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The comments on D. J. Bauer and P. J. Curran (2003) share 2 common themes. The
1st theme is that model-checking procedures may be capable of distinguishing
between mixtures of normal and homogeneous nonnormal distributions. Although
useful for assessing model quality, it is argued here that currently available pro-
cedures may not always help discern between these 2 possibilities. The 2nd theme
is that even if these 2 possibilities cannot be distinguished, a growth mixture model
may still provide useful insights into the data. It is argued here that whereas this
may be true for the scientific goals of description and prediction, the acceptance of
a model that fundamentally misrepresents the underlying data structure may be less

useful in pursuit of the goal of explanation.

We begin by thanking Robert Cudeck, Susan
Henly, Bengt Muthén, and David Rindskopf for pro-
viding comments on our work (Bauer & Curran,
2003). We could not have asked for a more talented
and esteemed group of quantitative methodologists to
comment on our article, and we greatly appreciate the
time and effort they have invested in this endeavor.
Their comments have raised several interesting and
important topics that relate to specific aspects of our
article, to growth mixture modeling in particular, and
to the goals of science and applied research more
generally.

We have organized our reply around what we view
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as two primary themes shared by the comments. The
first theme, most prominent in the comments of B.
Muthén (2003) and Rindskopf (2003) is that it may
not be as difficult as we suggest to distinguish be-
tween a single-class model with nonnormally distrib-
uted observed variables and a true mixture. The sec-
ond theme reflected to varying degrees in each of the
three commentaries is that, when all is said and done,
we should perhaps not care so much that these two
possibilities might be difficult to distinguish in prac-
tice. This theme suggests that different models should
be regarded as alternative representations of reality,
none necessarily true in any real sense, but some per-
haps more useful than others. From this perspective,
whether the latent classes correspond to true groups or
not is an irresolvable issue, outside of the artificial
context of mathematical equations and Monte Carlo
simulations. Subsequently, our claim that classes will
likely be found when no such classes truly exist is
really much ado about nothing. We find both of these
points to be quite intriguing and explore each in turn.

Distinguishing Between Mixtures
and Nonmixtures

Both Rindskopf (2003) and B. Muthén (2003) sug-
gested that whereas in some instances it may be dif-
ficult to distinguish between data that are simply non-
normal and data generated by a mixture, in other
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cases it may not be. Rindskopf (2003) stated, “Had
they [Bauer and Curran] simulated the distributions
implied by the mixtures ‘detected’ by the software
they used, they might have seen that the distribution
did not look like that of the data” (p. 366). B. Muthén
(2003) made a similar point, remarking that one can
test whether the “skewness and kurtosis estimated by
the model fit the corresponding sample quantities”
(p. 371). Both of these authors suggested that such
model-checking procedures might show that the esti-
mated mixture really does not approximate the non-
normal distribution of the observed variables well,
and this could be cause for rejecting the mixture hy-
pothesis when the population is homogeneous but the
data are nonnormal. This point was made most force-
fully by B. Muthén (2003), who asserted that “using
this new [skew and kurtosis] test, BC [Bauer and Cur-
ran] would not have made the faulty conclusions that
were of concern” (p. 372).

To provide a bit of perspective, at the time our
manuscript was written and finalized (October 2001
to August 2002), best practice for determining the
number of components in a growth mixture model,
illustrated in the work of Muthén and colleagues (e.g.,
B. Muthén, 2001a, 2001b; B. Muthén & Muthén,
2000; B. Muthén & Shedden, 1999) consisted of de-
termining the minimum Bayesian information crite-
rion (BIC) score over growth models with different
numbers of components (typically without predic-
tors). Rather than restrict our comparison to the BIC
and similar criterion, we also examined several other
fit measures not routinely considered in the estimation
of growth mixture models but which are sometimes
used in the more general literature on finite mixture
models. Every measure we considered indicated that
the two-class model was superior to the one-class
model, just as we had predicted on the basis of the
underlying statistical model.

