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Growth mixture models are often used to determine if subgroups exist within the
population that follow qualitatively distinct developmental trajectories. However,
statistical theory developed for finite normal mixture models suggests that latent
trajectory classes can be estimated even in the absence of population heterogeneity
if the distribution of the repeated measures is nonnormal. By drawing on this
theory, this article demonstrates that multiple trajectory classes can be estimated
and appear optimal for nonnormal data even when only 1 group exists in the
population. Further, the within-class parameter estimates obtained from these mod-
els are largely uninterpretable. Significant predictive relationships may be obscured
or spurious relationships identified. The implications of these results for applied
research are highlighted, and future directions for quantitative developments are
suggested.

Over the last decade, random coefficient growth
modeling has become a centerpiece of longitudinal
data analysis. These models have been adopted en-
thusiastically by applied psychological researchers in
part because they provide a more dynamic analysis of
repeated measures data than do many traditional tech-
niques. However, these methods are not ideally suited
for testing theories that posit the existence of qualita-
tively different developmental pathways, that is, theo-
ries in which distinct developmental pathways are
thought to hold within subpopulations. One widely
cited theory of this type is Moffitt’s (1993) distinction
between “life-course persistent” and “adolescent-
limited” antisocial behavior trajectories. Moffitt’s

theory is prototypical of other developmental taxono-
mies that have been proposed in such diverse areas as
developmental psychopathology (Schulenberg,
O’Malley Bachman, Wadsworth, & Johnston, 1996;
Zucker, 1986), social development (Brendgen, Vitaro,
Bukowski, Doyle, & Markiewicz, 2001), and cogni-
tive and language development (McCall, Appelbaum,
& Hogarty, 1973; Rescorla, Mirak, & Singh, 2000).
Statistical analyses conducted without attention to this
heterogeneity may yield results that fail to accurately
depict the relationships that hold within any one of the
groups, including important predictive relationships
(Jedidi, Jagpal, & DeSarbo, 1997; B. O. Muthén,
1989). There is thus a strong need for analytic meth-
ods that are capable of discerning and testing hypoth-
eses about the developmental trajectories of unob-
served population subgroups, or latent trajectory
classes.

In response to this demand, promising new model-
ing techniques known as growth mixture models have
recently been developed that permit investigators to
estimate latent trajectory classes and to examine their
unique relations to predictors or outcome measures
(Li, Duncan, & Duncan, 2001; B. O. Muthén, 2001;
B. Muthén & Shedden, 1999; Nagin, 1999; Nagin &
Tremblay, 2001). The premise of these techniques is
that the patterns in the repeated measures reflect a
finite number of trajectory types, each of which cor-
responds to an unobserved or latent class in the popu-
lation. The more general finite mixture model on
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which these techniques are based has a long history in
the social sciences (e.g., Lazarsfeld, 1968; Quandt &
Ramsey, 1978; Tukey, 1960). However, the underly-
ing distributional assumptions of finite mixture mod-
els have not been thoroughly presented to applied
psychological researchers, nor have the specific im-
plications of these assumptions for growth mixture
models been explored. We examine these issues more
fully here.

One key point that we would like to highlight is that
finite mixture models were developed for two pur-
poses. The first corresponds to the motivations of
most psychological researchers: to identify qualita-
tively distinct classes of individuals in the population
of study. The second purpose, less well known to the
applied researcher, is to approximate intractable or
complex distributions with a small number of simpler
component distributions. These two purposes of the
model are quite distinct theoretically, but they are
currently difficult to distinguish analytically. The im-
plication of this point for growth mixture modeling is
that the latent trajectory classes can often be inter-
preted in two very different ways. They may represent
the trajectories of distinctive subgroups in the popu-
lation of study, or they may provide an approximation
to a complex but unitary population distribution of
individual trajectories. In the latter case, it would be
incorrect to interpret the classes as latent subgroups in
the population. Doing so could lead to the identifica-
tion of spurious effects or failure to identify relation-
ships that are in fact significant. To make correct and
valid inferences from data to theory, it is critically
important to consider both possible interpretations
of the latent trajectory classes when applying these
models.

To clarify this issue, we first briefly review con-
ventional growth modeling and its relation to growth
mixture modeling. We then consider the analytical
basis of the new techniques, the finite mixture model.
Our short historical review of the development of fi-
nite mixture models reveals both the underlying as-
sumptions of these models and two alternative per-
spectives on their application. A key point of this
review is that the extracted components or classes
may or may not reflect a heterogeneous population
structure. We demonstrate this point with a simple
example of a mixture of two univariate normal distri-
butions. The dilemma for the applied researcher is
that the fit statistics most commonly used to evaluate
growth mixture models do not adequately discrimi-
nate between these two possibilities. We illustrate this

point with a small simulation study. Our results sug-
gest that despite the many new opportunities offered
by these techniques, researchers should be cautious in
the use and interpretation of growth mixture models,
particularly when evaluating predictors of class mem-
bership. Strong substantive theory may provide im-
portant guidance on this matter, and new statistical
developments may offer more formal means to dis-
tinguish these two conditions. We conclude by con-
sidering the implications of our results for applied
research using these models and directions for future
quantitative developments.

Conventional Growth Models

It is useful to begin by considering the conventional
random coefficient growth model because it repre-
sents a special case of a growth mixture model in
which only one class is estimated. Conventional
growth models can be estimated either as multilevel
or hierarchical linear models or as structural equation
models, and many excellent articles have been written
on these techniques and their commonalities (e.g., see
McArdle, 1988; McArdle & Epstein, 1987; Mehta &
West, 2000; Meredith & Tisak, 1984, 1990; Rauden-
bush & Bryk, 2002, pp. 160–204; Willett & Sayer,
1994). We focus on the structural equation modeling
approach, or the latent curve model.

At its core, the latent curve model is a confirmatory
factor model with mean structure, where the factors
represent the parameters of the individual trajectories.
The mean and covariance structure of the repeated
measures implied by the latent curve model are

µ = �� (1)

and

� = ���� + �, (2)

where � is a vector of latent variable means, or the
means of the trajectory parameters. Individual vari-
ability in the trajectory parameters is captured in �,
which holds the variances and covariances of the la-
tent factors, and the residual variances and covari-
ances of the repeated measures are contained in �.
The elements of � define the shape of the latent tra-
jectories and are often specified in advance to fit a
particular functional form of growth.

A path diagram of a latent curve model specifying
linear growth is given in Figure 1. Note that the mani-
fest variables, y0–y4, represent the observed values of
the repeated measures at five time points and are re-
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lated to the latent intercept (�) and latent slope (�)
through the parameterization of the factor loading ma-
trix. To specify the linear functional form of growth,
we fixed the factor loadings relating the repeated mea-
sures to the intercept factor at 1, and the factor load-
ings relating the repeated measures to the slope factor
at values that increase linearly with time from 0 to 4
(here we make the unnecessary assumption of equally
spaced time intervals). Typically, only the factor load-
ings are set to fixed values, and all other parameters in
the model are estimated, with particular interest given
to the estimated means, variances, and covariance of
the growth factors.

It is often also of interest to predict individual vari-
ability in the trajectory parameters by one or more
exogenous predictors. The model-implied means and
covariance matrix for the repeated measures are then

µ = �(� + ��) (3)

and

� = �(���� + �)�� + �, (4)

where � is a vector of means for the predictors, � is
the covariance matrix of the predictors, and � is a
matrix of regression coefficients capturing the effects
of the exogenous variables on the latent trajectory
parameters.

Several assumptions of the basic growth model are
noteworthy. First, the trajectories of all individuals are

assumed to be of the same functional form (e.g., lin-
ear). A second assumption is that the repeated mea-
sures data can be fully summarized by their means
and covariances. To satisfy this condition, it is as-
sumed that the repeated measures are multinormally
distributed, implying that the individual growth pa-
rameters and time-specific residuals are also multi-
normal (Raudenbush, 2001, p. 514; Verbeke & Le-
saffre, 1996; Verbeke & Molenberghs, 2000). Finally,
when predictors are included, it is standard to assume
that their effects are constant over the range of the
trajectory parameter values (e.g., that the effects do
not differ for individuals with low and high inter-
cepts).

Multiple-Groups Growth Modeling

In heterogeneous populations, the assumptions of
the conventional growth curve model are generally
untenable. Fortunately, they can be mitigated to some
degree by using the multiple-groups framework in the
structural equations approach to growth modeling
(McArdle, 1989; B. O. Muthén & Curran, 1997). This
approach differs in important ways from conventional
growth models that incorporate the grouping variable
as an exogenous predictor of the trajectory param-
eters. In the latter case, the groups differ only in mean
levels of the growth parameters (B. O. Muthén, 1989).
In contrast, in the multiple-groups approach, the
grouping variable may be thought of as a moderator
variable, and all of the model parameters potentially
vary as a function of group membership. The basic
model may be denoted by

µk = �k�k (5)

and

�k � �k�k�k� + �k, (6)

where the subscript k designates group and indicates
that the parameters may differ over groups. A key
focus of multiple-groups analysis is the test of model
invariance over groups. For instance, one could test
whether the groups differ only in mean levels of
growth by constraining �k, �k, and �k to be equal
over groups. The invariance of predictive relation-
ships can also be tested in order to evaluate possible
group by predictor interactions where the effect of the
predictor differs significantly over groups (B. O. Mu-
thén & Curran, 1997).

