
true only if the data are multivariate normally distrib-
uted. Because the observed variables are linear com-
binations of the latent factors and residuals, this
would imply that the latent factors and residuals are
also multivariate normally distributed.”

Latent Profile Analysis

Latent profile analysis is based on a second inter-
pretation of the correlation coefficient, namely, that
the correlation reflects the presence of discrete groups
in the population, each characterized by different
mean levels on the observed variables. To understand
how this interpretation differs from the common fac-
tor model, consider again the positive correlation be-
tween truancy and illicit drug use. The common factor
model posited that this correlation reflects the pres-
ence of an underlying antisocial behavior dimension.
Alternatively, the same observed correlation could in-
stead indicate the presence of two qualitatively dis-
tinct types of adolescents, one characterized by high
levels of truancy and illicit drug use, and the other
characterized by low levels of truancy and illicit drug
use. When mixed together, the total population of
adolescents would exhibit the observed positive cor-
relation between truancy and drug use.

Latent profile analysis was developed by Gibson
(1959) as a means for identifying these latent groups,
and was explicitly presented as an alternative to Thur-
stone’s (1947) common factor model. Thus, rather
than postulating that continuous latent factors explain
the observed associations, the latent profile model
holds that the associations are a by-product of differ-
ences in the means of the continuous measures over

the latent groups or classes. Paralleling the assump-
tion of local independence in the common factor
model, Gibson assumed that, conditional on class
membership, the residual association between the ob-
served variables would be zero, again within sampling
variability. In this context, local independence is in-
voked based on the philosophy that the mean vector
(or centroid) of a latent class represents the true scores
for all individuals of that type. Any deviation from the
mean vector should therefore be random and indepen-
dent.

The fundamental equations of the latent profile
model for the variances and covariances of the ob-
served variables were expressed by Lazarsfeld and
Henry (1968, chap. 8) in scalar form as

K K
o= z“k (i — w) + E Trko-izik’ (2)
=1 =1

and

K

0= z“’k (i = ma) (e — ), 3)

k=1

where i and j (i # j) are index specific variables and
k designates a specific latent class, so that p, repre-
sents the mean and (r,»zik represents the variance for
variable i in group k, K is the total number of latent
classes, , indicates the proportion of cases belonging
to each class (where X5, m, = 1), and the grand
mean of each variable is calculated as a weighted
average of the class means, or

K
Wi = 2 T g 4)
k=1

Lazarsfeld and Henry (pp. 235-236) noted that Equa-
tion 2 represents the familiar decomposition of rotal
(or aggregated) variance into between-class and
within-class components that is used in conventional
analysis of variance models. The difference in this
case is that group membership is not observed but is
estimated instead.

2 The assumption of normality is made explicit in maxi-
mum-likelihood estimation. Other methods of estimation
may permit the inclusion of ordinal indicators and/or relax
the assumption of normality, but typically the latent factors
are still assumed to be continuously distributed and linearly
related, and the second-order moments are treated as suffi-
cient summary statistics.
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Estimation of the model relies in part on the as-
sumption of local independence embodied in Equa-
tion 3. Note that in contrast to Equation 2, there is no
within-class component to Equation 3. This means
that any association between measures i and j that
exists in the aggregate population must be accounted
for by the between-class component, or the class
mean differences. By implication, i and j are assumed
to be independent (i.e., orthogonal) within each class
k. Of importance, unlike the common factor model,
the latent profile model also traditionally uses the
higher order moments of the data, including the triple
products among three variables that are likewise as-
sumed to be zero (implying higher order indepen-
dence as opposed to simply pairwise independence;
for further detail, see Gibson, 1959; Lazarsfeld &
Henry, 1968).

To facilitate further comparison to the common fac-
tor model, we can rewrite Equations 2 and 3 more
compactly in matrix form in terms of the class covari-
ance matrices and mean vectors so that the aggregated
covariance matrix is

K K x
2= 2 E (e — 1) (g —py)" + 2 T
k=1

k=1 [l=k+1
®)

where local independence dictates that 2, is diagonal
for all k and p, is the centroid of variable means for
class k.* Note that the two terms in Equation 5 directly
parallel those in Equation 1. Whereas the factor analy-
sis model decomposes the covariance matrix into
common factors and residual variances, the latent pro-
file model decomposes the same covariance matrix
into mean differences between discrete latent classes
and within-class residual variances.

A Comparison of the Two Models

There are important similarities between the latent
profile model and the common factor model, but also
key differences. We discuss these relationships here
conceptually and illustrate the primary points with
several demonstrative artificial data sets. These data
sets are used for pedagogical purposes only and are
not intended to represent a comprehensive simulation
study of the issues at hand.

One similarity between the latent profile model and
the common factor model is that both models take
local independence to be axiomatic. Because of this
shared assumption, both models decompose the co-
variance matrix into shared variance accounted for by
the latent variables and uncorrelated residuals. In fact,

under certain conditions, the two decompositions of
the covariance matrix are analytically equivalent.
Specifically, a covariance matrix generated to be con-
sistent with an m-factor model can be perfectly repro-
duced with a K = m + 1 class latent profile model and
vice versa (Bartholomew, 1987; Gibson, 1959; Mc-
Donald, 1967; Molenaar & von Eye, 1994). This fact
has led some methodologists to take the stance that
the two models should be regarded as mutually
complementary (e.g., B. O. Muthén, 2003; B. O. Mu-
thén & Muthén, 2000; but see Meehl, 1995). From
this perspective, the common factor model decom-
poses the covariances to highlight relationships
among the variables, whereas the latent profile model
decomposes the covariances to highlight relationships
among individuals. Because one never knows the true
generating model, and because each model can
equivalently reproduce the covariances, it could be
argued that neither model is superior to the other (i.e.,
Cudeck & Henly, 2003; B. Muthén, 2003), though we
do not necessarily take this view ourselves (Bauer &
Curran, 2003b; see also Meehl, 1995).

This equivalency of the two models is represented
graphically in Figure 1. The ellipses presented in the
figure are 95% confidence ellipses based on the as-
sumption of bivariate normality. The artificially gen-
erated sample data consist of 100 cases (N = 100),
and the sample Pearson product-moment correlation
is 67. First consider Figure 1A, representing the com-
mon factor model. Here the variables are related to
one another in a continuous and linear fashion. The
positive correlation between x and y, captured by the
upward slope of the major axis of the ellipse, is as-
sumed to reflect the presence of a common underlying
latent factor. In comparison, Figure 1B is consistent
with a latent profile model (where bivariate normality

3 Equation 5 also represents the multivariate generaliza-
tion of Meehl’s (1965, 1968; Meehl & Golden, 1982) gen-
eral covariance mixture theorem. Of interest, Meehl’s co-
herent cut kinetics method for discriminating latent taxa,
like the latent profile model, makes the assumption of in-
dependence within categories (i.e., that the covariances be-
tween variables are zero within classes). Because the ana-
Iytic model of coherent cut kinetics appears to be identical
to the latent profile model, any empirical differences that
arise between the two techniques can probably be ascribed
solely to differences in the methods of estimation. Given
this relationship between the two models, it is likely that the
conclusions we make here regarding the latent profile model
can be generalized directly to coherent cut kinetics as well.
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Figure 1. A and B are scatter plots containing 100 data points (N = 100) generated from
a bivariate normal distribution. The 95% confidence ellipse in A shows how a common factor
model would reproduce the data. The 95% confidence ellipses in B show how a two-class
latent profile model would reproduce the data (the percentage of cases in each class is

indicated).

is assumed within components for convenience). Note
that in Figure 1B there is no tilt to the ellipses for the
two latent classes, reflecting the assumption of local
independence (that x and y are uncorrelated within
classes). The overall correlation between x and y in
the aggregate data is instead captured by the different
class centroids, or mean vectors. Specifically, if one
were to draw a line between the class centroids in
Figure 1B, it would parallel the major axis of the tilted
ellipse in Figure 1A, illustrating that the two models
equivalently reproduce the correlation between x and y.

Given this fundamental relationship between the
two models, Molenaar and von Eye (1994) remarked
that the choice of continuous versus discrete scaling
for the latent variables is essentially arbitrary, if we
confine our analysis to first and second moments (i.e.,
means and covariances). The common factor model,
because it assumes multivariate normality and linear-
ity, only involves the analysis of these moments. In
contrast, as Lazarsfeld and Henry (1968, pp. 228—
229) noted, the latent profile model uses the higher
order moments of the data and so does not assume
multivariate normality of the aggregate distribution
(though normality within classes may be assumed;
e.g., Arminger & Stein, 1997; Lazarsfeld & Henry,
1968, pp. 235-239). For the same reason, unlike the
common factor model, the latent profile model does

not require that the variables be linearly related (Gib-
son, 1959).

Figures 2 and 3 highlight these differences between
the common factor and latent profile models. Figure 2
presents the same contrast as in Figure 1, but here the
data were generated to be slightly skewed (N = 100;
r = .75;skew, = .64; skew, = .82). Most of the data
points are observed in the lower left quadrant, and
both the sparseness and the spread of the data increase
as we move to the upper right quadrant. The confi-
dence ellipse in Figure 2A does not optimally repre-
sent the characteristics of the observed data because it
assumes bivariate normality. In contrast, the latent
profile model in Figure 2B provides a better summary
of the data. The dense data in the lower left quadrant
are captured by one large group with small variances
for x and y, and the disparate data in the upper right
quadrant are captured by a smaller group with larger
variances for x and y. Note that both models equiva-
lently recover the overall correlation between x and y,
but the latent profile model also captures the nonnor-
mality of the data.