B. Muthén (2003) argued that the likelihood ratio
test of Lo, Mendell, and Rubin (2001) is preferable to
these indices, suggesting that it may be robust to mi-
nor departures from normality within components.
However, a challenge arises when applying this test in
growth mixture models. Specifically, growth mixture
models are often based on mixtures of normals char-
acterized by different covariance matrices (i.e., where
either the growth factor covariance matrix or time-
specific residual variances differ over classes, not just
the growth factor means). Closer examination of the
analytics underlying the Lo et al. (2001) test shows
that this test can indeed be used for testing the number

of components in a normal mixture involving hetero-
geneous covariance matrices, provided that proper
constraints are imposed on the covariance matrices to
assure that the likelihood function is bounded (Y. Lo,
personal communication, May 27, 2003). However,
such constraints are not routinely used in growth mix-
ture model analyses. Further, no published analytical
or Monte Carlo studies currently exist to establish the
robustness or appropriate use of this test with growth
mixture models with or without violations of distri-
butional assumptions. Given this, we believe that al-
though the application and possible extension of the
Lo et al. test is promising, it is premature to broadly
implement this test with growth mixture models, par-
ticularly when the classes are characterized by hetero-
geneous covariance matrices. To briefly examine this
issue empirically, we applied the Lo et al. test to a
random subsample of replications from our simulation
study. Consistent with the other fit criteria we con-
sidered, the new test supported rejection of the one-
class model in favor of the two-class model for each
nonnormal condition. Although these results are in-
triguing, clearly much additional research on this new
test is needed.

B. Muthén (2003) also asserted that the clear supe-
riority in fit of the two-class model in our simulation
study was an outcome of the “high degree of nonnor-
mality” (p. 371) and “strongly nonnormal data” (p.
369) that we considered. We view our choice of dis-
tributions in a somewhat different light. We selected
these specific distributions to represent what we con-
sidered to be small and modest departures from nor-
mality. In our minor nonnormal condition, the data
were generated to be characterized by a univariate
skew and kurtosis of 1.0 and 1.0, respectively. We
chose these values given that they are well within the
range commonly encountered in psychological re-
search (Micceri, 1989) and would likely not be cause
for concern in many empirical studies in the behav-
ioral sciences. However, in this condition the two-
class model was deemed superior to the true one-class
model almost 100% of the time. The fact that multiple
classes may be fit to trivially nonnormal data is fur-
ther supported by B. Muthén’s own results, which
demonstrate that a multiclass solution may appear op-
timal even for data with univariate skew and kurtosis
values all well below 1.0. This supports our very
point: Nonnormality is requisite to fit multiclass mod-
els (under proper specification), and even minor de-
partures from normality may be sufficient to extract
more than one latent class. We thus do not believe that
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our results can be attributed to an artifact stemming
from the study of severely nonnormal and unrealistic
distributions; instead, we believe these results gener-
alize to many empirical conditions encountered in ap-
plied behavioral research.

As both Rindskopf (2003) and B. Muthén (2003)
nicely pointed out, we did concern ourselves only
with comparative fit assessments and, whereas these
all favored two classes, the two-class model might
still have been rejected by a test of absolute fit. At
issue is whether a fitted normal mixture model can
really approximate nonnormal data well even if it
does not arise from a true mixture. Both Rindskopf
and B. Muthén expressed cautious skepticism on this
point. However, in the broader literature, the use of
finite normal mixtures to provide semiparametric ap-
proximations to nonnormal or irregular distributions
is well accepted (whether or not the nonnormality
reflects a “true” mixture). In a seminal article, Fergu-
son (1983) noted that “using such mixtures, any dis-
tribution on the real line can be approximated to
within any preassigned accuracy” (p. 287). Further, it
is this use of finite mixture models that motivated, at
least in part, the growth mixture modeling approaches
of Nagin and colleagues (Nagin, 1999; Nagin & Land,
1993; Nagin & Tremblay, 2001) and Verbeke and
LeSaffre (1996). Specifically, these authors have
noted that a key advantage of growth mixture models
is precisely that they may provide semi-parametric
approximations to irregular but possibly homoge-
neous distributions of repeated measures, rather than
requiring parametric assumptions that are typically
made for convenience and are likely incorrect.