Although the multiple-groups framework is an im-
portant method for exploring population heterogene-

Figure 1. Path diagram of a single-group latent trajectory
model. Displayed numbers are the population values of the
parameters used in the simulation study.
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ity, its use is limited to the case in which the grouping
variable is observed. However, it is often of interest to
define taxonomic groups that are not known a priori
on the basis of their developmental patterns. For in-
stance, Moffitt’s (1993) taxonomy of life-course per-
sistent and adolescent-limited antisocial behavior tra-
jectories is based on the presentation of antisocial
behavior across the life span. In this case, group mem-
bership is unobserved and must instead be inferred
from the repeated measures themselves.

Growth Mixture Models

Growth mixture models generalize the multiple-
groups framework to the case in which the grouping
variable is either completely unobserved or missing
for some portion of the cases (B. O. Muthén, 2001; B.
Muthén & Shedden, 1999; Nagin, 1999; Nagin &
Tremblay, 2001; Verbeke & Lesaffre, 1996). In this
case, the grouping variable is replaced by a probabil-
ity of class membership, and each case contributes to
the parameter estimates of each latent class commen-
surate with its probability of membership in that class
(L. K. Muthén & Muthén, 1998, Appendix 8). Be-
cause group membership is unobserved, the propor-
tion of cases in each latent class is unknown and must
be estimated along with the other parameters of the
model.

The uncertainty of group membership introduces a
number of complexities into the estimation of the
model. It is thus common to impose further restric-
tions on the structure of the model. For instance, the
functional form of growth is often held to be invariant
over groups (i.e., �k � �). The variance components
of the model may also be held invariant over groups
(i.e., �k � � and �k � �), again implying that the
classes differ only in their mean trajectories (B. O.
Muthén, 2001; Verbeke & Lesaffre, 1996). Another
common approach involves constraining the variance/
covariance matrix of the growth factors to zero (i.e.,
�k � 0; Nagin, 1999; White, Johnson, & Buyske,
2000). This last model implies that all of the indi-
vidual variability in growth is captured by the class
mean trajectories (i.e., fixed effects) and that any in-
dividual deviations from the class mean trajectories
are random error. Often these constraints are imposed
for statistical expediency rather than from substantive
theory, and in practice they are often rejected when
tested, suggesting potential model misspecifications.
We thus center our discussion on the more general
model with nonzero variance components that vary
over classes.

Predictors can be incorporated into this model in
two different ways. First, exogenous variables may be
used to predict within-class variability in the latent
trajectory parameters. This parallels the evaluation of
predictors in multiple-groups models and permits one
to test whether the effects of the predictors vary over
classes.1 Given the uncertainty of group membership,
it may also be of theoretical interest to predict the
probability that an individual belongs to a particular
group. This constitutes the second method for mod-
eling predictors and is accomplished through the in-
clusion of a multinomial regression submodel that re-
lates the predictors to the individual probabilities of
group membership (Jones, Nagin, & Roeder, 2001; B.
Muthén & Shedden, 1999).

A key complication that arises with these models is
that the number of latent trajectory classes must be
specified, not estimated. Given that the number of
classes is seldom known with certainty in advance, it
is common for investigators to fit several models with
different numbers of classes. Model fit statistics such
as Akaike’s information criterion (AIC), the Bayesian
information criterion (BIC) or the consistent AIC
(CAIC) may then offer a guide for selecting the model
with the optimal number of classes (see Bozdogan,
1987; McLachlan & Peel, 2000, pp. 203, 207–208; L.
K. Muthén & Muthén, 1998, pp. 371–372; Nagin,
1999). These fit indices are based on the value of the
likelihood function, so they reward models that more
accurately reproduce the observed data, but they also
exact a penalty for the number of parameters in the
model, favoring models with fewer trajectory classes.
In a review of the performance of these statistics,
McLachlan and Peel (2000) noted that the AIC tends
to overestimate the number of classes present,
whereas the BIC (and by extension the CAIC) may
underestimate the number of classes present, particu-
larly in small samples.

Alternative fit statistics have been proposed for se-
lecting the true number of classes; these alternative fit
statistics reward models that produce well-separated
clusters, that is, models in which the estimated prob-

1 Note that this model resembles the switching regression
model of Quandt and Ramsey (1978) in which latent classes
are defined on the basis of their unique relations to predictor
variables. Similarly, in conditional growth mixture models,
classes may be defined not only by the patterns present in
the repeated measures but also by distinctive within-class
relations to predictor variables.
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abilities of group membership approach one or zero
(see McLachlan & Peel, 2000, for a review). These
statistics include the normalized entropy criterion
(NEC; Biernacki & Govaert, 1999; Celeux & Soro-
menho, 1996) and the classification likelihood crite-
rion (CLC; Biernacki & Govaert, 1997). Finally, the
integrated completed likelihood criterion (ICL and
ICL–BIC; Biernacki, Celeux, & Govaert, 2000) pe-
nalizes for both the number of parameters and the
quality of classification, making it a more conserva-
tive selection criterion (see the Appendix for further
details on these fit measures).

Finite Mixture Models

The analytical basis of the growth mixture model is
the finite mixture model. Finite mixture models have
a long history (e.g., Pearson, 1894), and they have
been popularized in the social sciences by specific
models such as switching regression (Quandt & Ram-
sey, 1978) and latent class analysis for binary indica-
tors (Clogg, 1995). More recently, finite mixture
models have been extended to confirmatory factor
analysis (Blåfield, 1980; Yung, 1997) and structural
equation models (Arminger, Stein, & Wittenberg,
1999; Jedidi et al., 1997), making them sufficiently
general to be useful in a variety of applied psycho-
logical research. Just as important, software is now
readily available for estimating these models, in-
cluding Mplus (L. K. Muthén & Muthén, 1998), the
MECOSA program for GAUSS (Arminger, Witten-
berg, & Schepers, 1996), and Mx (Neale, Boker, Xie,
& Maes, 1999), with varying degrees of flexibility.
With such software it is possible to estimate mixtures
of normal distributions with structured means and co-
variances, including growth mixture models.2 Yet de-
spite the wide availability of this software, to our
knowledge the basic assumptions of finite normal
mixture models have not been explicated for the ap-
plied researcher. We begin our examination of these
assumptions by considering a two-class normal mix-
ture for a single variable. This model is simple in
comparison to the growth mixture model, but it pro-
vides a suitable basis for understanding the analytical
properties of finite normal mixture models more gen-
erally.

An example of a two-class univariate normal mix-
ture model is displayed in Figure 2. The probability
density function for this model is

f(x) � p1g1(x) + (1 − p1)g2(x), (7)

where f(x) is the aggregate or composite density func-
tion, g1(x) and g2(x) are the component densities of
the two classes, and p1 and (1 − p1) are the mixing
proportions that designate the number of cases origi-
nating from each component. The component densi-
ties are defined to be normally distributed so that

g1�x� = �2��1
2�−1�2e−��xi−�1�2/2�1

2
�

g2�x� = �2��2
2�−1�2e−��xi−�2�2/2�2

2
�. (8)

Note that the density function for each component in
Equation 8 is completely described by two param-
eters, the class mean and class variance. To fit the
model in Equation 7, it is thus necessary to estimate
five parameters, �1, �1

2, �2, �2
2, and p1. Each param-

eter is subscripted by k � 1,2 to designate the com-
ponent the parameter references.

What is not always appreciated about this model is
that nonnormality of f(x) is a necessary condition for
estimating the parameters of the normal components
g1(x) and g2(x). Indeed, it was recognition of this fact

2 Several other software modules are currently capable of
estimating growth mixture models under the specific con-
straint that there be no individual variability in growth
within classes (i.e., �k � 0). These include the PROC
TRAJ macro for SAS (Jones et al., 2001), the MMLCR
library for Splus (White et al., 2000), and Latent GOLD
(Vermunt & van Dijk, 2001). Though these programs do not
currently allow for the estimation of individual variability in
growth within classes, they do permit the disturbances to
follow alternative distributions to the normal.