Finally, Figure 3 demonstrates the performance of
the two models when x and y are nonlinearly related
(which also implies that bivariate normality will be
violated). The generated data show a strong positive
relationship (N = 100, r = .74), but y increases ex-
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Figure 2. A and B are scatter plots containing 100 data points (N = 100) generated from
a skewed bivariate distribution. The 95% confidence ellipse in A shows how a common factor
model would reproduce the data. The 95% confidence ellipses in B show how a two-class
latent profile model would reproduce the data (the percentage of cases in each class is
indicated).
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Figure 3. A and B are scatter plots containing 100 data points (N = 100) generated to show
a nonlinear relationship. The 95% confidence ellipse in A shows how a common factor model
would reproduce the data. The 95% confidence ellipses in B show how a three class latent
profile model would reproduce the data (the percentage of cases in each class is indicated).
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ponentially with x—specifically, E(ylx) = -.70 +
42¢" in the population. The confidence ellipse in Fig-
ure 3A represents the common factor model, with its
assumptions of normality and linearity. This ellipse
captures the overall positive relationship between the
two variables but fails to account for the nonlinear
form of this relationship. In contrast, the latent profile
model depicted in Figure 3B, including three latent
classes, captures the nonlinear relationship between x
and y well. This result is explained analytically by
McDonald (1967), who noted that a nonlinear factor
model approximated well by a polynomial of degree
m can be equally represented by a latent profile model
with K = m + 1 points (a result that is related to the
fact that m + 1 points is the minimum number needed
to define a polynomial of degree m), at least at the
level of the second-order moments.

In summary, both the common factor model and the
latent profile model have the ability to account for the
mean and covariance structure of a set of continuous
measures. However, the two models are not equiva-
lent beyond the level of the first and second moments.
Because the latent profile model uses information
about the higher order moments, it can more flexibly
capture nonnormality and nonlinearity in the data. Of
importance, these differences between the common
factor model and latent profile model reflect a general
asymmetry between continuous and discrete latent
variables. This asymmetry has important implications
for models such as the SEMM that involve the simul-
taneous estimation of both continuous and discrete
latent variables. In the next section, we cast the
SEMM as a hybrid model that may be viewed as an
extension of more traditional continuous and discrete
latent variable models (see also Arminger & Stein,
1997; B. O. Muthén, 2002). The common basis of
SEMM with these models suggests that the principles
we highlighted here for the common factor model and
the latent profile model also hold in SEMM. We dem-
onstrate this point with several examples illustrating
how the asymmetrical capabilities of discrete and con-
tinuous latent variables may influence SEMM analy-
ses.

Structural Equation Mixture Models

Relation to the Common Factor Model

The intellectual progression from the common fac-
tor model to SEMM is relatively direct, and we thus
provide only a cursory review of this development
here. See Bollen (1989, pp. 4-9) and Kaplan (2000,

chap. 1) for further details on various steps in this
progression. First, the common factor model may be
viewed as the antecedent of confirmatory factor
analysis (CFA). CFA is predicated on the same no-
tions as the common factor model and follows the
same basic form as Equation 1. Where CFA differs
from the common factor model is in the imposition of
restrictions on the parameters (typically the factor
loadings). These restrictions are used to achieve
model identification, (Bollen, 1989, pp. 238-253) and
may allow the axiom of local independence to be
relaxed.* In turn, the CFA model may be viewed as
the antecedent of the structural equation model.
Whereas in CFA the correlations among latent factors
are typically freely estimated (that is, unrestricted), in
structural equation modeling these correlations may
be structured to reflect causal relations (Joreskog,
1973; see also Bollen, 1989).

A key assumption of standard CFA and structural
equation modeling is that the population is homoge-
neous, so that a single covariance matrix can be used
to summarize the relationships among the variables.
To overcome this assumption, Joreskog (1971) ex-
tended the model to multiple samples. These models
allow for the simultaneous estimation of structural
equation models in two or more groups, each charac-
terized by their own mean vector and covariance ma-
trix. Multiple-groups structural equation modeling is
particularly useful for testing hypotheses about the
invariance of a model over samples (e.g., the factor
structure of a test for males and females). Although
the multiple-groups framework explicitly accounts for
population heterogeneity, its limitation is the require-
ment that the groups be defined a priori. SEMM may
then be viewed as the logical next step, extending the
multiple-groups model to the case in which group
membership is not observed and must instead be in-
ferred inductively from the data (Jedidi et al., 1997a;
Yung, 1997).

Relation to the Latent Profile Model

Surprisingly, the latent profile model appears to
have had little direct influence on the development of
SEMM. It is instructive to better understand why this

4 For instance, it is common to intercorrelate the residuals
of observed variables that share some common measure-
ment property. From the perspective of the common factor
model, such a correlation would be viewed as evidence of a
common method factor.
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was the case. As with the common factor model, the
latent profile model was predicated on the axiom of
local independence. The two models were thus mutu-
ally contradictory: Either the observed correlations
reflect the presence of continuous underlying factors,
or they reflect the presence of unobserved groups, but
not both. The mutual reliance of the two models on
this axiom precluded their integration.

The development of SEMM may be traced more
directly to a different kind of discrete latent variable
model, namely, finite normal mixture models. Finite
normal mixture models assume that the population
consists of a mixture of unobserved groups, each
characterized by its own normal distribution for the
continuous measures. The univariate normal mixture
model was considered by Pearson (1894), with prac-
tical applications to multivariate settings awaiting the
computer revolution (Wolfe, 1970, 1971). The prob-
ability density function (PDF) of the multivariate nor-
mal mixture model is

K

fix) = 2 (X3 Wi 2), (6)

k=1

where X = (x;, xp, - * *, x,) is a vector of g continuous
random variables, 1, are again the class proportions
(where Xf_, m, = 1), and the variables within each
class follow a multivariate normal PDF (denoted &,)
with mean vector u, and covariance matrix X,. For
further detail on this model (as well as mixtures of
other distributions), see Everitt and Hand (1981), Tit-
terington et al. (1985), or McLachlan and Peel (2000).
There are two key differences between finite nor-
mal mixture models and the latent profile model.
First, in the finite normal mixture model, the paramet-
ric assumption of normality within groups is explicit
and is relied upon to estimate the model parameters.
Second, given this, the axiom of local independence
need not be invoked for the model to be estimable. As
such, the off-diagonal elements of the within-class
covariance matrices X, may be freely estimated (as-
suming the model is identified). Despite these differ-
ences, the basic formulas for calculating the means p
and covariances X of the aggregate distribution f(x)
remain identical to Equations 4 and 5 presented earlier
for the latent profile model. By implication, finite
normal mixture models have many of the same basic
properties as latent profile analysis (i.e., the latent
classes can serve many of the same functions).
These differences between the latent profile model
and finite normal mixture model are deceptively

simple, for they actually represent a radical difference
in the underlying conceptual model. In the latent pro-
file model, the assumption of local independence was
imposed not simply for analytical convenience but on
the philosophy that the latent class variable should
explain the associations in the data. That is, control-
ling for the mean differences between the groups,
there should be no residual association between the
variables. This notion was based on the conceptual
model that all individuals within a class should be
characterized by identical true scores as represented
by the class centroid. Apart from measurement error,
all individuals within a class would then be essentially
interchangeable and thus truly homogeneous. Re-
sidual variability within a class, reflecting only ran-
dom measurement error, would be uncorrelated by
definition.

In contrast, the finite normal mixture model in-
volves a much different conceptual model. Specifi-
cally, homogeneity is no longer defined in terms of a
common set of true scores (i.e., interchangeability).
Instead, homogeneity is defined at the distributional
level, by a common mean vector and covariance ma-
trix. From this perspective, the latent class variable is
not an explanatory variable (as it was in the latent
profile model) but is instead a moderator variable (Je-
didi et al., 1997a, 1997b). That is, the magnitude and
direction of the relationships between variables may
vary as a function of class. In terms of our earlier
example, truancy and drug use may be positively cor-
related in one group of adolescents, orthogonal in an-
other, and negatively correlated in a third (e.g., for
whom the school provides a context for drug use);
thus, the relation between truancy and drug use de-
pends on class membership, but it is not explained by
class membership.

It is this latter definition of homogeneity that per-
mits the integration of finite normal mixture models
with contemporary continuous latent variable models.
Specifically, given that each latent class is defined by
its own mean vector and covariance matrix, a logical
next step is to structure these moments to be consis-
tent with a continuous latent variable model. This step
was first taken by Blafield (1980) and Yung (1997),
who demonstrated that a mixture of factor analysis
models could be estimated by specifying that each
within-class covariance matrix X, is structured ac-
cording to Equation 1. By doing so, researchers can
estimate latent classes that may differ in factor struc-
ture, factor means, variances or covariances, factor
loadings, and/or residual variances (subject to identi-
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fiability constraints). Jedidi et al. (1997a, 1997b),
Arminger and Stein (1997), and Dolan and van der
Maas (1998) each independently generalized this ap-
proach to mixtures of structural equation models with
latent variables. The basic form for SEMM is the
same as Equation 6, with the only difference being
that the class PDFs are rewritten,

by [x5 m(0,), Zk(ﬂk)], @)

to indicate that both the class mean vector p, and the
class covariance matrix X, are modeled as a function
of a class-specific vector of model parameters 0,.°
The analytic goal is thus to fit a structural model to the
within-class means and covariances. This basic model
was recently extended by B. Muthén and Shedden
(1999) to include categorical outcomes and covariates
of latent class membership (for greater detail, see
L. K. Muthén & Muthén, 1998).