Nevertheless, Rindskopf (2003) and B. Muthén
(2003) raised the important possibility that model-
checking procedures, such as comparing the implied
distribution of the mixture to the actual distribution of
the observed data, may reveal that the model is only
providing an approximation function in the absence of
a true mixture. We strongly agree that such compari-
sons should be made to determine the quality of the
model, but the question remains, would they lead one
to reject the mixture hypothesis in favor of the hy-
pothesis that the population distribution is homoge-
neous but nonnormal? We suspect that they often
would not. Our reasoning is highlighted in Figure 1.
Here we have plotted nonparametric kernel density
estimates of the data distributions for the first and last
time points of a single replication (chosen at random)
from the Skew 1.5 Kurtosis 6 condition with N =
600. The density estimates are clearly not normal, and
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Figure 1. Estimated densities for the population distribu-
tions of the first and last time points (y, and y,) of the
growth model considered in Bauer and Curran (2003) for a
single replicate from the Skew 1.5 Kurtosis 6 condition.
Kernel density estimates were constructed using Gaussian
kernels with bandwidths chosen to minimize the approxi-
mated mean integrated squared error (.30 for y, and .73 for
y4). Two- and three-class model densities are the densities
implied by fitting growth mixture models of the form de-
scribed by Bauer and Curran.

their general shape resembles the bottom panel of
Figure 4 from Bauer and Curran (2003), as it should.
Juxtaposed with the nonparametric kernel density es-
timates are the implied densities of two- and three-
class growth mixture models.

Figure 1 supports the point made by Rindskopf
(2003) and B. Muthén (2003) that the two-class model
might not fit in an absolute sense. Clearly, the two-
class model does not fully reproduce the features of
the observed data distributions, though it might be
considered “close enough” by some. In response to
early drafts of our original manuscript, B. Muthén
proposed a new skew and kurtosis test that formally
evaluates this lack of fit. Although intriguing, we can-
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not comment in greater detail about this new test be-
cause the associated analytics were not explicated in
B. Muthén’s comment and the supporting work cited
by B. Muthén was still in preparation at the time of
this writing. However, we can consider the empirical
performance of this new test as it is currently imple-
mented in L. K. Muthén’s commercial software pack-
age Mplus (L. K. Muthén & Muthén, 1998). We thus
applied this test to the same randomly selected repli-
cation from our simulation considered above.

Just as B. Muthén (2003) reported in his comment,
the new skew and kurtosis test rejects the two-class
model for this replication at both the univariate and
the multivariate levels.! If we include a third class, the
fit of the model improves considerably. This is re-
flected in Figure 1, which shows that the implied den-
sity of the three-class model follows the nonparamet-
ric kernel density estimates quite closely. However,
the skew and kurtosis test of B. Muthén rejects this
model, suggesting that the test may be so powerful as
to detect even relatively trivial departures of the data
from the model. This naturally leads to questions
about the practical usefulness of the test when the data
do in fact arise from a true mixture. Specifically, be-
cause this test assumes strict multivariate normality
within components, it must be determined whether
true mixtures with minor deviations from this distri-
butional assumption would also be rejected. Although
we suspect that this may be the case, this is of course
only conjecture on our part, and much future analyti-
cal and empirical work is needed to more fully evalu-
ate this new test.