Figure 2. The probability distribution of a two-component
mixture of normal distributions. The solid line depicts the
distribution of the aggregate mixture; dashed lines indicate
the distributions of the components.
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that led Pearson (1894) to develop an estimation ap-
proach for normal mixture models using the method
of moments. Pearson (1894) began by showing that if
the class proportions, means, and variances were
known, they could be used to solve for the higher
order moments of the aggregate data. For instance, the
mean, variance, and third and fourth central moments
(relating to skew and kurtosis, respectively) of f(x)
can be expressed as

� = p1�1 + �1 − p1��2, (9)

�2 = p1��1
2 + d1

2� + �1 − p1���2
2 + d2

2�, (10)

m3 = p1d1�3�1
2 + d1

2� + �1 − p1�d2�3�2
2 + d2

2�, (11)

and

m4 = p1�3�1
4 + 6�1

2d1
2 +d1

4�

+ �1 − p1��3�2
4 + 6�2

2d2
2 + d2

4�, (12)

where d1 � �1 − � and d2 � �2 − �. The task of
estimation then involves reversing the unknowns in
these equations. The higher order moments of the ob-
served data (up to the fifth central moment) are sub-
stituted for their implied values, and the system of
equations is solved to obtain estimates for p1, �1, �2,
�1

2, and �2
2 (see A. C. Cohen, 1967, for further detail).

The same equations indicate that a mixture of nor-
mals is, except in certain “degenerate” cases, neces-
sarily nonnormal. The first degenerate case is if p1 �
1. The second component is then superfluous, and
Equation 7 can be reduced to f(x) � g1(x), or essen-
tially a one-component solution. In this case the pa-
rameters of the second component cannot be identi-
fied; because no cases arise from the second
component, there is no information with which to es-
timate its mean or variance. The second degenerate
case is where the two components completely over-
lap, or where �1 � �2 and �1

2 � �2
2. In this case, we

could substitute g1(x) for g2(x) in Equation 7 to again
arrive at the essentially one-class model f(x) � g1(x).
In this case, we cannot identify the relative propor-
tions of cases in each component, because the two
components are indistinguishable. What these degen-
erate cases demonstrate is that if the aggregate distri-
bution is normal, then only one normal component is
necessary to summarize the data, and there is no re-
maining information with which to identify a second
normal component. A more formal proof of this point
has been given by Teicher (1960, pp. 63–68). The
same argument also holds at the multivariate level: If
the aggregate distribution is multivariate normal, it

may be fully characterized by a single mean vector
and covariance matrix, and no more than one compo-
nent can be identified. Nonnormality of the aggregate
distribution is thus critical for obtaining a nontrivial
solution for the mixture.

Not only is nonnormality required for the solution
of the model to be nontrivial, it may well also be a
sufficient condition for extracting multiple compo-
nents. For this reason, mixtures of normal distribu-
tions are often used to provide an approximation to
complex or intractable distributions (Escobar & West,
1995; Ferguson, 1983; Roeder & Wasserman, 1997;
Sorenson & Alspach, 1971; for a review, see Everitt
& Hand, 1981, pp. 118–124; McLachlan & Peel,
2000, pp. 7–8; Titterington, Smith, & Makov, 1985,
pp. 18–34). Presaging this use of normal mixture
models, Pearson (1894, p. 72) wrote, “Even where the
material is really homogeneous, but gives an abnor-
mal frequency-curve, the amount and direction of ab-
normality will be indicated if this frequency-curve can
be split up into normal curves.” When used to this
end, the characteristics of the component distributions
are of little intrinsic interest, because they serve only
as analytical devices for examining the aggregate dis-
tribution. This is in direct contrast to the use of mix-
tures for identifying population heterogeneity, where
the characteristics of the component distributions are
of paramount interest and the aggregate distribution is
typically of concern only insofar as it may be used to
identify those characteristics.

It is also possible to view these two uses of normal
mixtures as alternative explanations for the results of
a given model: Do the components represent true la-
tent subgroups in the population, or are they serving
only to approximate what is in fact a homogeneous
but nonnormal distribution? This is a question that
Pearson (1895) himself posed over a century ago:

The question may be raised, how are we to discriminate
between a true curve of skew type and a compound
curve [or mixture], supposing we have no reason to sus-
pect our statistics a priori of mixture. I have at present
been unable to find any general condition among the
moments, which would be impossible for a skew curve
and possible for a compound, and so indicate compound-
ness. I do not, however, despair of one being found. (p.
394)

Despite Pearson’s optimism, the ensuing century of
research on these models has not yet provided an
unequivocal answer to this basic question. The di-
lemma for the applied researcher is then to determine
which of these two explanations is most reasonable
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for making inferences about the structure of the popu-
lation.

To make this dilemma clear, let us consider the
sample data displayed in Figure 3 (after Titterington
et al., 1985, p. 30). The histogram shows evidence of
positive skew, and it appears to have two modes. Two
probability density functions are superimposed on the
distribution. The dashed line is the density function of
a two-component normal mixture like the one de-
scribed in Equation 7. From this model, the researcher
might be tempted to conclude that the sample data
arise from two unobserved groups, one large group
with a mean of around 6 and another smaller group
with a mean of around 10. The alternative model rep-
resented by the solid line is that the distribution is
lognormal and from a single group. The two models
appear to fit the observed data equally well (though in
fact it is the single lognormal distribution that is cor-
rect). Without strong theoretical justification for
choosing one distribution over another, it may be
quite difficult to determine empirically which model
reflects the true population structure.3 Far from being
a trivial matter, model selection may have a substan-
tial impact on further analyses. These concerns apply
equally to multivariate normal mixtures with struc-
tured means and covariances, including growth mix-
ture models, as we now demonstrate.

Distributions and Latent Trajectory Classes

Our examination of the univariate normal mixture
indicated that nonnormality of the aggregate distribu-
tion is critical for the estimation of the latent compo-
nent distributions. By extension, we should expect
multivariate nonnormality to play a key role in the
estimation of latent trajectory classes in growth mix-
ture models. Of course, as Pearson (1894) noted, this
nonnormality may indeed reflect the mixing of several
unobserved groups, in which case it would be of great
importance to use these techniques to explicitly model
this heterogeneity. However, it is also possible that
the individual variation follows an alternative distri-
bution function, or that the nonnormality is a conse-
quence of poor measurement scaling (among other
possibilities), and that only one group actually exists

3 As a case in point, it is interesting that Pearson (1894)
originally demonstrated his method for estimating a univari-
ate normal mixture with data collected by W. F. Raphael
Weldon on the carapace lengths of crabs. Weldon was skep-
tical of the validity of Pearson’s two-component model,
pointing out several alternative mechanisms that, in his
view, might better account for the nonnormal shape of the
empirical distribution (Stigler, 1986, pp. 336–338).

Figure 3. The sample histogram displays the relative frequency of values of variable x for
100 cases. Overlaid on the histogram are the probability distributions for a two-component
normal mixture (dashed line) and a lognormal distribution (solid line). Both functions appear
to fit the data well, but the population generating function was lognormal.
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in the population. Given that the primary use of these
models in psychology and the social sciences has been
to identify population heterogeneity, it is critical to
know whether a multiple-class model could be esti-
mated from the nonnormal data of a single group,
whether it would fit the data better than a single-class
model, and what the implications would be of select-
ing it over the single-class model. We consider these
issues from the perspective of an investigator seeking
to model population heterogeneity, whose primary in-
terests are to identify and make valid inferences about
possible subgroups in the population and whose aim is
not simply to find an approximation for a nonnormal
but homogeneous distribution of repeated measures.

Drawing on the statistical theory discussed above,
we generated three key hypotheses. Our first hypoth-
esis centered on the role of nonnormality in the esti-
mation of multiple trajectory classes. For the simpler
univariate normal mixture, we noted that nonnormal-
ity is a necessary condition for the extraction of mul-
tiple latent components or classes. By extension, if the
distribution of the repeated measures is multivariate
normal, it should not be possible to obtain a nonde-
generate multiclass solution when fitting a correctly
specified growth model. That is, with the correct
model (e.g., functional form), the implied means and
covariances of a single class should fully reproduce
the observed distribution, and additional classes
should not be necessary (nor would there be enough
information with which to identify their parameters).
In finite samples, however, random variability ensures
that no distributions are truly normal, and thus it may
be possible to obtain a nondegenerate multiclass so-
lution even with data drawn from a multivariate nor-
mal population distribution. Because sampling vari-
ability is greatest in small samples, we expected that
this would occur more often for small than for large
samples. Conversely, we expected that with nonnor-
mally distributed repeated measures, proper multi-
class solutions would be the rule even when only one
class actually existed. Further, in this case, increased
sample sizes should function primarily to increase the
information available for analysis and thus facilitate
convergence to a proper solution.