SEMM as an Integrative Framework

Implicit in our preceding discussion is that SEMMs
represent a synthesis and generalization of many other
latent variable models. This is highlighted by consid-
ering the specific conditions under which SEMM re-
duces to the other models we have discussed. For
instance, if K = 1, then SEMM reduces to a conven-
tional single-group CFA or structural equation model.
Alternatively, if K > 1, and both p, and Zk are fully
unconstrained, the model becomes a standard multi-
variate finite normal mixture model (Jedidi et al.,
1997a, 1997b). Finally, if K > 1, p, is unconstrained,
and X, is constrained to be a diagonal matrix, the
model reduces to the latent profile model (with a for-
mal assumption of normality within classes; Arminger
& Stein, 1997). Thus, both conceptualizations of ho-
mogeneity discussed above (interchangeability and
distributional homogeneity) can be accommodated
within the SEMM. The relation of SEMM to tradi-
tional multiple-groups CFA or structural equation
modeling is also straightforward. Specifically, in the
estimation process, probabilities of group member-
ship (posterior probabilities) are estimated for each
case and are used to weight each case’s contribution
to the estimation of the model parameters for each
class. If the grouping variable was observed, these
probabilities could be replaced by 1s (indicating in-
clusion in the group) or Os (indicating exclusion), and
the model would reduce to the standard multiple-
groups structural equation model (Jedidi et al., 1997b;
L. K. Muthén & Muthén, 1998, Appendix 9; Zhu &

Lee, 2001). SEMM may thus be thought of as mul-
tiple-groups structural equation modeling where
group membership is an unobserved or latent variable.

To summarize thus far, we note that the develop-
ment of SEMM may be viewed as the end result of
converging lines of research on continuous and dis-
crete latent variable models that began more than a
century ago. However, little research has yet been
conducted to examine the implications of combining
the two models. It is to this issue that we now turn.

Combining Continuous and Discrete
Latent Variables

As we noted in our discussion of the common fac-
tor model and the latent profile model, the relation-
ship between continuous and discrete latent variables
is both complex and asymmetrical. Whereas continu-
ous and discrete latent variables are equivalently ca-
pable of reproducing the first two moments of the data
(means and covariances), discrete latent variables can
also accommodate nonnormal data and nonlinear re-
lationships in a way that continuous latent variables
typically cannot. We now show how these same prop-
erties of continuous and discrete latent variables sur-
face in important ways in the SEMM. Paralleling our
discussion of the common factor model and the latent
profile model, we focus on three issues: model speci-
fication, distributional assumptions, and the assump-
tion of linearity. We show that, apart from the pres-
ence of true latent groups, misspecification of any of
these aspects of the model may lead to the estimation
of multiple latent classes.

Of importance, although we both analytically and
empirically demonstrate that spurious latent classes
can be extracted for any one of these reasons, we
make no conclusions about the extent to which these
problems will arise in applied research. To address the

5 For simplicity, we assume all variables in the SEMM
are endogenous. Arminger and Stein (1997) and Arminger,
Stein, and Wittenberg (1999) have noted that models with
categorical or nonnormal exogenous predictors (e.g., gen-
der, marital status) should be based on conditional finite
normal mixtures. Otherwise, the distribution of the exog-
enous variables will influence latent class estimation and
potentially bias within-class parameter estimates. The con-
ditional finite normal mixture differs in important ways
from the unconditional model we describe here, but we do
not dwell on the distinction here because our points gener-
alize directly to the conditional case.
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latter issue would require comprehensive simulation
studies beyond the scope of the current article to de-
termine more precisely the conditions under which
spurious latent classes will be estimated when these
assumption violations occur, either alone or, as seems
more likely, in combination.

In the examples that follow, we approach the prob-
lem of identifying the optimal number of latent
classes from a largely exploratory vantage point. Used
in an exploratory way, the analysis begins with the
hypothesis that multiple groups may exist and focuses
on identification of the optimal number of classes
based on the comparative fit of models with succes-
sively more latent classes. Here we are concerned
with whether the number decided upon includes spu-
rious latent classes. A more confirmatory approach to
the problem would involve a strong theoretical pre-
diction that the population consists of a specific num-
ber of groups. It may be argued that in this confirma-
tory mode, our theory would in some way protect us
from accepting a model with too many (or too few)
latent classes. However, even in this case, the theory
must be supported by showing that the model with the
predicted number of classes fits optimally when com-
pared with models with fewer or more latent classes.
We could, of course, elect to estimate the predicted
number of classes perforce, but this would reverse the
typical practice of inferential statistics. That is, we
would be using theory to dictate the optimal statistical
model for the data rather than using the statistical
model to test the theory against the data (Bauer &
Curran, 2003a, 2003b). For this reason, we regard the
issues we raise as being equally important for explor-
atory and confirmatory SEMM analyses.

Of course, this raises the question, How does one
define the optimally fitting model? This matter is
complicated by the fact that regularity conditions do
not hold for conducting standard likelihood ratio tests
between models with different numbers of latent
classes (see McLachlan & Peel, 2000, for a review). A
modified version of the likelihood ratio test, based on
a sum of chi-square distributions, was recently pro-
posed by Lo, Mendall, and Rubin (2001) and has been
advocated by B. Muthén (2003), though we caution
that the performance of this test has yet to be inves-
tigated in complex models of the kind considered here
(Bauer & Curran, 2003b).

In practice, it is still common to determine the op-
timal number of latent classes through the comparison
of information criteria. Commonly used measures of
fit include Akaike’s information criterion (AIC),

Bayes’s information criterion (BIC), the consistent
AIC (CAIC), the classification likelihood criterion
(CLC), the normalized entropy criterion (NEC), and
the integrated completed likelihood criterion with BIC
approximation (ICL-BIC). These criteria all balance
the improvement in fit associated with adding classes
to the model against specific penalty factors. Whereas
the AIC, BIC, and CAIC all penalize for the number
of parameters in the model (overparameterization),
the CLC and NEC instead involve penalties based on
the model entropy, which increases as the degree of
separation between the latent classes decreases (i.e.,
when individual probabilities of class membership
stray far from zero or one). The ICL-BIC implements
both types of penalty and is the most conservative of
the criteria presented here, generally favoring fewer
classes. For each index, the model with the minimum
value is considered optimal. More detail on these
measures can be obtained from McLachlan and Peel
(2000) or Bauer and Curran (2003a).

These measures too must be used with some cau-
tion. Although the behavior of these indices has been
well studied for unrestricted finite normal mixtures, it
has not yet been investigated thoroughly in an SEMM
context. This is especially true of fit indices that de-
pend on the model entropy, such as the CLC, NEC,
and ICL-BIC, because they tend to favor models in
which classes are distinguished by well-separated
mean vectors, as it is typically in these cases that one
could assign cases to classes with the most precision
(Biernacki, Celeux, & Govaert, 1999, 2000; Celeux &
Soromenho, 1996; Ramaswamy, DeSarbo, Reibstein,
& Robinson, 1993). In SEMM analyses, however, at-
tention is often focused instead on the different co-
variance matrices of the classes (i.e., how the latent
classes moderate the relationships among the ob-
served variables). For this reason, Jedidi et al. (1997a,
1997b) recommended determining the number of
classes based on the BIC and CAIC, with entropy
criteria used only subsequently to judge the degree of
separation between classes.

In addition to these indices, following Jedidi et al.
(1997a), we also present the standardized root-mean-
square residual (SRMR) for each model. In the
SEMM context, the SRMR is calculated by first com-
puting the model-implied aggregate covariance matrix
according to Equation 10. The usual formula for the
SRMR is then applied, given as

SRMR = \/_2 iz[ (55— 0y) ]2 ®)
- Vaa+DE F [V Vil
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where s,; are elements of the observed aggregate co-
variance matrix, 6,7 are elements of the model-implied
aggregate covariance matrix, and ¢ is the total number
of observed variables. Hu and Bentler (1999) sug-
gested that an SRMR of .08 or below represents good
fit in traditional structural equation models. Because
the covariances are not sufficient statistics for normal
mixtures, Jedidi et al. (1997a) argued that the SRMR
should not be used to determine the number of latent
classes in an SEMM. We agree. However, in juxta-
position with the other fit statistics, the SRMR does
allow us to see whether the improvement in fit be-
tween successive models takes place primarily at the
level of the covariance matrix (in which case the
SRMR should decrease) as opposed to the higher or-
der moments (in which case the SRMR should be
stable).

We now consider in turn how model misspecifica-
tions, violations of distributional assumptions, or un-
modeled nonlinearity can all lead to the situation in
which the optimally fitting model includes spurious
latent classes.

Model Specification

Consider again the data presented in Figure 1. Sup-
pose we know that these data were generated to be
consistent with a bivariate normal distribution for a
single group. We may then view the ellipse in Figure
1A as symbolic of a properly specified model. In this
case, the overall association between the two vari-
ables is captured using just one ellipse. However,
what if we misspecified the model—for instance, by
imposing the constraint that x and y are uncorrelated?
Then we could not account for the association be-
tween x and y using just one ellipse; we would require
two, as in Figure 1B. In other words, we can com-
pensate for the lack of fit of the within-class model
(which incorrectly imposes orthogonality) by also
misspecifying the between-class model (estimating
more classes than groups in the population). In a very
real sense, the spurious latent classes “absorb” the
misspecification of the model.