Adding more classes further improves the perfor-
mance of the model on the skew and kurtosis test.
This is a predictable consequence of the enhanced
ability of the model to approximate the nonnormal
repeated measures distribution given more classes
(and more model parameters). In fact, with four
classes the new test of skew and kurtosis is no longer
significant at either the univariate or the multivariate
level, so we see that in this case the data are consistent
with a mixture, but a mixture made up of even more
components than we examined previously. Hence, we
continue to make the same “faulty conclusions” even
with this new test. The same pattern of results can be
expected more generally, as the closeness of the im-
plied and sample values of skew and kurtosis tend to
increase monotonically with the number of compo-
nents estimated (this is in contrast to measures such as
the BIC that counterbalance model fit with parsi-
mony). The nonparametric density estimates in Figure

1 may be viewed as the most extreme expression of
this point. Because we used Gaussian kernels for the
nonparametric density estimates, even these density
functions may be viewed as finite normal mixtures,’
with N components of equal variance and class pro-
portions of N~' (see Everitt & Hand, 1981, pp. 118—
124; McLachlan & Peel, 2000, p. 8). Of course, we
would naturally be skeptical of a model with N com-
ponents, but it is often the case that far fewer com-
ponents are needed to obtain almost identical fit to
nonparametric density estimates (Scott & Szewczyk,
2001).

In sum, as demonstrated in the example above, we
hypothesize that the new skew and kurtosis test will
often suggest that more components are necessary to
adequately reproduce the observed data distributions
but that it will likely provide less help in differenti-
ating true mixtures from nonmixtures. Counterex-
amples could, of course, be provided, such as distri-
butions that are not properly continuous (such as those
with strong floor or ceiling effects). In cases like
these, use of a normal mixture might be questioned
from the outset. Other model-checking procedures,
such as posterior predictive checks (Gelman, Meng, &
Stern, 1996; Meng, 1994) or residual diagnostics
(Lindsay & Roeder, 1992), might fare better in this
regard. In general, we are quite pleased that our article
has spurred further consideration and development of
such procedures, especially given that this was one of
the original motivating goals of our work.

We now turn to the second theme of the comments,

! In many ways we find the visual depiction in Figure 1
preferable to simply contrasting skew and kurtosis values.
For instance, B. Muthén (2003) emphasized the “modest”
skew and kurtosis values of the examples given in his Equa-
tions 1-4. However, even the small values of negative kur-
tosis in his Equation 4 can be generated by strongly bimodal
data. In general, we believe that plotting the actual density
functions is a useful supplement to reports of summary sta-
tistics, as values of skew and kurtosis alone do not convey
the same depth of information.

2 We used Gaussian kernels in Figure 1 in part to make
this conceptual point. The reader may wonder if the resem-
blance between the nonparametric density estimate and the
two- and three-class density estimates in Figure 1 is an
artifact of this choice. In actuality, the particular kernel
function employed is often of little consequence for the
ultimate shape of the density estimate (Silverman, 1986, pp.
42-43). Bearing this out, other choices of kernel for this
data produced plots virtually identical to Figure 1.
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which poses the question, Even if it is difficult to
distinguish a normal mixture from a nonnormal non-
mixture, should we be concerned? This theme
prompts us to examine more closely the functions of
models as representations of reality within an empiri-
cally based science.

Alternative Views of Reality

A key issue raised by all three comments is whether
we should really be concerned by the fact that a mix-
ture could be estimated where none existed. Even if
the classes are spurious, the model nevertheless pro-
vides one depiction of the underlying data that may
prove scientifically useful in certain circumstances.
As Rindskopf (2003) nicely articulated, “In the end,
researchers may not know what is right but only what
model is most helpful in achieving other scientific
goals” (p. 367). Cudeck and Henly (2003) highlighted
this same issue in their provocative description of the
game Guess the Model.> We interpret their general
point to be that all simulation studies are likely irrel-
evant because they do not conform to the real practice
of data analysis. Specifically, when selecting from
models for a specific set of data, we have no “true”
model to serve as a benchmark for indexing the de-
gree of bias, badness of fit, or number of spurious
effects. All of our models are wrong, and it is quite
possible that there is no “right” model to discern
whatsoever. The real task at hand is to decide which
model is most useful.