We next considered the conditions under which a
multiclass model would fit the data better than the
correct single-class model. If the data are generated
from a single multivariate normal distribution, model
fit statistics that reward parsimony, such as the AIC,
the BIC, and the CAIC, should reliably indicate that
only one class is necessary to reproduce the data,

because any additional classes serve only to capture
sampling variability. Further, we expected that the
components estimated from this data would overlap
considerably, so that the NEC, the CLC, and the ICL–
BIC would also reject multiple-class models (see the
Appendix for details on these fit measures). We ex-
pected the opposite pattern of results for data drawn
from multivariate nonnormal distributions. Recalling
that one function of normal mixtures is to approxi-
mate complex or unknown distributions, we hypoth-
esized that a multiple-class model would perform
substantially better than a single-class model at repro-
ducing nonnormally distributed repeated measures
and that this would be reflected in model fit statistics
such as the AIC, the BIC, and the CAIC. In addition,
we expected the degree of separation between the
classes to increase with the degree of nonnormality of
the data, so that the NEC, the CLC, and the ICL–BIC
would also favor multiple-class models. Our second
hypothesis was thus that multiclass models would op-
timally fit repeated measures drawn from a multivari-
ate nonnormal distribution even if only one group
actually existed in the population.

Our third hypothesis concerned the implications of
fitting a single-class versus a multiclass model to non-
normal data when only one group actually existed in
the population. In both cases the model is misspeci-
fied. Fitting the single-class model involves a viola-
tion of the assumption of multivariate normality.
However, the maximum likelihood function used to
fit these models is known to produce consistent pa-
rameter estimates even when data are nonnormal, and
robust standard errors may be calculated (Bollen,
1989, pp. 416–418; Browne, 1984; Satorra & Bentler,
1994). Alternatively, as the second hypothesis indi-
cated, we expected that multiclass models would per-
form much better at capturing the nonnormality of the
repeated measures. However, if a mixture is used
solely for approximation purposes, the parameters of
the components are usually of little intrinsic interest
because they have no analog in the population. That
is, we are estimating parameters that do not really
exist in the population and are hence largely uninter-
pretable. What then would be the implication of
mistakenly concluding that the estimated classes
represent latent subgroups and proceeding to interpret
these parameters? We expected that by centering
our attention on the within-class estimates, the true
role of exogenous predictors of individual change
could go undetected or spurious relationships could be
identified.
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We empirically evaluated these hypotheses with a
small simulation study designed to reflect conditions
that might commonly be encountered by investigators
seeking to use these models in practice (e.g., moder-
ately large samples, mildly nonnormal data, a moder-
ate number of assessment occasions). We stress that
we intend this study not to be a comprehensive evalu-
ation of all such conditions but to provide a clear
empirical demonstration of the validity of the pro-
posed hypotheses.

Simulation Design

All data were generated to be consistent with the
five-occasion linear growth model shown in Figure 1.
It is important to note that in all conditions, only a
single homogeneous group existed in the population.
The population mean trajectory was parameterized so
that, on average, scores would increase over time (��

� 1.00 and �� � 0.80). The variance components
were specified to provide meaningful individual vari-
ability in intercepts and slopes (�� � 1.00 and �� �
0.20). Further, intercepts and slopes were positively
correlated to a modest degree (��� � 0.11; ��� �
0.25). The total variance of each of the five repeated
measures was partitioned equally among the under-
lying trajectory and the time-specific residuals (e.g.,
�t

2 � .50).
Five hundred samples at each of two sample sizes,

N � 200 and N � 600, were generated for three
distributional conditions. In the first condition, the
data were generated to be normally distributed (i.e.,
with univariate skew 0 and kurtosis 0). The other two
conditions involved transformations of the repeated
measures data using Fleishman’s (1978) method for
generating nonnormal random variables, as extended
by Vale and Maurelli (1983) and implemented in EQS
(Bentler, 1995). Specifically, in these two conditions,
the repeated measures data were transformed to have
univariate skew 1 and kurtosis 1, and skew 1.5 and
kurtosis 6, respectively. These values are well within
the range of skew and kurtosis encountered in applied
psychological research (Micceri, 1989), and they rep-
resent minor deviations from normality that would
typically be of little concern for conventional (one-
class) growth modeling. Histograms displaying the
shapes of these distributions are displayed in Figure 4.

To test our hypotheses, we estimated one- and two-
class models for the data. We used Mplus 2.01 to
estimate the models, employing the EM estimator
with the MLR option to obtain robust standard errors
(L. K. Muthén & Muthén, 1998). A modified version

of the RUNALL utility was used to compile the re-
sults (Nguyen, Muthén, & Muthén, 2001). We did not
examine models with more than two classes, because
our hypotheses concerned only whether more than
one class could be extracted and provide better fit to
the data. Finite normal mixture models are known to
have poorly behaved likelihood functions, potentially
including many local solutions, and, when the vari-
ance parameters are permitted to vary over classes,
singularities at the edges of the parameter space that
can lead to nonconvergence (McLachlan & Peel,
2000, pp. 94–97). For this reason, two-class models
were estimated both with and without across-class
equality constraints on the variance components (e.g.,
�k � � and �k � �).4 Next, given the possibility
that there would be multiple local solutions, all two-
class models were estimated with six separate sets of
start values. One set of start values was based on the
recommendation that start values for multiclass mod-
els should be derived from the parameter estimates
obtained from single-group models (L. K. Muthén &
Muthén, 1998, p. 132). Following this recommenda-
tion, we used the single-group population parameter
values as start values for all of the parameters except
the growth factor means, which were set higher in one
group than the other for both growth factors (�̂� �
1.50 and �̂� � 1.60 for Class 1, and �̂� � 0.00 and
�̂� � 0.00 for Class 2). The other five sets of start
values were generated randomly.5 Our use of random
start values is consistent with their use in other simu-
lation studies on finite normal mixtures (e.g., Bier-
nacki, Celeux, & Govaert, 1999; McLachlan & Peel,
2000, p. 217).

4 Although they are statistically expedient, we do not re-
gard these equality constraints as optimal from a theoretical
standpoint, and in our experience, they are rarely found to
be tenable in practice. Indeed, implementing these con-
straints is in some ways inconsistent with the spirit of the
analysis, because one is forcing the majority of the param-
eter estimates to be the same over classes (permitting only
mean differences in the within-class trajectories). Further,
McLachlan and Peel (2000, pp. 97–98) have cautioned that
“imposition of the constraint of equal component-
covariance matrices can have a marked effect on the result-
ing estimates and the implied clustering.”

5 The start value for each parameter was obtained by
taking a random draw from a normal distribution with mean
equal to the single-group population value for the parameter
and a standard deviation set to provide broad coverage of
the surrounding parameter space.
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The model was allowed 1,000 iterations to con-
verge. We adopted the following algorithm for select-
ing solutions for analysis:

1. When a given replication failed to converge
with any of the six sets of start values, the so-
lution was labeled nonconvergent.

2. When more than one set of start values led to
convergence for a given replication, the solution
with the maximum (best) log-likelihood was se-
lected. This again follows standard practice in
studies of finite normal mixtures (Biernacki et
al., 1999; Everitt & Hand, 1981; McLachlan &
Peel, 2000, p. 217).

3. The solution selected from Step 2 was consid-
ered improper if any of the parameter estimates
fell outside of their permissible boundaries (i.e.,
negative variances, or correlations greater than
one).

Unless convergence was of explicit interest, non-
converged and improper solutions were excluded
from the analyses because such solutions are rarely
interpreted in practice (Chen, Bollen, Paxton, Curran,
& Kirby, 2001). However, additional analyses were
also conducted that included improper solutions, and
the results did not deviate in any meaningful way
from those reported here.

Figure 4. Example histograms displaying the shape of the three distributions that were used
in the simulation study for standardized data at N � 10,000. For comparison, the probability
function of a normal distribution is overlaid on the histograms.
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Nonnormality and the Estimation and Fit of
Latent Trajectory Classes

One important question was whether or not a two-
class latent trajectory model could be estimated from
data generated from a population consisting of a
single group. On the basis of the theoretical model, we
expected that two-class models fit to data drawn from
a multivariate normal distribution would perform
poorly, often failing to converge or settling on an
improper solution. Conversely, we expected that the
convergence rate for two-class solutions would sig-
nificantly increase as the degree of nonnormality in
the observed data increased.

Both hypotheses were empirically supported. As
Table 1 indicates, two-class models failed to converge
more often when fit to data drawn from a normal as
opposed to a nonnormal population distribution re-
gardless of whether equality constraints were placed
on the variance and covariance parameters over
classes.6 Further, as we had anticipated, the rate of
nonconvergence for both models was lower for the N
� 200 condition (occurring in about 1% of samples)
than for the N � 600 condition (occurring in 5%–6%
of samples), an effect that may be understood as a

consequence of greater sampling variability from the
population distribution. As the sample size increases
(e.g., at N � 600) the convergence rate declines be-
cause the empirical distribution begins to obtain its
asymptotically multivariate normal form. In contrast,
the rate of convergence was 100% in the nonnormal
conditions regardless of sample size.

Comparing the models with and without equality

6 The rate of nonconvergence in the normal condition was
much higher for any single set of start values. When equal-
ity constraints were placed on the variance and covariance
parameters, the rate of nonconvergence for each of the six
sets of start values ranged from 5% to 15% of replications
at N � 200 and from 24% to 33% of replications at N �
600. When these constraints were relaxed, similar rates of
nonconvergence were obtained, ranging from 8% to 11% at
N � 200 and from 24% to 31% at N � 600. In contrast, in
the nonnormal conditions, most sets of start values lead to
near 100% convergence rates, particularly when no equality
constraints were placed on the variance or covariance pa-
rameters. This again illustrates the greater difficulty of ob-
taining convergence in the normal condition, because it was
in this condition especially that multiple sets of start values
were necessary to find a solution.