This relationship between the two parts of the
model can be expressed more formally by considering
the implied means and covariances of the aggregate
distribution:

K
u(m,0) = >, (0, )
k=1

Sm@)= >, >, w8, — (010, —1,(6)]

k=1 [=k+1
K

+ D mZk(0,), (10)
k=1

where 77 is the vector of class proportions, 0 is a
vector of model parameters from all latent classes,
and all other notation remains as before. Note that
these equations follow directly from Equations 4 and
5 given for the latent profile model, demonstrating a
general property of discrete latent variable models for
continuous data. Of importance, as before, the aggre-
gate covariance matrix is partitioned into two compo-
nents. The first term in Equation 10 is the between-
class component, reflecting the mean differences
between the classes, whereas the second term reflects
the within-class component, or the covariance struc-
ture within each class.

There is a fundamental interdependency between
the two components of Equation 10. Recall that both
discrete latent classes and continuous latent factors
hold the potential to reproduce the aggregate covari-
ances. This interdependency becomes problematic if
the structural model applied within the latent classes
is misspecified. In this case, the within-class compo-
nent will fail to fully reproduce the covariances, and
the model will not fit well. One possible way to im-
prove the fit of the model would be to modify the
within-class portion, for instance, by adding new
paths. However, we could also compensate for the
poor fit of the within-class model by estimating ad-
ditional latent classes in the between-class compo-
nent.®

We provide an example of this point with a single
artificial data set generated from the linear latent
curve model presented in Figure 4. The repeated mea-
sures span five equally spaced time points, they are
multivariate normally distributed in the population,
and 50% of their variance is accounted for by the
underlying growth process. Note that the fixed values
of the factor loadings imply linear change over time.
The means of the latent factors indicate that the av-
erage trajectory is increasing over time. Both the in-
tercept and slope parameters have significant vari-
ances and are positively correlated. A single sample
of 600 cases was generated from the model, and the

¢ Additional latent classes may also be required when the
mean structure is misspecified, though we do not explore
that possibility here.
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Figure 4. Path diagram displaying the population latent
curve model used to generate data for the demonstration that
model misspecification may induce the estimation of latent
classes. k designates the factor mean and ¢ designates the
factor variance.

resulting sample statistics are presented in Table 1.
Fitting a properly specified single group latent curve
model to the data yielded good fit, x*(10) = 4.67,
p = .91; root-mean-square error of the approximation
(RMSEA) = .00.” We then extended this model to
two classes, and as shown in Table 2, the addition of
a second class was rejected by all measures of fit
except the AIC. Thus, as one would expect, under
proper specification of the within-class structural
model, misspecification of the number of latent
classes was not supported by the data.

We next fit a misspecified model to this same
sample, allowing between one and eight latent classes.
The misspecification was to restrict the covariance

Table 1

Intercorrelations, Means, Standard Deviations, Skew, and
Kurtosis of Data Generated From the Linear Latent
Curve Model (N = 600)

Variable 1 2 3 4 5
1. x, —

2. x, 477 —

3.x, 403 .507 —

4. x5 .368 .504 533 —

5. x4 291 440 493 510 —
M 1.031 1.851 2.618 3.438 4.235
SD 1.362 1.671 2.226 2.621 3.139
Skew —-.180 -.055 —-.152 .078 .094
Kurtosis 207 -.086 -.230 -.111 .106

matrix of the latent growth factors to a null matrix,
that is, to permit no individual variability in either
intercepts or slopes within classes. This specification
corresponds to one popular variant of the SEMM,
referred to as latent class growth analysis (LCGA) by
B. O. Muthén (2001), and inspired by the semi-
parametric groups-based trajectory model of Nagin
and colleagues (Nagin, 1999). By imposing these re-
strictions to the factor covariance matrix, the LCGA
model implies that all of the individual variability in
growth is captured by the class mean trajectories (i.e.,
fixed effects), and any individual deviations from the
class mean trajectories are random error. This as-
sumption is commensurate with the latent profile
model conceptualization of homogeneity as inter-
changeability: Individuals of a given class share a
single trajectory of change over time, and any indi-
vidual deviations from that trajectory are construed as
random error. In fact, the LCGA can be viewed as a
restricted latent profile model for repeated measures
that constrains the within-class means to follow a spe-
cific time trend (e.g., linear).

Given the characteristics of the population gener-
ating model, the single class LCGA model contains
the correct number of groups but a misspecified struc-
tural model that does not allow for systematic indi-
vidual variability around the mean trajectory. LCGA
models with more classes are then doubly misspeci-
fied, as they are estimated with both the incorrect
number of groups and a misspecified within-class
structural model. Intuitively, one might expect that
this additional misspecification would lead to a dec-
rement in model fit. In reality, as Equation 10 dem-
onstrates, estimation of additional latent classes (i.e.,
the between-class component) predictably allows us
to better recover the aggregate covariance matrix of
the observed data in the presence of a misspecified
structural model. We should thus expect the overall
model fit to improve as we estimate more latent tra-
jectory classes even though we are increasingly mis-
specifying the number of classes in the model.

The results of fitting the LCGA models are pro-
vided in Table 2. Large and significant improvements
in the log-likelihood were obtained with the additions
of a second and third latent trajectory class, but the
improvements thereafter were nonsignificant and in-
creasingly negligible. It is also worth noting that with

7 Mplus (Version 2.12) was used to estimate this model
and all models reported hereafter (L. K. Muthén & Muthén,
1998).
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Table 2
Fit Statistics of Correctly Specified One- and Two-Class Latent Curve Models and Latent Class Growth Analyses With
One Through Eight Classes

Model LL SRMR AIC BIC CAIC CLC NEC ICL-BIC
Latent curve model (individual trajectories distributed around mean trajectory)

One class —6,050.73 .027 12,121.46 12,165.43 12,175.43 12,101.46 1.00 12,165.43
Two classes —6,038.69 .026 12,119.38 12,211.72 12,232.72 12,383.52 12.72 12,517.86
Latent class growth model (no individual trajectories—fixed class mean trajectories only)

One class —6,492.43 374 12,998.85 13,029.63 13,036.62 12,984.84 1.00 13,029.63
Two classes —-6,175.36* .110 12,380.72 12,446.67 12,461.67 12,570.83 0.35 12,666.78
Three classes —6,089.23%* .060 12,224.47 12,325.60 12,348.59 12,544.36 0.45 12,691.49
Four classes —6,059.81 .050 12,181.62 12,317.93 12,348.92 12,553.69 0.50 12,751.99
Five classes —6,043.50 .035 12,165.00 12,336.48 12,375.48 12,659.14 0.64 12,908.61
Six classes —-6,030.25 .033 12,154.50 12,361.15 12,408.16 12,755.87 0.75 13,056.53
Seven classes —-6,014.40 .029 12,138.79 12,380.63 12,435.63 12,738.86 0.74 13,090.69
Eight classes —-6,009.77 .028 12,145.54 12,422.54 12,485.55 12,769.38 0.78 13,172.38

Note. For AIC, BIC, CAIC, CLC, NEC, and ICL-BIC, the minimum value obtained from the series of models is in boldface to indicate the
model with optimal fit. LL. = log-likelihood; SRMR = standardized root-mean-square residual; AIC = Akaike’s information criterion; BIC

= Bayes’s information criterion; CAIC = consistent AIC; CLC = classification likelihood criterion; NEC = normalized entropy criterion;
ICL-BIC = integrated completed likelihood criterion using BIC approximation. Asterisks attached to LL values indicate a significant
improvement in log-likelihood over the preceding model as judged by the test of Lo, Mendell, and Rubin (2001).

five or more latent classes the log-likelihood actually
dipped below the value of the correctly specified one-
group latent curve model, suggesting that the latent
class model was overfitting the data (capturing ran-
dom sampling fluctuations). The fit criteria varied in
terms of their indication of the optimal model, ranging
from seven classes (the AIC) to two classes (the ICL-
BIC). This lack of consensus among fit criteria is not
uncommon in empirical applications and simply re-
flects differences in the penalty factors applied.

Our immediate concern, however, is not to arrive at
a definitive conclusion regarding the optimal number
of latent classes but to show how our ability to repro-
duce the aggregate correlation matrix improves as
new classes are added to the model (even though such
classes do not exist in the population). This is most
directly measured by the SRMR. The SRMR of the
one-class model indicates that, on average, we are
either under- or overestimating the aggregate correla-
tions in Table 1 by about .375. The reason is that the
one-class model implies that the off-diagonal ele-
ments of the aggregate correlation matrix are zero,
when in reality (i.e., within the population) they are
not. The additional latent classes present in the two- to
eight-class models allow these off-diagonal elements
to take on nonzero values, where these values are
implied by the between-class mean differences as
specified in Equation 10. Predictably, we see that the

precision with which we recover the aggregate corre-
lations improves rapidly as we add latent classes, and
we attain remarkably good fit with three or four
classes (SRMR; = .06; SRMR, = .05).

These results provide a demonstration of the key
dependency between the within-class and between-
class components of an SEMM that we identified ana-
Iytically in Equation 10. In our example, a properly
specified single-group latent curve model provided
good fit to the data (as would be expected given its
correspondence to the population model). However,
when the variance—covariance matrix of the latent
growth factors was constrained to be zero, multiple
trajectory classes were needed to attain comparable
fit. This difference is evident in Figure 5. Figure 5SA
presents the 95% confidence bands for the individual
trajectories implied by the correctly specified latent
curve model. For comparison, Figure 5B presents the
results of the four-class LCGA. Because individual
variability around the mean trajectories is not permit-
ted in LCGA, multiple classes are required to coarsely
approximate the essential features of the correctly
specified model in Figure SA.