We agree with all three commentators on this gen-
eral point. Specifically, even if there exists some
“truth as God sees it,” ultimately this truth is not
accessible to us. We can never know when we fit a
growth mixture model whether the latent classes cor-
respond to true subpopulations or whether they serve
simply to approximate a nonnormal distribution of
repeated measures. Interestingly, we view this as one
of the primary points of our target article. It was a
point we felt compelled to make because in the em-
pirical applications of the model that we have seen to
date, the approximation function of the latent classes
has rarely been considered as an alternative possibility
to the existence of discrete groups (with exceptions in
the work of Nagin and colleagues [Nagin, 1999;
Nagin & Land, 1993; Nagin & Tremblay, 2001] and
Verbeke & LeSaffre, 1996, as noted previously).4
Further, it is the very promise of the models to diag-
nose and treat population heterogeneity that seems to
make them so appealing to applied researchers. Our

goal has never been to discourage researchers from
using these models for this purpose but to encourage
researchers to think more carefully and skeptically
about the alternative functions that the same model
may serve.

Whereas our focus was on demonstrating that the
same model can equally depict two quite different
realities, the comments raise the important converse
question, Can different models provide alternative de-
pictions of the same reality? We believe that they can.
Consider the nonnormal data conditions from our ar-
ticle. Both the standard single-class latent curve
model and the two-class growth mixture model are
“incorrect.” The latent curve model fails to take ac-
count of the nonnormality of the data, whereas the
growth mixture model assumes that there are two
groups when the population is actually homogeneous.
Yet both models capture different aspects of the data.

3 Cudeck and Henly (2003) dedicated a separate portion
of their comment to guessing the specifics of the model on
which we focused our original article. We aimed this article
at a diverse audience, and it is always difficult to strike the
right balance between technical rigor and general accessi-
bility. We believed then at the time of writing, and continue
to believe now, that our presentation of the model was suf-
ficiently complete (one reviewer was able to fully replicate
all of our primary analyses solely on the basis of our origi-
nal description) while also written in a manner that would
be accessible to a general audience. Whereas Cudeck and
Henly considered our presentation to be deficient, others
might consider this very same presentation to be a strength
of our work. For readers who desire additional technical
details on the specific growth mixture model that we inves-
tigated, the references to B. Muthén and Shedden (1999)
and L. K. Muthén and Muthén (1998, Appendix 8) should
suffice. We note, however, that the conclusions we drew in
our article are equally applicable to the model previously
developed by Verbeke and LeSaffre (1996) that is featured
in Cudeck and Henly’s comment.

“ For point of clarification, even recent work by B. Mu-
thén and colleagues has not explicated that latent classes
may serve to approximate nonnormal distributions. For ex-
ample, B. Muthén and Shedden (1999) log transformed their
repeated measures as part of an evaluation of the “sensitiv-
ity” of the growth mixture model to nonnormality, and B.
Muthén (2001a, Figures 1.1 and 1.2) depicted the aggregate
of two normal components as being itself normally distrib-
uted (a case in which the mixture would not be identified).
We thus believe that our original article provides an impor-
tant perspective on the assumptions of growth mixture mod-
els that may be unfamiliar to many applied researchers.
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If our interest is in parameter estimates for the whole
population, the latent curve model is the simplest rep-
resentation of the data. If our interest is in the distri-
bution of individual trajectories, the growth mixture
model provides greater detail. Thus, the two models
capture different aspects of the same reality. What
remains is to decide which model is optimal. To some
extent, this depends on our scientific goals, and the
diverse opinions of the commentators on this matter
reflect the fact that our goals may change from one
application to another. Rindskopf (2003) placed a pre-
mium on parsimony, B. Muthén (2003) emphasized
consistency with theory, and Cudeck and Henly
(2003) focused on the utility of the model for descrip-
tion and prediction. We examine each of these poten-
tial goals in turn.