Table 1
Convergence Rate of Two-Class Models (of 500 Samples) by Model Parameterization,
Sample Size, and Degree of Nonnormality

Sample size
and distribution

Failed to
converge

Converged

Improper solution Proper solution

Class-invariant variance and covariance parameters
N � 200

Skew 0, kurtosis 0 6 (1) 193 (39) 301 (60)
Skew 1, kurtosis 1 0 232 (46) 268 (54)
Skew 1.5, kurtosis 6 0 150 (30) 350 (70)

N � 600
Skew 0, kurtosis 0 23 (5) 108 (22) 369 (74)
Skew 1, kurtosis 1 0 211 (42) 289 (58)
Skew 1.5, kurtosis 6 0 74 (15) 426 (85)

Class-varying variance and covariance parameters
N � 200

Skew 0, kurtosis 0 4 (1) 450 (90) 46 (9)
Skew 1, kurtosis 1 0 170 (34) 330 (66)
Skew 1.5, kurtosis 6 0 162 (32) 338 (68)

N � 600
Skew 0, kurtosis 0 31 (6) 380 (76) 89 (18)
Skew 1, kurtosis 1 0 29 (6) 471 (94)
Skew 1.5, kurtosis 6 0 15 (3) 485 (97)

Note. Values in parentheses are percentages.
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constraints reveals three primary findings. First, re-
leasing the equality constraints had little effect on the
proportion of models failing to converge, suggesting
that in this case these constraints were largely unnec-
essary to avoid singularities on the likelihood surface
(their primary purpose). Second, the constraints had a
large impact on the proportion of proper to improper
solutions that were obtained. Imposing equality con-
straints on the variance and covariance parameters
greatly facilitated obtaining a proper solution in the
normal condition. For instance, in the normal condi-
tion at N � 600, proper solutions were obtained in
74% of samples when the equality constraints were
imposed but in only 18% of samples when they were
not. This low rate of proper solutions in the uncon-
strained model may reflect the fact that there is simply
not much information with which to estimate the ad-
ditional variance and covariance parameters of the
model. The opposite results were obtained for the
nonnormal conditions. In the skew 1, kurtosis 1 con-
dition at N � 600, 58% of samples yielded proper
solutions with the constrained model, compared with
94% of samples when these constraints were relaxed.
The skew 1.5, kurtosis 6 condition showed a similar,
though less pronounced, pattern. Finally, likelihood
ratio tests between the constrained and unconstrained
models supported the retention of equality constraints
in the majority of samples in the normal condi-
tion (82% of the time at N � 200; 66% at N � 600)
but rejected them almost 100% of the time in the
nonormal conditions.7 Given this finding, we con-
sidered both the constrained and unconstrained
models for the normal condition but restricted our
analysis to the unconstrained model for the nonnormal
conditions.

Given that two-class models can be successfully fit
to data drawn from a homogeneous population distri-
bution, our second question concerned the conditions
under which the two-class model would be identified
as optimal. For replications with proper solutions, we
examined the comparative fit of the one- and two-
class models using the AIC, BIC, CAIC, NEC, CLC,
and ICL–BIC. We had hypothesized that these fit sta-
tistics would correctly point to the presence of a single
group only in the case where the repeated measures
were generated from a multivariate normal distribu-
tion. Supporting this prediction, in the normal condi-
tion, the average values of these statistics were con-
sistently higher for the two-class model than for the
one-class model, signifying the superiority of the one-
class model. This was true at both sample sizes and

regardless of whether equality constraints were placed
on the variance and covariance parameters of the two-
class model, as can be seen in Tables 2 and 3. Of the
fit statistics, the AIC showed the worst performance,
indicating that the two-class model was superior in
21%–33% of replications. This finding is consistent
with the known tendency for the AIC to indicate that
too many classes should be estimated (Celeux & So-
romenho, 1996; Soromenho, 1993). The other fit sta-
tistics performed quite well in rejecting the two-class
model. Thus, if the population truly consists of a
single homogeneous group, and the data are sampled
from a multivariate normal distribution, then it is un-
likely that a two-class model will fit the data better
than the correct population model. These results are
encouraging, because they indicate that under these
conditions, the fit statistics (with the exception of the
AIC) are leading to correct inferences about the num-
ber of latent subgroups in the population.

In contrast, in the conditions in which the data were
drawn from nonnormal distributions, the two-class
model usually converged on a proper solution that fit
the data better than the single-class model. In this
case, the AIC, the BIC, and the CAIC supported se-
lection of two classes in almost 100% of the replica-
tions at both sample sizes. As hypothesized, the
amount of improvement in fit increased with the de-
gree of nonnormality of the repeated measures. For
example, in the skew 1, kurtosis 1 condition, moving
from one to two classes resulted in an average im-
provement of 2.4% in the BIC at N � 200, increasing
to 2.8% at N � 600. Likewise, in the skew 1.5, kur-
tosis 6 condition, moving from one to two classes
improved the BIC by 3.8% at N � 200 and by 4.4%
at N � 600. In empirical applications, comparably
sized improvements in the BIC have been interpreted
as evidence of multiple trajectory classes (e.g., Hill,
White, Chung, Hawkins, & Catalano, 2000; Li et al.,

7 A large part of the reason for this difference is that in
the normal case, even when two classes were estimable,
their parameter estimates were often quite similar (ap-
proaching the degenerate case in which a normal aggregate
distribution is resolved into two identical components with
arbitrary proportions). Hence, constraining some of these
estimates to be the same over classes has little impact on the
fit of the model. In contrast, as shown in Table 5, the pa-
rameter estimates for the two classes in the nonnormal con-
ditions were quite distinctive, so constraining them resulted
in large and significant decrements in model fit.
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2001; B. O. Muthén & Muthén, 2000; Nagin & Trem-
blay, 1999). Similarly, support for the two-class
model exceeded 98% of replications for the NEC and
the CLC fit statistics, with the greatest improvement
observed in the skew 1.5, kurtosis 6 condition. These
measures thus indicate that the two classes are dis-
tinctive and well separated despite the fact that only
one class actually exists in the population. Finally, the
ICL–BIC, which incorporates penalties for both the
number of parameters and poor class separation, was

the most conservative of the fit statistics. However, it
too supported the two-class model in 70%–99% of
replications.

These results supported our first two hypotheses
that nonnormality of the repeated measures would be
a critical factor influencing both the estimation of a
growth mixture model and its fit relative to the correct
single-class model. Confronted with the results of the
estimated models with nonnormal data, the applied
researcher seeking to identify population heterogene-

Table 2
Relative Fit of One-Class Versus Two-Class Models for Proper Solutions (of 500 Samples,
N = 200)

Fit statistic
% of time statistic

favors two-class model Mean differencea
Mean % change
in fit statistica

Skew 0, kurtosis 0: Class-invariant variance and covariance parameters (301 of 500 samples)
AIC 25.58 −1.32 −0.03
BIC 0.66 −11.21 −0.27
CAIC 0.33 −14.21 −0.35
NEC 5.98 −36.65 −3,665.09
CLC 5.98 −97.93 −2.42
ICL–BIC 0 −113.82 −2.77

Skew 0, kurtosis 0: Class-varying variance and covariance parameters (46 of 500 samples)
AIC 32.61 −2.04 −0.05
BIC 0 −38.33 −0.94
CAIC 0 −49.33 −1.20
NEC 0 −6.93 −692.75
CLC 0 −118.23 −2.93
ICL–BIC 0 −176.51 −4.31

Skew 1, kurtosis 1: Class-varying variance and covariance parameters (329 of 500 samples)b

AIC 100 133.54 3.28
BIC 99.70 97.25 2.37
CAIC 99.70 86.25 2.09
NEC 98.48 0.50 50.42
CLC 98.48 83.39 2.06
ICL–BIC 69.60 25.11 0.61

Skew 1.5, kurtosis 6: Class-varying variance and covariance parameters (334 of 500 samples)b

AIC 100 191.03 4.70
BIC 100 154.74 3.77
CAIC 100 143.74 3.49
NEC 99.10 0.63 63.49
CLC 99.10 142.75 3.52
ICL–BIC 92.51 84.47 2.04

Note. AIC � Akaike’s information criterion; BIC � Bayesian information criterion; CAIC � con-
sistent AIC; NEC � normalized entropy criterion; CLC � classification likelihood criterion; ICL–BIC
� integrated completed likelihood criterion with BIC approximation.
a Mean difference was calculated as Fit1 − Fit2, where Fit1 and Fit2 are the values of the statistic for the
one- and two-class models. Percentage change was calculated as (1 − Fit2/Fit1) * 100, where Fit1 and
Fit2 are the values of the statistic for the one- and two-class models. Positive values indicate that the fit
statistic decreased (improved) by moving to the two-class model. Negative values indicate worse fit of
the two-class model relative to the one-class model. bThe number of samples available for comparison
is slightly lower than the number of converged proper two-class solutions reported in Table 1 because the
one-class model was also required to converge on a proper solution.
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ity may make an incorrect inference regarding the
number of groups in the population, concluding that at
least two groups exist, perhaps more. However, the
more appropriate conclusion (given our knowledge of
the population model) would be that the superiority of
the two-class model directly results from its ability to
more accurately represent the nonnormality of the
multivariate distribution of the repeated measures
when compared with the one-class model.8 It is im-
portant to note that in the latter statement, no infer-
ence is made about the number of classes in the popu-
lation.