It is worth noting that a different number of latent
classes might have appeared optimal had we imposed
a different model misspecification. For instance, in
the context of LCGA, White, Johnson, and Buyske
(2000) suggested placing an autoregressive structure
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Figure 5. Comparison of single-group latent trajectory
model (A; shaded region is within the implied nonsimulta-
neous 95% confidence bands of the individual trajectories)
and the four-class latent trajectory class analysis (B; the
percentage of cases in each class is indicated).

on the covariance matrix of the residuals within
classes. Because this model would allow for nonzero
off-diagonal covariances within classes, it would
likely require fewer latent classes to adequately re-
cover the aggregate covariances of a latent curve
model. More generally, our first observation is that
the number of latent classes needed to optimally fit a
given set of data will depend on the degree of mis-
specification of the within-class structural model.

Distributional Assumptions

As we saw in Figure 2, unlike most standard con-
tinuous latent variable models, discrete latent variable
models are capable of capturing nonnormality in the
observed variables. This point is widely recognized in
the general literature on finite normal mixture models.
For instance, one key use of finite normal mixtures is
to approximate nonnormal distributions of an unspeci-

fied form (e.g., Escobar & West, 1995; Ferguson,
1983; Land & Nagin, 1996; Nagin, 1999; Roeder &
Wasserman, 1997; for a review, see Everitt & Hand,
1981, pp. 118-124; Titterington et al., 1985, pp. 18—
34). By extension, when the normality assumption is
violated in a standard one-group structural equation
model, elaboration of the model into an SEMM with
multiple latent classes may improve the ability of the
model to reproduce the observed data distribution. In
this case, even if the structural equation model is not
structurally misspecified, the additional latent classes
will improve the fit of the model because the summa-
tion of the normally distributed class distributions will
provide a better approximation to the nonnormality of
the aggregate distribution. Bauer and Curran (2003a)
extensively explored this point both analytically and
empirically in the context of growth mixture model-
ing. We thus illustrate the role of nonnormality here
(in the broader context of SEMM) with a single em-
pirical example.

Our example is a CFA model of two correlated
factors, each with three indicators. The population
model and associated parameter values are presented
in Figure 6. The indicators (x,—x,) were assigned unit
loadings and zero intercepts, and 60% of their vari-
ance was explained by the associated latent factor.
The residuals were independently and normally dis-
tributed with variances of .67, and the latent factors
were given zero means, variances of one, and a cor-
relation of .71 (p?> = .50). All of these parameter
values were selected to be reflective of a model that
might commonly be encountered in applied research.
Of importance, the population distributions of the la-
tent variables were modestly nonnormal, with univari-
ate skew = 2 and kurtosis = 8. As shown in Figure
7, these distributions were marked by a high leftward
peak and long right tail. A total of 400 cases were
generated from the model. Data were first generated
for the latent variables (including the residuals), and
these values were then used to construct the model-
implied observed scores (the technique of Vale &
Maurelli, 1983, was used to generate values for the
nonnormal latent factors). The sample skew and kur-
tosis for the first latent factor, &, were 1.63 and 4.69,
respectively, whereas the corresponding values for the
second latent factor, &,, were 2.02 and 6.42. The
sample statistics for the observed variables are pro-
vided in Table 3. Note that the sample skew and kur-
tosis of the observed measures are well within the
range commonly encountered in applied psychologi-
cal research (Micceri, 1989).
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Figure 6. Path diagram displaying the population confirmatory factor model used to gen-
erate data for the demonstration that nonnormality may induce the estimation of latent classes.
In the estimated models the loadings with asterisks were fixed to scale the latent factors.
designates the factor mean and ¢ designates the factor variance.

We began our analysis by fitting the population
generating model to the data. The factors were scaled
by setting the factor loadings for x, and x5 to one and
their intercepts to zero. All other factor loadings and
intercepts were estimated, as were the factor means.
Even with the nonnormality of the data, the overall fit
of the model was quite good, x*(8) = 3.70, p = .88;
RMSEA = .00. This is not surprising, as the degree

of nonnormality in the observed variables was mod-
est, and at the level of the first and second moments,
the fitted model was correctly specified.

We then proceeded to fit SEMMs with two and
three latent classes (with the knowledge that the popu-
lation consists of only one group). The within-class
structural models were of the same form as the popu-
lation model (i.e., correctly specified), but the param-
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Figure 7. Frequency histogram displaying the distribution of the latent factors (&) in the
confirmatory factor model with nonnormal latent factors (N = 10,000).
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Table 3

Intercorrelations, Means, Standard Deviations, Skew, and
Kurtosis of Data Generated From the Nonnormal
Correlated Factors Model (N = 400)

Variable 1 2 3 4 5 6
1. x, —

2. x, .589 —

3. x5 .604 .586 —

4. x, 439 469 454 —

5. xs 423 450 438 .641 —

6. x4 443 468 443 642 688 —
M .048 —.037 059 -.060 .068 .012
SD 1.339  1.284 1.241 1329 1328 1.344

Skew 0.635 0973 0.816 1.042 1.057 1.159
Kurtosis  0.902 2.799 1.690 2281 3.453 3.085

eter values freely varied over classes. Thus, the latent
class variable served to moderate the levels and rela-
tionships of the observed variables, consistent with
the view that a homogeneous latent group is defined
by its own distinct distribution. The change in log-
likelihood between the one- and two-class models was
large and significant; however, the improvement in
log-likelihood between two and three classes was not.
As Table 4 shows, the AIC, BIC, CAIC, CLC, and
NEC all also supported the two-class model over the
one-class model, though the more conservative ICL-
BIC did not. The CLC and NEC, which do not pe-
nalize for overparameterization, both indicated the
three-class model to be optimal, though only slightly
better than the one- or two-class alternative models.
Further inspection of the three-class model revealed
an improper (negative) residual variance estimate. On
the basis of the sum of these results, we concluded
that the two-class model was optimal for the data.®
Given the proper specification of the within-class
model, the improvement in fit associated with esti-
mating two classes was due almost entirely to the

Table 4

ability of the model to approximate the nonnormality
of the data rather than to improved recovery of the
covariance structure, and this was reflected in the sta-
bility of the SRMR.

Figure 8 further clarifies how the presence of the
two latent classes allows the model to capture the
nonnormality of the data. Figure 8, A and B, plots the
distribution of &, that is implied by the standard CFA
model and the two-class model, respectively, and is
comparable to the histogram presented earlier in Fig-
ure 7. Figure 8A shows that the usual assumption of
normality provides a poor representation of the actual
distribution of the latent variable. In contrast, in Fig-
ure 8B, the weighted component distributions of the
two latent classes, each with a different mean and
variance, combine to imply a nonnormal aggregate
distribution with a much greater resemblance to the
histogram in Figure 7. In fact, the model-implied
skew and kurtosis for the first factor were 1.13 and
2.02, respectively, whereas for the second factor, they

8 It is common to estimate mixtures of CFA models con-
straining the factor loading matrices to be invariant over
classes so that the latent variables will have the same mean-
ing in each class (e.g., Arminger & Stein, 1997; Arminger
et al., 1999; Jedidi et al., 1997a, 1997b; Yung, 1997). In-
variance constraints are sometimes also placed on the item
intercepts and residual variances. Both sets of constraints
were found tenable for the present model. The fit indices
we examined changed predictably with the equality con-
straints in place. Those indices that balance fit with parsi-
mony (e.g., AIC, BIC, CAIC) began to favor the three-class
model, as far fewer parameters were required per class. In
contrast, those indices that balance fit with classification
quality (e.g., NEC, CLC) began to favor the one-class
model, as the equality constraints served to make the classes
less distinctive from one another. These results point to the
inherent complexities associated with judging the fit of
SEMMs.

Fit Statistics of a Properly Specified Confirmatory Factor Model With One to Three Classes Applied to Nonnormally

Distributed Data Generated From a Homogeneous Population

Model LL SRMR AIC BIC CAIC CLC NEC ICL-BIC
One class -3,498.54 013 7,035.08 7,110.92 7,129.92 6,997.08 1.00 7,110.92
Two classes -3,405.12* .012 6,888.24 7,043.90 7,082.90 6,993.23 0.98 7,226.89
Three classes -3,388.11 013 6,894.21 7,129.71 7,188.71 6,991.54 0.97 7,345.04

Note. For AIC, BIC, CAIC, CLC, NEC, and ICL-BIC, the minimum value obtained from the series of models is in boldface to indicate the
model with optimal fit. LL = log-likelihood; SRMR = standardized root-mean-square residual; AIC = Akaike’s information criterion; BIC
= Bayes’s information criterion; CAIC = consistent AIC; CLC = classification likelihood criterion; NEC = normalized entropy criterion;
ICL-BIC = integrated completed likelihood criterion using BIC approximation. Asterisks attached to LL values indicate a significant
improvement in log-likelihood over the preceding model as judged by the test of Lo, Mendell, and Rubin (2001).
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Figure 8. The distribution of the latent factor £, implied by
a single-group confirmatory factor model (A) compared
with a two-class model (B; the percentage of cases in each
class is indicated).

were 1.81 and 3.91. Although the implied skew and
kurtosis values of the two-class model underestimate
the actual sample values (which in practice would not
be known), they are clearly closer to the sample val-
ues than the values of zero assumed by the single-
class model. In turn, the presence of the two classes
better approximates the nonnormality of the observed
variable distributions, and this leads to the superior fit
of the two-class model. We thus see how latent
classes can serve to capture nonnormality in the ob-
served data, though only one group actually exists in
the population.