Parsimony

Rindskopf (2003) offered parsimony as a means for
deciding between a mixture and a nonmixture as the
optimal model for a given set of data. In debating
between a piecewise linear approximation to a non-
linear relationship and a continuous quadratic func-
tion, Rindskopf noted that each model provides al-
most the same measure of prediction but that the
quadratic model requires one curve and fewer param-
eters so and thus is preferred. We see this perspective
as a time-honored application of Occam’s razor.
Within the context of growth mixture modeling, Oc-
cam’s razor suggests that a single-class model should
be used whenever possible because it requires fewer
parameters. Following this logic, Rindskopf sug-
gested that, in the presence of nonnormal outcomes,
one might perform nonlinear transformations to nor-
malize the data and retain a simpler model. To the
extent that the transformation succeeded, the need for
the latent classes would be reduced, if not obviated
altogether. An interesting example of Rindskopf’s
point is provided in an analysis of tomato root growth
by Gutierrez, Carroll, Wang, Lee, and Taylor (1995),
who found that two normal components were neces-
sary to capture the distribution of raw data but that
only one component was necessary when the inverse
transformation was applied (see McLachlan & Peel,
2000, pp. 177-178). Like Rindskopf, these research-
ers preferred the more parsimonious one-component
model to the two-component mixture.

Suppose, however, that one really believed that a
mixture was “present.” We set aside for the moment
whether this belief stems from a theoretical model of
the “true” process giving rise to the data or simply

reflects an opinion that a mixture would provide a
better model for description and prediction. In either
case, performing a nonlinear transformation might ac-
tually suppress the very mixture that is hypothesized
to exist. This result does not imply that there was no
mixture in the first place, nor does it mean that the
mixture would be less useful for prediction. It is al-
ways possible that follow-up studies will show quite
different patterns of predictive relationships for the
classes, a point that might be lost in using a single-
class model with transformed data. Thus, whereas we
fully agree with Rindskopf (2003) that nonlinear
transformations may allow for the selection of a more
parsimonious model, we also believe that there is no
certainty that the more parsimonious model will ulti-
mately prove to be the “better” representation of re-
ality. As with all analysis decisions, caution must be
exercised in deciding whether to perform a nonlinear
transformation, as it may in some cases occlude the
phenomena of most interest.

The Role of Theory

B. Muthén (2003; and also Rindskopf, 2003, to
some degree) suggested that substantive theory should
be used as a guide for selecting the optimal model
among possible alternatives. The argument is that we
should adopt a model if it generates results that are
consistent with the motivating psychological theory.
B. Muthén expressed concern that our article “missed
the opportunity to contribute a thorough discussion of
how psychological theory can guide [growth mixture
modeling]” (p. 372). Interestingly, we believe that B.
Muthén’s perspective on this matter is quite similar to
our own. Indeed, B. Muthén’s remark that “once sub-
stantive theory has been formulated, it can be used to
predict an interwoven set of events that can then be
tested” (p. 373) closely parallels our own point that
the construct validity of the latent trajectory classes is
best assessed by constructing “a nomological network
of results that are consistent with the idea of popula-
tion heterogeneity” (Bauer & Curran, 2003, p. 359).
We thus fully endorse B. Muthén’s discussion on the
value of using substantive theory to bring auxiliary
information into a growth mixture model. This por-
tion of his comment nicely expands on our own gen-
eral views regarding the construct validity of the la-
tent trajectory classes.

That said, we believe there remains an important
difference between our statement and the one quoted
from B. Muthén (2003); namely, we explicated that
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not only should the results be consistent with popu-
lation heterogeneity, they should also “not necessarily
be expected if the population was homogeneous”
(Bauer & Curran, 2003, p. 359). This qualifier follows
the classic recommendation of Cronbach and Meehl
(1955), who noted that assessments of construct va-
lidity require

a statement like the conclusions from a program of re-
search, noting what is well substantiated and what alter-
native interpretations have been considered and rejected.
The writer must note what portions of his proposed in-
terpretation are speculations, extrapolations, or conclu-
sions from insufficient data. The author has an ethical
responsibility to prevent unsubstantiated interpretations
from appearing as truth. (p. 297)

In the spirit of this important charge, a primary goal of
our target manuscript was to simply highlight that
strong empirical evidence suggesting the existence of
multiple latent classes might result from the actual
existence of such classes or might instead be due
solely to the violation of distributional assumptions.