8 We do not claim that a two-class model provides the
best approximation to the multivariate distribution of the
repeated measures. It is possible that three or more compo-
nents would provide a better fit, potentially exacerbating the
problem of identifying nonexistent latent subgroups. The
number of latent classes that can be estimated and selected
as optimal is likely to depend on a number of factors in
addition to the empirical distribution of the data, including
the sample size, the number of variables, and the complexity
of the model. Because our intent is not to explore the use of
these models as a density approximation tool, we do not
consider this issue further here.

Table 3
Relative Fit of One-Class Versus Two-Class Models for Proper Solutions (of 500 Samples,
N = 600)

Fit statistic
% of time statistic

favors two-class model Mean differencea
Mean % change
in fit statistica

Skew 0, kurtosis 0: Class-invariant variance and covariance parameters (369 of 500 samples)
AIC 25.93 −1.47 −0.01
BIC 0 −14.66 −0.12
CAIC 0 −17.66 −0.14
NEC 1.90 −174.83 −17,482.70
CLC 1.90 −402.10 −3.30
ICL–BIC 0 −421.29 −3.44

Skew 0, kurtosis 0: Class-varying variance and covariance parameters (89 of 500 samples)
AIC 21.35 −3.63 −0.03
BIC 0 −52.00 −0.42
CAIC 0 −63.00 −0.51
NEC 0 −26.43 −2,643.08
CLC 0 −445.39 −3.66
ICL–BIC 0 −515.76 −4.21

Skew 1, kurtosis 1: Class-varying variance and covariance parameters (471 of 500 samples)
AIC 100 390.64 3.20
BIC 100 342.27 2.79
CAIC 100 331.27 2.70
NEC 98.73 0.41 40.54
CLC 98.73 173.34 1.42
ICL–BIC 91.08 102.97 0.84

Skew 1.5, kurtosis 6: Class-varying variance and covariance parameters (485 of 500 samples)
AIC 100 585.62 4.80
BIC 100 537.25 4.39
CAIC 100 526.25 4.29
NEC 100 0.62 62.34
CLC 100 389.14 3.19
ICL–BIC 99.18 318.77 2.60

Note. AIC � Akaike’s information criterion; BIC � Bayesian information criterion; CAIC � con-
sistent AIC; NEC � normalized entropy criterion; CLC � classification likelihood criterion; ICL–BIC
� integrated completed likelihood criterion with BIC approximation.
a Mean difference was calculated as Fit1 − Fit2, where Fit1 and Fit2 are the values of the statistic for the
one- and two-class models. Percentage change was calculated as (1 − Fit2/Fit1) * 100, where Fit1 and
Fit2 are the values of the statistic for the one- and two-class models. Positive values indicate that the fit
statistic decreased (improved) by moving to the two-class model. Negative values indicate worse fit of
the two-class model relative to the one-class model.
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Implications of Overextracting Classes for
Parameter Estimates and Standard Errors

On its surface, this qualification concerning the
number of subgroups that exist in the population may
appear primarily semantic. However, the importance
of this issue becomes more salient when we compare
the resulting parameter estimates from one- and two-
class models. Because the results from the two sample
sizes were nearly identical (with the predictable dif-
ference that the estimated standard errors were larger
in the N � 200 condition), we present only the results
from the N � 600 condition.9 Further, we restrict our
comparison to the nonnormal conditions, because it
was only in these conditions that model fit suggested
the presence of multiple classes. Because equality
constraints on the variance components were univer-
sally rejected in these conditions, we present only the
results of the unconstrained model. Finally, we con-
sider only the replications that resulted in proper two-
class solutions (representing over 94% of the total
replications).

A preliminary hypothesis was that the one-class
model would produce consistent parameter estimates
and accurate standard errors despite modest violation
of the assumption of multivariate normality. As ex-
pected, the model recovered the population values of
the parameters quite well. The parameter estimates
showed little evidence of bias even in the nonnormal
conditions. In all cases, the mean relative bias of the
parameter estimates was well below the 10% level
generally considered acceptable (e.g., Kaplan,
1989).10 The greatest degree of bias was observed in
the variance/covariance components of the model. For
instance, �̂� was underestimated in both conditions
(by averages of 1.4% and 2.2% in the skew 1, kurtosis
1 and skew 1.5, kurtosis 6 replications, respectively),
and �̂�� was overestimated in both conditions (by
averages of 1.8% and 2.2% in the skew 1, kurtosis 1
and skew 1.5, kurtosis 6 replications, respectively).
The mean relative bias in �̂� and �̂� was under 1% in
both conditions. The average estimated standard er-
rors obtained by fitting a one-class model were also
quite close to the standard deviations of the sample
parameter estimates, indicating that the robust stan-
dard errors were unbiased. Overall, the conventional
approach to growth modeling, in which only one
group is specified, performed well with the mildly
nonnormal distributions used in the simulation. Fur-
ther details on these results are reported in Table 4.

The mean parameter estimates and standard errors
for the two-class models are also presented in Table 4.

Our interpretation of these estimates depends on
whether we have estimated the model to identify
population heterogeneity or as a density approxima-
tion tool. Assuming our interest is in modeling popu-
lation heterogeneity, our primary focus would be the
within-class estimates. We would interpret them to
indicate that there are two distinctive latent subgroups
in the population, one with lower initial levels and a
slower rate of growth than the other, as shown in
Figure 5. Such inferences would in this case be erro-
neous, because the population model is in fact homo-
geneous.

Moreover, some relationships that hold in the over-
all population might not be observed within either
class. For instance, in our population model, the cor-
relation between intercepts and slopes was set to a
modest positive value (��� � .25). However, in the
two-class models, the value of this correlation within
each class was often estimated as negative. The rea-
son is that when the growth mixture model is esti-
mated, the correlational structure of the data is parti-
tioned into a within-class component and a between-
class component, where the latter is a function of the
mean differences between the classes. In this case,
Figure 5 shows that the positive relation between in-
tercepts and slopes in the population was essentially
“absorbed” into the differences of the mean trajecto-
ries. In almost all cases, the class estimated to have
the highest average intercept also had the highest av-
erage slope. The remaining relation between inter-
cepts and slopes within classes represents the residual
association between these parameters net of the mean
differences between the classes. It is thus not surpris-
ing that the within-class estimates of this parameter
poorly resemble their counterpart in the one-group
population model.

It could be argued that estimating the two latent

9 A full copy of the simulation results can be obtained
from Daniel J. Bauer at www4.ncsu.edu/∼djbauer or from
Patrick J. Curran at www.unc.edu/∼curran.

10 The mean relative bias (MRB) was calculated as

MRB =
1

R �
r=1

R

100 ���̂r − ��

�
�,

where R is the total number of replications included in the
analysis, � is a population parameter with a specific value,
and �̂r is the estimate of this parameter obtained in replica-
tion r.
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trajectory classes is a perfectly reasonable way to
model the nonnormal aggregate distribution of the
data. This argument would be consistent with the use
of normal mixture models as a density approximation
tool. In this case, the latent trajectory classes could be
used to explore the distribution of the repeated mea-
sures, with no inferences being made about the exis-
tence or characteristics of latent subgroups in the
population. For instance, as shown in Figure 5 the
degree of departure from the population trajectory is
greatest in each condition for the class with the small-
est estimated proportion of cases. The separation and
asymmetry between the class trajectories can be ex-
plained by analogy to the simple univariate mixture
discussed earlier. Skewed data require one component
to capture the piling up of values at one end of the
distribution and another component to capture the
long tail at the other end of the distribution. Data that
are characterized only by positive kurtosis will gen-
erally still require multiple components to account for
the peakedness of the distribution, but the means of
the two components should be very close. Similarly, it
is the degree of skew in the repeated measures that
drives the mean trajectories of the two latent classes
apart.