This single artificial data example provides a
simple illustration of the effect of nonnormality on
latent class estimation, showing how the presence of
latent classes can function to approximate a nonnor-
mal multivariate distribution (i.e., capture the higher
order moments) and thereby improve model fit, even
when only one group truly exists in the population. If
model fit is used as a guide for inferring the correct

number of classes, this may lead to the identification
of classes that do not correspond to true groups in the
population. This leads us to our second observation:
Nonnormality can induce the estimation of latent
classes even when the structural model is correctly
specified and only one group exists in the population.

The Assumption of Linearity

In some ways, nonlinearity may be viewed as a
special case of either model misspecification or non-
normality. First, in the presence of nonlinearity, we
may view a standard continuous latent variable model
as misspecified. We may see the assumption of lin-
earity as a misspecification of the functional form of
the relationship, or we may view the misspecification
as one of omitted variables (i.e., polynomial terms)
that, if included, would serve to better capture the
relationship (McDonald, 1967). It is rare, however,
that polynomial terms are tested in latent variable
models, in part because of the complexity this adds to
the modeling process (Schumacker & Marcoulides,
1998). We also consider this case separately for the
fundamental reason that, unlike the model misspeci-
fications considered before, the population structure
of a nonlinear model cannot be recovered by simply
rearranging the linear relationships among the vari-
ables; at the least we must add new terms to the model
to approximate the nonlinearities. Second, we may
view nonlinearity as a special case of nonnormality.
Multivariate normality implies linearity; hence, non-
linearity implies multivariate nonnormality. We con-
sider nonlinearity separately, however, because, from
the standpoint of the continuous latent variable model,
it involves a simultaneous violation of both distribu-
tional assumptions and the functional form of the
modeled relationships.

As Figure 3 illustrates, discrete latent variables can
capture nonlinear relations among the observed mea-
sures, so we should expect the presence of (unmod-
eled) nonlinear relationships to induce the estimation
of latent classes in an SEMM as well. To demonstrate
this point, we generated a single sample of 500 cases
of data conforming to the population structural equa-
tion model given in Figure 9.° Three indicators (x,—
x;) loaded on the exogenous factor &, and three indi-
cators (y,—y;) loaded on the endogenous latent factor
7. For simplicity (and without loss of generality), the

° Consistent with Bollen (1995), we represent the nonlin-
ear effect in the path model with a saw-toothed arrow.
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Figure 9. Path diagram displaying the population structural equation model used to generate
data for the demonstration that nonlinearity may induce the estimation of latent classes. The
saw-toothed arrow represents the nonlinear effect of latent factor & on latent factor m. In the
estimated models the loadings with asterisks were fixed to scale the latent factors, and the
effect of £ on m was assumed to be linear. k designates the mean of & ¢ designates the
variance of &, and « designates the intercept of .

unconditional means of & and m were set to zero and
the total variances of the factors were set to one. The
indicators were assigned unit loadings and zero inter-
cepts, and 75% of their variance was explained by the
associated latent factor. The uniquenesses of the in-
dicators, the factor &;, and the disturbance of the en-
dogenous factor ({;) were independent and normally
distributed. Most important, the relationship between
the exogenous factor £ and the endogenous factor m
was curvilinear; specifically m; = —.5 + .5§, + .56 +
{, where {; ~ N(0, .25). This function implies that
75% of the variance in 7, is explained by &, If a linear
approximation is used, only about 25% of the vari-
ance in 7, is explained by &, The sample statistics for
the data are presented in Table 5. Note that the non-
linear relationship between & and m naturally induces
skew and kurtosis in y,—ys.

Table 5

Intercorrelations, Means, Standard Deviations, Skew, and
Kurtosis of Data Generated From the Nonlinear
Two-Factor Structural Equation Model (N = 500)

Variable 1 2 3 4 5 6
1. x, —

2. x, 751 —

3.x5 770 751 —

4.y, 409 375 371 —

5.y, 410 382 377 698 —

6.y, 419 .395 397 746 736 —
M -0.001 -0.007 0.033 0.075 0.109 0.093
SD 1.158  1.169  1.179 1.171 1.176 1.134

Skew -0.002 -131 =173 726 .820 .933
Kurtosis —-0.278 -0.245 -0.199 1.349 1.661 2.176

We first fit the data with a standard one-group
structural equation model of the same form as in Fig-
ure 9 but with the key exception that the relation
between & and m was modeled as linear. To scale the
latent variables, we set the loadings of x; and y, to one
and their intercepts to zero. All other parameters (in-
cluding intercepts—means) were estimated. Using
conventional criteria, we found that the overall fit of
this model was quite good, despite failure to model
the nonlinear relationship, x2(8) = 243, p = 97,
RMSEA = .00. This is not surprising, as conven-
tional fit indices take no account of possible nonlinear
relationships and the degree of nonnormality in the
data was quite modest, so would not be expected to
inflate the test statistic.

We then extended the model by estimating two and
three latent classes. The form of each within-class
structural model was identical to that of the model
used in the prior analysis, but the parameter values
were free to vary over classes. As in the prior ex-
ample, the latent class variable thus served to moder-
ate the parameter values within classes, consistent
with the conceptualization of latent groups as being
characterized by different distributions (i.e., mean
levels and relationships between variables). The re-
sults of fitting these models are displayed in Table
6.'° A significant improvement in the log-likelihood

19 Although we present detailed results for these models
only, we did again fit models with invariance constraints on
the factor loadings and the item intercepts and residual vari-
ances. As with the previous nonnormal example, the AIC,
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Table 6
Fit Statistics of a Linear Structural Equation Model With One to Three Classes Applied to Data Generated From a
Homogeneous Population Model That Includes a Nonlinear Relationship Between Two Latent Variables

Model LL SRMR AIC BIC CAIC CLC NEC ICL-BIC
One class —-3,741.86 .009 7,521.72 7,601.80 7,620.80 7,483.72 1.00 7,601.80
Two classes -3,623.92% .005 7,325.83 7,490.20 7,529.20 7,578.46 1.40 7,820.83
Three classes -3,580.29 .009 7,278.57 7,527.23 7,586.23 7,549.48 1.20 7,916.14

Note. For AIC, BIC, CAIC, CLC, NEC, and ICL-BIC, the minimum value obtained from the series of models is in boldface, to indicate the
model with optimal fit. LL. = log-likelihood; SRMR = standardized root-mean-square residual; AIC = Akaike’s information criterion; BIC

= Bayes’s information criterion; CAIC = consistent AIC; CLC = classification likelihood criterion; NEC = normalized entropy criterion;
ICL-BIC = integrated completed likelihood criterion using BIC approximation. Asterisks attached to LL values indicate a significant
improvement in log-likelihood over the preceding model as judged by the test of Lo, Medell, and Rubin (2001).

of the model was obtained with the addition of the
second latent class, but not with the addition of the
third latent class. The AIC, BIC, and CAIC all also
indicated that the two-class model was superior to the
standard one-group structural equation model. Of
these, only the AIC also supported the estimation of
three classes. The three-class model, however, con-
tained an improper (negative) residual variance esti-
mate. As in the strictly nonnormal data example
above, the SRMR showed high stability, again indi-
cating that the improvement in fit associated with add-
ing latent classes did not occur at the level of the
covariance matrix (which captures only linear asso-
ciations). None of the three criteria involving entropy
penalties (i.e., the CLC, NEC, and ICL-BIC) sup-
ported more than one class, although in fact the mean-
estimated probability of class membership of the in-
dividuals within each class was approximately .83 for
the two-class solution and .80 for the three-class so-
lution. From these results we concluded that two
classes were optimal for the data but that the classes
were likely not well separated.

To further clarify the results, in Figure 10 we pre-
sent a graph of the 95% confidence ellipses from the
two-class model overlaid on a scatter plot of the true
scores for the two latent factors. Note that although
the relationship between & and m is linear within
classes, together the two ellipses provide an almost
piecewise approximation of the true nonlinear rela-
tionship. The approximation is visually somewhat
crude but is clearly better than what a single ellipse
would allow (e.g., Figure 3A), and this is more for-
mally reflected in the significantly better log-

BIC, and CAIC of the two- and three-class models all im-
proved as more invariance constraints were imposed, but in
this case the entropy-based CLC and NEC changed little.

likelihood and superior AIC, BIC, and CAIC of the
two-class model. Figure 10 also reveals why the two-
class model is not supported by the entropy-based
criteria. Despite the fact that the relationship between
the latent variables is significantly negative in one
class and significantly positive in the other (i.e., mod-
erated by the latent class variable), the classes are not
considered well separated because the densest area of
points is found in the middle of the graph where the

6

2 1 0 1 2 3 4

Figure 10. Scatter plot of the true scores for latent factors
& and m. The dashed line plots the nonlinear effect of latent
factor £ on latent factor m in the population, and the 95%
confidence ellipses (estimated from the sample) show how
the nonlinear effect can be captured via the discrete latent
class variable (the percentage of cases in each class is in-
dicated).
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two ellipses overlap. This specific pattern is a conse-
quence of our choice of a normal distribution for & and
is certainly not a necessary feature of nonlinear rela-
tionships. Hence, we should not expect entropy-based
criteria to offer general protection against the estima-
tion of spurious latent classes when linearity assump-
tions are violated.

In summary, the nonlinear relationship between &
and m necessitated estimation of two latent classes to
achieve optimal fit to the data (by most measures)
even though the population consisted of just one
group. This was true because the standard structural
equation model, assuming linearity, could not fully
capture the relationship between & and r. The nonlin-
earity of this relationship could, however, be approxi-
mated with the estimation of a second latent class.
Our third and final observation is thus that unmodeled
nonlinearity can induce the estimation of latent
classes even when no latent groups are present.