To highlight the possible implications of failing to
substantiate the construct validity of the latent classes,
we draw on an example from B. Muthén’s (2003)
comment, the case in which a growth mixture model
indicates that an intervention or treatment has a sig-
nificant effect only in one segment of the population.
Logically, this would suggest the implementation of a
targeted intervention program that would be adminis-
tered specifically to this population segment. Efforts
would be made to include at-risk individuals with
high probability of belonging to the “responsive” seg-
ment and to exclude at-risk individuals belonging to
the “resistant” segment. This has the promise of being
an important and appealing application of the mixture
model. As our simulation study demonstrated, how-
ever, when a growth mixture model is applied erro-
neously, it is entirely possible that a covariate having
a significant effect for the whole population would
show a much stronger effect in one class than another.
Suppose the same was true of the treatment program
model: Though all individuals are equally likely to
benefit from the program, spurious responsive and
resistant classes are estimated. Classifying individuals
into these groups and applying the treatment only to
the so-called responsive class would result in the ex-
clusion of a large number of individuals who could
have benefited from the program (in addition to the
possible stigmatization associated with classifying in-
dividuals).

We certainly agree with B. Muthén’s (2003) im-
portant point that a population may often consist of
latent groups that would differentially benefit from an
intervention or treatment. We also agree that there
may be qualitatively distinct patterns of development
in any broadly sampled population. Consistent with
the original goals of our work, however, we empha-
size that the hypothesis of population heterogeneity
must be rigorously substantiated, particularly with re-
spect to alternative competing hypotheses. Currently
available model fit indices do not provide this sub-
stantiation, though our observation of current best
practice is that they have often been interpreted as
such. Instead, empirical results must be accumulated
that are both consistent with the interpretation of
population heterogeneity and inconsistent with alter-
native explanations. We are hopeful that the discus-
sion of this issue in our original article, the comments,
and this reply will jointly motivate applied researchers
to conduct investigations of developmental heteroge-
neity that directly address the construct validity of the
hypothesized latent trajectory classes.

Description and Prediction

When considering the critically important issue of
construct validity, there is an implicit assumption that
the construct has been imbued with some theoretical
meaning. In other words, the construct is more an
agent in a theoretical model for the process generating
the data and less linguistic shorthand for representing
complex data. However, we interpret Cudeck and
Henly’s (2003) perspective to be consistent with the
latter when they argue that the primary scientific func-
tion of a model is description and prediction. Whereas
this is certainly a valid perspective, we believe it
downplays what we regard to be a fundamental goal
of model building, namely, developing an understand-
ing of the process that gave rise to the data.

In our opinion, it is this goal of explanation that
guides much social science research. Questions of eti-
ology are framed by mediational models; hypotheses
on risk and resilience are cast in terms of moderated
relationships; and questions of population heteroge-
neity are addressed with mixture models. We thus part
ways with Cudeck and Henly (2003) in their assess-
ment that “practical research . . . begins with interest-
ing data where in all likelihood no operating model
exists” (p. 381). Having both been trained as substan-
tively oriented researchers ourselves, we do not be-
lieve that this is a broadly held view of how empirical
research is typically conducted. We believe that the
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majority of psychological research does not begin
with interesting data but instead begins with an inter-
esting question. Given a theoretical model of some
underlying etiological process, the primary goal of the
analysis is not limited to description and prediction
but also includes explanation. The observed data is
then primarily interesting to the extent that it helps to
empirically evaluate some aspect of the hypothesized
theoretical model.