In some cases, we can move beyond purely descrip-
tive analyses of the distribution of the repeated mea-
sures. If the models estimated within each class have
the same form and differ only in their parameter es-
timates (as is the case here), the within-class estimates
can be combined to obtain valid estimates for the
aggregate population.11 In fact, to do so, we can use
the same basic equations that Pearson (1894) derived
over a century ago. For instance, Equation 9 can be
used to calculate the aggregate growth factor means
from the within-class means, and Equation 10 can be
used to calculate the aggregate factor variances from
the within-class variances and means. This is an in-
teresting approach to estimating models with nonnor-
mal data, and further research is needed to evaluate its
performance relative to robust or distribution-free
methods that do not depend on the use of latent
classes (e.g., Bollen, 1996; Browne, 1984; Satorra &
Bentler, 1994). However, to date, growth mixture
models have rarely been applied for this purpose. In-

11 We thank Bengt Muthén for this interesting sugges-
tion.

Table 4
Population Values for Key Model Parameters Compared With the Mean Value (and
Average Standard Errors) of the Parameter Estimates Obtained From One- and
Two-Class Models That Converged on Proper Solutions (of 500 Samples, N = 600)

Parameter Population One-class model

Two-class modela

Class 1 Class 2

Skew 1, kurtosis 1
(500 samples) (471 samples)

�� 1.00 1.00 (0.05) 1.50 (0.12) 0.17 (0.13)
�� 0.80 0.80 (0.03) 0.99 (0.06) 0.51 (0.07)
�� 1.00 0.99 (0.13) 0.79 (0.21) 0.19 (0.09)
�� 0.20 0.20 (0.03) 0.21 (0.06) 0.05 (0.02)
��� 0.11 0.11 (0.05) −0.06 (0.08) −0.01 (0.03)
CORR�� .25 .26 −.11 −.07
% cases 100 100 60.7 39.3

Skew 1.5, kurtosis 6
(500 samples) (485 samples)

�� 1.00 1.00 (0.05) 1.99 (0.22) 0.65 (0.06)
�� 0.80 0.80 (0.03) 1.16 (0.11) 0.69 (0.03)
�� 1.00 0.98 (0.15) 1.19 (0.50) 0.40 (0.08)
�� 0.20 0.20 (0.04) 0.36 (0.13) 0.09 (0.02)
��� 0.11 0.11 (0.05) −0.15 (0.20) 0.02 (0.03)
CORR�� .25 .27 −.19 .13
% cases 100 100 25.3 74.7

Note. CORR � correlation.
a Estimated with class-varying variance and covariance parameters.
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deed, virtually every application of the model of
which we are aware has been explicitly motivated by
the desire to model population heterogeneity. From
this perspective, obtaining valid aggregate estimates
is often not of key interest, because the focus is on
making valid inferences about the number and char-
acteristics of latent subgroups in the population.

Overall, these results supported our proposed hy-
pothesis that multiple latent trajectory classes would
appear optimal for nonnormally distributed data even
if these data were generated from a single homoge-
neous population. In this case, interpreting the trajec-
tory classes to represent the distinctive developmental
pathways of unobserved subgroups would be errone-

ous. Further, if attention is focused on the within-class
estimates, it is possible that relationships that exist in
the aggregate population will go undetected.

Implications of Overextracting Classes When
Testing Predictors

Our final hypothesis was that overextracting classes
could also obscure the role of important predictors of
individual variability in change over time in the popu-
lation. To empirically evaluate this prediction, we
generated continuous normal data (mean � 0, vari-
ance � 10) for a time-invariant covariate that is posi-
tively associated with intercepts and negatively asso-
ciated with slopes using the latent variable model

��i

�i
� = �1.0

0.8� + � 0.125

−0.03 � �xi� + �	�


	�


�, (13)

where the population values of �� and �� were un-
changed from the unconditional model because the
predictor was centered. The values of the regression
coefficients relating the predictor to individual inter-
cepts (�1 � .125) and slopes (�2 � −.03) were cho-
sen to represent the kind of moderate effect sizes that
are commonly encountered in practice. Comparing
the residual variances of the growth factors in the
conditional model (�� � .84 and �� � .19) with the
variances of these factors in the unconditional model
shows that 16% of the variance in the intercept is
explained by the predictor, whereas 5% of the vari-
ance in the slope is explained by the predictor. Under
multivariate normality, the power to detect the effect
of �1 would be 0.99 at N � 200 and 1.00 at N � 600,
whereas for �2, the power would be 0.53 at N � 200
and 0.94 at N � 600 (as calculated using the proce-
dure of Satorra & Saris, 1985).

As noted earlier, there are two ways of treating
predictors in growth mixture models. The first ap-
proach generalizes Equation 13 and involves estimat-
ing class-specific values for �1 and �2. The second
approach is unique to the mixture modeling context
and treats the covariate as a predictor of individual
class membership. Because the earlier results indi-
cated that generally one would not estimate two tra-
jectory classes with normal data, we estimated these
models only with the nonnormal data. Further, be-
cause across-class equality constraints on the vari-
ances and covariance parameters were universally
rejected in the nonnormal conditions, we evaluated
only the two-class model without such constraints. As

Figure 5. The average mean trajectories from convergent
two-class models (proper solutions only, N � 600), plotted
as solid lines. The average estimated percentage of cases
belonging to each class is noted beside each trajectory. The
single dashed line is the true mean trajectory of the popu-
lation.
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before, only proper solutions were included in the
analysis.

Prediction of interindividual variability within
classes. The first type of conditional model that we
examined involves the estimation of class-specific la-
tent variable models.12 In the present case, we esti-
mated two different two-class models, one in which
�̂1 and �̂2 were constrained to be invariant over
classes and a second in which they were freely esti-
mated within classes. The latter model reflects a class
by covariate interaction. The same estimation method
was used as before, including the calculation of robust
standard errors. The models were again estimated
with six sets of start values, and the same decision
algorithm was used to select the solution for analysis.

Comparing the results of fitting one- and two-class
conditional models revealed the same trends noted in
the unconditional case. That is, the one-class model
produced consistent estimates of the population pa-
rameters �1 and �2 and accurate robust standard er-
rors. In fact, using an alpha level of .05, we identified
�̂1 as significant in 99% of replications at N � 200
and in 100% of replications at N � 600, whereas �̂2

was significant in 54%–55% of replications at N �
200 and in 93%–94% of replications at N � 600.
These rejection rates are in line with the normal
theory-based power estimates, which suggested that
�̂1 should be significant in 99% of replications at N �
200 and in 100% of replications at N � 600 and that
�̂2 should be significant in 53% of replications at N �
200 and in 94% of replications at N � 600.

In contrast, in the two-class models, the within-
class parameter estimates roughly resembled the true
values of the parameters within the single-group
population, but our ability to detect these effects was
lower. This decrease in power was due in large mea-
sure to the higher standard errors obtained for the
within-class estimates, which in turn were a conse-
quence of resolving the total sample into smaller es-
timated latent classes. Across the two distributional
conditions, �̂1 was identified as significant within the
larger class at a rate of 87%–88% at N � 200 and of
100% at N � 600, but within the smaller class it was
identified as significant in only 57%–59% of replica-
tions at N � 200 and in 93%–97% of replications at
N � 600. Similarly, for the larger class, �̂2 was iden-
tified as significant in 42%–49% of replications at N
� 200 and in 89%–90% of replications at N � 600;
for the smaller class, �̂2 was significant in only 23%–
29% of replications at N � 200 and in 55%–61% of
replications at N � 600. These results show that by

artificially rendering a homogeneous population into
latent classes, the power to detect the effect of pre-
dictors may decrease substantially.

The estimated values of �̂1 and �̂2 also often di-
verged significantly between the two classes, indicat-
ing the presence of a class by predictor interaction.
For the skew 1, kurtosis 1 condition, with an an alpha
level of .05, likelihood-ratio tests between the con-
strained and unconstrained two-class models indi-
cated that �̂1 and �̂2 significantly differed between
classes in 18% of the replications at N � 200 and in
55% of the replications at N � 600. Similarly, in the
skew 1.5, kurtosis 6 condition, �̂1 and �̂2 differed
significantly over classes in 17% of the replications at
N � 200 and in 47% of the replications at N � 600.
In actuality, the mean differences between the param-
eter estimates were quite similar at the two sample
sizes, illustrating the fact that as sample size in-
creases, the power to detect effects, even spurious
effects, also increases. Additional results from the
one-class and two-class unconstrained models at N �
600 are provided in Table 5 (results at N � 200 were
similar and so are not detailed further here).

Prediction of class membership. An alternative
way to incorporate predictors in the model is to assess
their influence on the probability of belonging to par-
ticular trajectory classes. Formally, this effect of the
predictor is evaluated through the inclusion of a mul-
tinomial regression equation in the model for the pos-
terior probabilities. If multiple groups do not exist in
the population but are extracted in the sample, treating
the covariate as a predictor of class membership may
have serious consequences. The situation is loosely
analogous to performing a median split on a continu-
ous outcome measure for the purpose of running a
logistic regression with a continuous predictor. As J.
Cohen (1983) has demonstrated, such practices can
lead to the underestimation of effects and often
sharply reduce power (see also MacCallum, Zhang,
Preacher, & Rucker, 2002). Similarly, in the present
case, we expected that treating the exogenous variable
as a class predictor within a two-class model would
diminish our capacity to detect its effect.