Potential Problems

In this section we consider some of the potentially
problematic implications of the observations expli-
cated above, particularly when these models are used
to make inferences about the presence of qualitatively
distinct unobserved groups in the population. Specifi-
cally, there are several alternative and competing ex-
planations for the estimation of multiple latent
classes, including (a) that the structural model is mis-
specified, (b) that the data is nonnormal, and (c) that
the relationships among the latent and/or observed
variables are nonlinear (or some combination of the
three). Each of these alternative explanations implies
that a core assumption of traditional structural equa-
tion modeling has been violated and is compensated
for by latent classes that do not reflect true groups in
the population. We now discuss how the complica-
tions these issues raise can be mitigated, at least to
some degree.

Model Specification

The fact that misspecification of the within-class
structural model may induce the estimation of spuri-
ous latent classes is especially disconcerting if we
consider that, in practice, we never know the true
generating model. Indeed, Cudeck and Browne (1983)
and MacCallum, Browne, and Sugawara (1996) have
remarked that we may reasonably regard all structural
equation models as misspecified because all models
are approximations of reality (see also Meehl, 1967).

Given this, how can we have confidence that the la-
tent classes in any given SEMM are not due simply to
a poorly specified structural model?

At issue is the fundamental interdependency be-
tween the within-class and between-class components
of the model that we identified in Equation 10. Al-
though we focused on the possibility that misfit of the
within-class model would induce the estimation of
spurious latent classes, the interdependence of these
two components of the model works both ways. As
Meredith and Horn (2001) recently noted, failure to
model heterogeneity due to the mixture of unobserved
groups may lead to model misfit even if the within-
class model structure is identical for all groups and
properly specified, a phenomenon known more gen-
erally as Simpson’s paradox (Pearl, 2000). In this
case, the aggregate covariance matrix is augmented
by apparent “common variance” due to the unmod-
eled between-class mean differences. Post hoc model
modifications to include additional latent factors
might then absorb this additional common variance
and lead to good fit, though the added factors would
be an entirely spurious consequence of the failure to
model the true heterogeneity of the population.

This interdependency between the within-class and
between-class components of the model was dealt
with explicitly in the latent profile model through use
of a clear decision rule for the partitioning of covari-
ances—namely, that the observed covariances should
be reproduced (that is, explained) exclusively by the
between-class component of the model (the discrete
latent variable). We propose consideration of a similar
decision rule that would prevent estimating latent
classes solely to compensate for misspecifications of
the structural model. The rule we propose is to deter-
mine the optimal number of latent classes for an
SEMM by using a model that is, by definition, not
structurally misspecified: an unrestricted (or satu-
rated) model.

Using this decision rule, the modeling process
would consist of two steps. First, a series of unre-
stricted multivariate finite normal mixture models (or
saturated SEMMs) would be estimated, correspond-
ing to the model in Equation 6."' The number of latent

"' If exogenous predictors were included in the model, an
unrestricted conditional finite normal mixture model would
be required instead. In this case, the unrestricted model
would include all possible regression paths from the exog-
enous predictors to the endogenous variables, and the mix-
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classes would then be determined from the compara-
tive fit of these unrestricted models. Because no re-
strictions are imposed on the class means and covari-
ances, we know a priori that the latent classes are not
estimated solely to compensate for model misspecifi-
cations. In essence, Step 1 answers the question, How
many covariance matrices and/or mean vectors are
needed to adequately reproduce the observed data?
Consistent with the conceptualization of a homogene-
nous latent group as being defined by a shared distri-
bution, this question may be translated to mean, How
many latent groups do the data suggest are present?

The second step then addresses the question, As-
suming the number of latent classes identified in Step
1 is correct, does the hypothesized model structure
adequately reproduce the within-class means and co-
variances? If we set the number of classes to be equal
to the optimal number identified in Step 1, the hy-
pothesized SEMM would then be estimated with the
primary goal of recovering the class means and co-
variances from the unrestricted model. This corre-
sponds to the usual objective of more traditional SEM
analyses to recover the observed sample means and
covariances. Of importance, just as in traditional
structural equation modeling, we can formally test
how well the SEMM in Step 2 succeeds in this task.
As Yung (1997) pointed out, the unrestricted (or satu-
rated) model chosen in Step 1 and the fitted model in
Step 2 are formally nested, allowing for the compu-
tation of a standard chi-square difference test of over-
all model fit, much as is done in traditional multiple-
groups structural equation modeling. In fact, on the
basis of this result, Arminger and Stein (1997) advo-
cated general use of this two-step approach to esti-
mating SEMMs for the express purpose of testing the
fit of the structural model (assuming the number of
latent classes is correct). The current results suggest
that the two-step approach may be equally important
for avoiding the estimation of spurious latent classes
due to misfit of the structural model.

Although theoretically compelling, this two-step
strategy has several practical drawbacks. First, the un-
restricted models estimated in Step 1 will generally
use far more parameters than the eventual SEMM. As
such, statistics such as the AIC, BIC, and ICL-BIC
that penalize for the number of estimated parameters

ture would be based on the residual covariance matrices and
mean vectors of the latent classes (see Arminger & Stein,
1997, for further detail).

may tend to be overly conservative (i.e., identify
fewer latent classes than a correctly specified, or
good-fitting, SEMM with fewer parameters). A re-
lated problem concerns estimation. Unrestricted mul-
tivariate finite normal mixture models are known to
have very poorly behaved likelihood functions, espe-
cially when variance—covariance parameters are per-
mitted to differ between classes (McLachlan & Peel,
2000, pp. 94-96). One advantage of SEMM is that the
restrictions imposed in the within-class structural
model may make the model more stable (Blafield,
1980; Dolan & van der Maas, 1998; Jedidi et al.,
1997b). Beginning SEMM analyses with an unre-
stricted model would then potentially counteract this
important advantage. Given these complexities, it
may be fruitful to consider alternative approaches to
the same issue, such as the development and use of
sensitivity indices that would signal latent class esti-
mation due to misspecification of the structural
model, or the use of residual diagnostics rather than
model fit indices to identify the optimal number of
latent classes (e.g., Lindsay & Roeder, 1992).

Nonnormality and Nonlinearity

The fact that latent classes may be estimated to
accommodate nonnormality in the observed data or
nonlinear relationships between variables is a less
tractable problem. The reason is that nonnormality
and/or nonlinearity in the aggregate data is a natural
outcome of the mixture of unobserved groups, even
when the data are normally distributed and the vari-
ables are linearly related within groups (Teicher,
1960; see Bauer & Curran, 2003a, for a more detailed
discussion of this point). This would be the case if, for
instance, the two class distributions in Figure 8B, or
the two ellipses in Figure 10, corresponded to true
groups. Of course, there are countless other reasons
that nonnormality or nonlinearities could arise within
a truly homogeneous population. Nonnormality could
be a natural feature of the distribution of the phenom-
enon of interest (e.g., alcohol use in adolescence),
could be a product of the sampling design (e.g., un-
even selection from a normal population distribution),
or could be due to measurement properties (e.g., floor
or ceiling effects, analysis of counts or proportions,
etc.), among other possibilities. Similarly, nonlinear
bivariate and trivariate relationships are ubiquitous in
psychological theory, such as the case in which two
variables interact in the prediction of a third.

The two-step procedure advocated above would be
ineffective in discriminating between these alternative



24 BAUER AND CURRAN

explanations, as it would incorrectly assume that nor-
mality and linearity hold within the latent groups. An-
other possibility is to apply additional consistency
checks to the model. For instance, whereas some non-
normal distributions may be consistent with a mixture
of normals, others may not be. On the basis of this
idea, Rindskopf (2003) noted that, from a Bayesian
approach, one might consider applying posterior pre-
dictive model assessment techniques to gauge the
ability of the model to reproduce the data. Similarly,
B. Muthén (2003) formulated a test designed to assess
the fit of an SEMM to the higher order moments of
the observed data. If the implied multivariate skew
and kurtosis of the SEMM do not correspond to the
observed values, then this would be cause for rejec-
tion of the model. One interpretation of this result
would be that the mixture hypothesis is incorrect and
that the nonnormality in the data likely originates
through some other mechanism than the pooling of
unobserved groups. Another interpretation, however,
is that too few latent classes have been estimated, and
hence the approximation that the mixture distribution
provides to the observed distribution is not yet ad-
equate (Bauer & Curran, 2003b). Clearly, further re-
search on this issue is needed.

Promising Opportunities

Up to this point, we have considered the chief goal
of SEMM analyses to be the identification of distinc-
tive subgroups within the population for whom dif-
ferent models may hold. This presentation is consis-
tent with the introduction of SEMMs by Jedidi et al.
(1997a, 1997b) and Arminger and colleagues (Arm-
inger & Stein, 1997; Arminger, Stein, & Wittenberg,
1999) and was made most explicit by Dolan and van
der Maas (1998), who made the following statement:

In so-called direct applications of finite mixture model-
ing, . . . the aim is to determine the number and the type
of components in the mixture, to estimate the unknown
parameters, and to assign the cases to their respective
components. In indirect applications the finite mixture
model is employed as a mathematical device, for ex-
ample, to approximate intractable heavy-tailed distribu-
tions. In such applications, the underlying components
do not necessarily have a physical interpretation. Here
we are concerned with fitting multivariate normal finite
mixtures in direct applications subject to structural equa-
tion modeling. . . . (pp. 227-228)

What we have shown thus far is that it is possible
that the SEMM is really serving an indirect function
when a direct interpretation is desired. However, it

may be argued that in empirical applications we can
never really know which function the model is serv-
ing. From this perspective, attempting to recover true
latent subgroups is a fool’s errand and should not be
the primary focus of the investigation. Rather, the
merit of the model should be based on its ability to
represent the data in a theoretically meaningful way
(Cudeck & Henly, 2003). As we have expressed else-
where (Bauer & Curran, 2003b), we do not fully share
this view; however, we do feel that, in some cases,
indirect applications of the SEMM can yield scientifi-
cally useful information. It is in this spirit that we now
reinterpret our observations on SEMM analyses in
terms of the opportunities they may provide to over-
come some of the traditional limiting assumptions of
standard continuous latent variable models, particu-
larly when one is willing to relinquish direct interpre-
tations of the latent classes as true population sub-
groups.