If our concern is focused solely on description and
prediction, then in principle any two models can be
considered equally valid if they equivalently repro-
duce the observed data structure. As B. Muthén
(2003) nicely emphasized in his comment, the two
competing models are then simply alternative descrip-
tions of the same data. However, it is well known that
models that equivalently fit the data (or nearly so)
may be based on radically different explanations of
the process that generated the observed data (e.g., Lee
& Hershberger, 1990). Should these alternative mod-
els then be regarded as simply providing different and
complementary views of the same data structure? This
may be reasonable in some situations, but less so in
others. To draw on a classic astronomical example,
does it matter whether our model of the planetary
system is geocentric or heliocentric if both models
equivalently predict the phases of the moon? If the
goal of the model is prediction without explanation,
then whether the earth or the sun lies at the center of
the system is ultimately inconsequential. On the other
hand, the distinction is critical if we are to come to a
better understanding of the process whereby the
phases of the moon occur. Similarly, if our goal is to
design and implement an experimental intervention
for antisocial behavior in children, it is critical that we
accurately understand the etiological mechanisms that
give rise to the behavior (e.g., Conduct Problems Pre-
vention Research Group, 1992).

Given all of the above, what can we say to a sub-
stantive researcher whose empirical data are consis-
tent with the theoretical prediction of distinct sub-
groups within the population? Cudeck and Henly
(2003) convincingly articulated the point that we can
never know the true population structure and that it
may be counterproductive to attempt to determine
which model is “correct.” Although we clearly agree
with them on the first point, we also believe that it is
important and productive to attempt to distinguish be-
tween alternative models. Within the context of
growth mixture modeling, this means considering
whether the population is truly characterized by quali-

tatively different developmental trajectories or wheth-
er the individual variation is continuous and simply
nonnormal. What the growth mixture model provides
is a structured method for evaluating the consistency
of the empirical data with the model of population
heterogeneity. However, determining that the data are
consistent with this model (i.e., multiple latent classes
are found to be optimal via fit criteria) does not con-
firm the hypothesis, nor does it rule out other hypoth-
eses. When there is an interest in augmenting the goal
of prediction with that of explanation, these alterna-
tive models should be carefully considered and
thoughtfully investigated prior to making strong in-
ferences back to theory.

In sum, we wholeheartedly agree with the commen-
tators that, outside of the artificial context of simula-
tion studies, no model is ever “correct.” We also agree
that different models may provide different perspec-
tives of the same underlying reality. Which model is
most useful of course depends on the specific circum-
stances of the application at hand, and the criteria for
model selection offered by the commentators (parsi-
mony, theoretical consistency, description and predic-
tion, to which we add explanation) should be weighed
according to the scientific goals of the particular ap-
plication. It remains true, however, that if a given
statistic or a particular model is used for the conven-
tional purpose of testing a hypothesis about the pro-
cess at hand, alternative explanations for the same
results should be explicated and, when possible,
evaluated. If a growth mixture model is used to test
the theory that there are distinct population subgroups
characterized by different patterns of growth, then the
alternative explanation that the data are homogeneous
but nonnormal is viable until additional information
can be brought to bear.

Conclusion

So do we really believe that our work represents
much ado about nothing? We do not; nor do we be-
lieve that it represents the final word on an important
new methodology. We are excited about the insights
afforded by this methodology and look forward to
ongoing developments in this area. The primary goal
of our own research was simply to provide a word of
caution to substantive researchers against the potential
overinterpretation of growth mixture models, a point
echoed by the commentators.

We conclude by noting that the following chal-
lenges remain for using these models in practice: (a)
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The existence of multiple classes will necessarily in-
duce nonnormally distributed data (assuming the
classes are not identical); (b) other processes exist that
will similarly induce nonnormally distributed data
that are wholly independent of the existence of mul-
tiple classes; (c) it is highly likely that two or more
classes will be extracted in the presence of even trivi-
ally nonnormal data, regardless of the process that
gave rise to this data; and (d) it is currently difficult to
conclude whether clear support for multiple classes in
the sample reflects the structure of the population (if
we believe such a structure to exist) or whether the
classes are simply serving to approximate a complex
distribution. Although universally thoughtful and at
times provocative, the comments on our work do not
lead us to question these core conclusions. Our intent
in highlighting these issues is not to slight the model
or dissuade its use. Instead, we hope to better inform
applied researchers about the alternative functions the
model may serve and to motivate innovative analyti-
cal and empirical research that might allow us to bet-
ter address these intriguing challenges in the future.
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