Model Specification

There may be some situations in which one would
prefer to summarize an admittedly continuous latent
variable using discrete latent classes. A salient ex-
ample is the LCGA model. A one-class LCGA model
holds that there is a single fixed trajectory in the
sample and that there are no systematic individual
differences around that trajectory over time. For most
growth modeling applications this would be an unre-
alistic assumption, as there is often reason to believe
that individuals differ both in overall level and rate of
change over time (e.g., Curran, 2000; Curran, Stice, &
Chassin, 1997). However, by imposing this assump-
tion, we require additional latent classes in order to
recover the observed covariances (as in the latent pro-
file model). By requiring that the between-class por-
tion of the model account for the relations among the
repeated measures over time, we can summarize the
possibly continuous distribution of individual trajec-
tories using a small set of class mean trajectories.

The value of this approach was emphasized by
Land and Nagin (1996) and Nagin (1999), who sug-
gested that the class trajectories be interpreted as
points of support for the continuous distribution of
individual differences, analogous to the bars of a
sample histogram. From this perspective, Figure 5B
yields much important summary information. It cor-
rectly suggests that the individual trajectories are
symmetrically distributed and that initial levels and
rates of change are positively correlated. On the basis
of these observations, we might feel more confident
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estimating a standard one-group latent curve model,
which assumes the individual intercepts and slopes
are normally distributed and linearly related. Of
course, it is possible that such a plot would reveal
asymmetries in the distribution of the trajectories, or
that the individual intercepts and slopes of the trajec-
tories are nonlinearly related, calling into question the
usefulness of a standard latent curve model and sug-
gesting the need for a semiparametric or nonparamet-
ric analysis (Nagin, 1999; Vermunt & van Dijk,
2001). In our opinion, it is under conditions such as
these that SEMMs offer the most exciting (and po-
tentially controversial) new modeling opportunities.'?

Nonnormality and Nonlinearity

Traditional structural equation models (and argu-
ably all techniques under the umbrella of the general
linear model) are often applied under the tacit as-
sumptions that the data are multivariate normal and
that the variables of the model are linearly related. As
we have shown, SEMMs do not make these assump-
tions. Through the inclusion of latent classes, SEMMs
may accommodate both nonnormally distributed and
nonlinearly related continuous variables. Given this
(and assuming sufficient power), if only one latent
class is needed to optimally summarize the data (and
here we assume a properly specified or unrestricted
model), then it is likely that the data are approxi-
mately normally distributed and that the relationships
among variables are close to linear. Alternatively, if
more than one class is required (again assuming a
properly specified or unrestricted model), then these
assumptions of traditional structural equation model-
ing must be rejected.

We are not proposing the use of SEMM as simply
another tool for testing the assumptions of traditional
structural equation modeling. Other tools for this task
are readily available (e.g., Mardia, 1985). Further,
techniques exist aside from SEMM for explicitly ac-
commodating violation of these assumptions. For in-
stance, Browne (1984), Satorra and Bentler (1994),
and Bollen (1996) have discussed robust or distribu-
tion-free methods for estimating structural equation
models in the presence of nonnormal data, and
Schumacker and Marcoulides (1998) presented sev-
eral approaches to modeling nonlinear relationships in
structural equation modeling. However, we submit
that SEMM offers new and unique opportunities to
more fully explore these issues. For instance, current
methods for estimating structural equation models
with nonnormal outcomes typically only provide a

means of obviating or correcting for the problem of
nonnormality. SEMM instead capitalizes on the addi-
tional information available with nonnormal out-
comes and provides a means to explicitly map out the
distributions of the latent variables (as in Figure 8B).
Multimodality of these distributions, although not a
necessary requirement of a normal mixture, would
strongly suggest the presence of more than one popu-
lation (McDonald, 1967, p. 60; Waller & Meehl,
1998, chap. 5). Similarly, the techniques reviewed in
Schumacker and Marcoulides for modeling nonlinear
relationships among latent variables are currently
cumbersome to implement and require strong theory
about the functional form of the relationships. In con-
trast, SEMM can be used in a more exploratory mode.
For instance, plotting the results of the SEMM (as in
Figure 10) may suggest the presence of a nonlinear
relationship between the continuous latent variables.
In both of these cases, SEMM yields new information
on the phenomenon of interest that could not be ob-
tained easily from a traditional one-group structural
equation model.

Recommendations

The observations that we have explored in this ar-
ticle have important implications for the practical use
of SEMMs in applied research. We conclude by draw-
ing these implications together into an explicit list of
recommendations for using SEMMs in practice. Of
importance, these recommendations should be re-
garded as tentative and subject to debate and later
revision in light of additional research on these mod-
els.

Recommendation 1: Determine what function the
latent classes are intended to serve. By this we mean
that applied researchers should decide a priori whether
a direct interpretation of the latent classes, in terms of
qualitatively distinct latent subgroups, is desired or if
the latent classes are to serve one of the indirect func-
tions noted above. In indirect applications, we person-
ally believe inferences should be reserved for the ag-
gregate population (rather than within-class parameter
estimates), though others may disagree. In direct ap-
plications, the latent classes are assumed to represent

'2 The potential controversy over these uses of the model
was reflected in two reviews of this article with equally
strong but opposing reactions (with one reviewer feeling we
had gone too far and the other feeling we had not gone far
enough).
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true groups in the population, a stronger inference
requiring a greater burden of proof. Our remaining
recommendations are given primarily for direct appli-
cations of the model.

Recommendation 2: Attempt to ascertain what
function the latent classes are actually serving. To
avoid estimating latent classes to accommodate mis-
specifications of the structural model, consider using
the two-step procedure outlined above to determine
the optimal number of latent classes. After selecting
the optimal number of latent classes, plot the model-
implied distributions of the latent and/or observed
variables (as in Figures 8 and 10) to better understand
how the latent classes are capturing nonnormality or
nonlinearity in the data and apply formal tests to as-
sess the fit between the model and data. Consider
whether, aside from the mixture of unobserved
groups, there are other possible sources contributing
to the nonnormality or nonlinearity of the measured
variables. Attempt to rule out these alternative
sources. For instance, examine univariate distribu-
tions to see if they exhibit floor or ceiling effects.
Evaluate the tenability of the assumption that normal-
ity represents homogeneity (e.g., infrequent count
variables would be expected to show nonnormality
even in the absence of a mixture, so a finite normal
mixture would be inappropriate). Also consider the
nature of the sampling design and whether it may
have distorted the shape of the sample distribution
relative to the population distribution (e.g., individu-
als self-selecting into the study with probability re-
lated to their level on the construct of interest).

Recommendation 3: Embark on a program of con-
struct validation. Accumulate evidence in favor of the
hypothesis that the population indeed consists of a
mixture of unobserved latent groups. Are the charac-
teristics of the latent groups consistent with a priori
theoretical predictions? Are the latent groups distin-
guished in multiple samples and/or by multiple mea-
sures? Can they be distinguished by differential rela-
tions to precursor variables, or do they show distinctly
different sequelae in subsequent assessments that are
consistent with the motivating theoretical model? See
Bauer and Curran (2003b) for further discussion on
the problem of construct validation in SEMMs, with a
particular emphasis on growth mixture models.

Recommendation 4: Most important, take care in
drawing conclusions from the fit of a single model. As
Recommendation 3 implies, the construct validation
of the latent classes will often require a programmatic
series of research studies. Determining that the opti-

mal model for a given sample includes several latent
classes on the basis of model fit statistics is not suf-
ficient evidence for concluding that the population is
a heterogeneous mixture of latent groups. The latent
classes may be serving an indirect function even when
a direct interpretation is desired; thus, the conclusions
drawn from a single model should be guarded. Alter-
native hypotheses for the latent classes should be
noted and, where possible, evaluated.

Concluding Remarks

We have attempted to elucidate some of the impli-
cations that may arise from integrating continuous and
discrete latent variable models. Although these mod-
els have historically been viewed as alternative ways
of representing individual differences, the more recent
SEMM allows for the simultaneous estimation of both
continuous and discrete latent variables. It is the in-
herent flexibility of the SEMM that leads both to po-
tential problems and to promising new opportunities.
This flexibility allows for violation of assumptions in
one part of the model (i.e., the structural model) to be
accommodated by changes to the other (i.e., the latent
class model). This is problematic if the goal of the
analysis is the identification of qualitatively distinct
groups, as it suggests that the latent classes may in-
stead serve simply to accommodate assumption vio-
lations of the structural model. Alternatively, we may
eschew conclusions about the true structure of indi-
vidual differences (i.e., whether latent groups exist in
the population or not) and knowingly capitalize on the
flexibility of the model to capture phenomena that are
not readily tractable otherwise. Using the models in
this way avoids reification of the latent classes yet
retains the ability to explore complex features of the
data in ways that up to now have not been easily
accessible.
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