12 It is important to note that with the inclusion of exo-
geneous predictors in the model, the distributional assump-
tion shifts to conditional multivariate normality within
classes as opposed to unconditional multivariate normality
(see Arminger et al., 1999, for further detail on this distinc-
tion).
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The mean logit relating the predictor to class mem-
bership was almost identical in all conditions, ranging
from 0.10 to 0.11, as was the mean odds-ratio, which
ranged from 1.11 to 1.12. The odds-ratios may be
interpreted to mean that with each one-unit increment
in the predictor, it is 1.11 to 1.12 times more likely
that a case belongs to Class 1. For the skew 1, kurtosis
1 condition, this effect was significant in only 30% of
the replications at N � 200 and in 75% of the repli-
cations at N � 600. For the skew 1.5, kurtosis 6
condition, the effect of the predictor was significant in
only 26% of the replications at N � 200 and in 67%
of the replications at N � 600. These results again
supported our hypothesis that overextraction of
classes would compromise our ability to detect sig-
nificant relations between predictors and individual
growth.

The estimated logit coefficients and odds-ratios al-
most always indicated that individuals with high val-
ues on the continuous predictor were more likely to
belong to the first class. The mean trajectories of the
two classes were largely unchanged from those dis-
played in Figure 5 (based on the unconditional
model). That is, Class 1 had both a higher intercept
and a more steeply increasing slope than Class 2. As
such, one would be tempted to conclude that having a
high value on the class predictor increases the likeli-
hood of having both a high intercept and a high slope.
However, this conclusion would be erroneous; in the
population model, the effect of the predictor is only
positive for intercepts and is in fact negative for
slopes. Thus, if a predictor has differential effects on

the parameters of the growth process, it may be rela-
tively difficult to recover both relationships using the
variable as a class predictor. Further, the power to
detect the effects of predictors may be diminished if
only one group actually exists in the population.

Summary

Taken together, the results of our simulation sup-
ported each of our three hypotheses. First, we had
hypothesized that it would be difficult to fit a two-
class growth mixture model to data drawn from a
normal distribution but relatively easy to do so with
data drawn from a nonnormal distribution even if the
population truly consisted of just a single group. Our
empirical results indicated that although two-class
models could be fit to data drawn from a normal
distribution, it was more difficult than in the nonnor-
mal conditions. Specifically, use of multiple sets of
start values was critical to avoid nonconvergence, and
it was usually necessary to place equality constraints
on the variance and covariance parameters over
classes to obtain a proper solution. In direct contrast,
when a two-class model was fit to data drawn from
nonnormal distributions, the growth mixture model
routinely converged on a proper solution even without
equality constraints, though in fact no latent sub-
groups actually existed in the population.

Our second hypothesis was that, under nonnormal-
ity, fit statistics would reliably indicate that the two-
class model was superior to a single-class model de-
spite the presence of just one group in the population.
This hypothesis was supported by the finding that

Table 5
Population Values of Model Parameters Relating a Predictor to the Intercept and Slope
Factors Compared With the Mean Value of the Parameter Estimates (and Average
Standard Errors) Obtained From One- and Two-Class Models That Converged on Proper
Solutions (of 500 Samples, N = 600)

Parameter Population One-class model

Two-class modela

Class 1 Class 2

Skew 1, kurtosis 1
(499 samples) (437 samples)

�1 0.125 0.123 (0.016) 0.139 (0.025) 0.070 (0.021)
�2 −0.030 −0.030 (0.008) −0.044 (0.013) −0.021 (0.011)
% cases 100 100 60.0 40.0

Skew 1.5, kurtosis 6
(499 samples) (458 samples)

�1 0.125 0.123 (0.017) 0.189 (0.049) 0.087 (0.016)
�2 −0.030 −0.030 (0.008) −0.061 (0.028) −0.025 (0.008)
% cases 100 100 25.5 74.5

a Estimated with class-varying variance and covariance parameters.
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with normal data, even if two classes could be esti-
mated, the fit of the two-class model was routinely
judged to be poorer than that of the correct one-class
model. However, when the data were generated from
a nonnormal distribution, this was no longer the case.
The two-class model was consistently judged to be a
better representation of the data than the one-class
model despite the fact that only one group was actu-
ally present. Finally, our third hypothesis centered on
the implications of extracting multiple classes when
only one existed. As expected, the overextraction of
groups resulted in largely uninterpretable within-class
parameter estimates that sometimes obscured relation-
ships present in the aggregate population. It also
greatly diminished our ability to detect the full effects
of predictors of individual change and frequently led
to the identification of spurious class by predictor
interactions.

Strengths and Limitations

We believe that this article is characterized by sev-
eral key strengths. First, we drew on statistical theory
to generate a set of specific research hypotheses to be
empirically evaluated using computer simulations.
Second, we attempted to maximize the external va-
lidity of the findings by studying the effects of sample
sizes, distributions, and a target model that might be
commonly encountered in applied research. Finally,
we approached the model estimation procedure from
the perspective of an applied practitioner by using
multiple sets of start values for each replication and
by considering converged and proper solutions. De-
spite these strengths, there are of course several po-
tential limitations that should be noted.

As with any simulation study, we did not examine
all possible experimental conditions. Specifically, ad-
ditional sample sizes, nonnormal distributions, num-
bers of repeated measures, and functional forms of
growth were not included here. Despite the necessary
omission of these additional conditions, we do not
believe it presents a significant limitation given the
predictable outcomes associated with these variations.
For example, it would be expected that smaller or
larger sample sizes would predictably influence con-
vergence rates and standard errors. Further, more se-
vere nonnormality would be predicted to increase
only the identification of spurious groups. Finally,
although many alternative forms of growth could be
considered, given that the model is properly specified,
we would expect to obtain similar findings but with
the added issues associated with the more complex

models (e.g., larger numbers of parameters to be es-
timated). In sum, although additional experimental
conditions could be considered, we believe that our
findings generalize to a broad set of situations that
might be encountered in applied research.

Finally, an important point to highlight is that we
made no attempt to analytically or empirically exam-
ine the implications of failing to extract multiple
classes when such heterogeneity does exist in the
population. In other work we have demonstrated that
it may be quite difficult to identify model misfit when
fitting a single-group model to data generated from a
multiple-group population (Bauer & Curran, 2001;
see also Jedidi et al., 1997). Although this is a criti-
cally important situation to consider more closely, the
omission of multiple classes has no bearing on the
hypotheses tested here. That is, our motivating goal
was to explore conditions that might lead to the spu-
rious extraction of multiple classes when only one
class truly existed. Much future work is needed to
better understand the implications of omitting classes
when such classes actually exist in the population.

Conclusions

Growth mixture models represent an exciting new
development that allows applied researchers to exam-
ine data in ways not previously possible. Like all fi-
nite normal mixture models, growth mixture models
may be viewed as having two functions. The function
that is most attractive to many social scientists is that
these models offer an analytic approach that is con-
sistent with theories emphasizing population hetero-
geneity in patterns of change over time. The promise
of the growth mixture model is to identify taxonomic
groups with distinctive trajectories and unique rela-
tions to predictors. When the model is used for this
purpose, interest centers on the within-class estimates
and the population proportions of the latent sub-
groups. The second function of these models, which is
less well known to social scientists, is to provide a
means of approximating complex or unknown multi-
variate distributions of repeated measures. In this
case, the component classes are typically viewed as
analytic tools for examining the aggregate distribu-
tion. There is little expectation that the estimates ob-
tained within classes will actually reflect meaningful
population parameters, and they are generally only
useful when recombined to examine the characteris-
tics of the aggregate population.

It is important that although these two purposes of

ASSUMPTIONS OF GROWTH MIXTURE MODELS 357



the latent trajectory class model are quite distinct
theoretically, each is based on precisely the same ana-
lytical model. It may thus be quite difficult to deter-
mine analytically which function the estimated latent
classes are actually serving. Further, the fit statistics
conventionally used to discern the presence of latent
subgroups (e.g., the BIC) are also often used to iden-
tify the optimal number of components needed to ap-
proximate homogeneous but undefined distributions
(e.g., Roeder & Wasserman, 1997). Given this fact, it
is not surprising that these fit statistics do not distin-
guish between the two functions of the model. An
important implication of this point is that simply iden-
tifying the optimal number of latent trajectory classes
for the data does not allow strong inferences to be
made regarding the number or characteristics of latent
subgroups in the population. Although population het-
erogeneity may well exist, an equally viable explana-
tion is that the trajectory classes simply allow the
model to more optimally capture a nonnormal, but
ultimately homogeneous, distribution of repeated
measures.

Our primary goal in highlighting this issue is to
make applied researchers more fully aware of alter-
native interpretations for their results. In our survey of
the literature, including didactic articles by B. O. Mu-
thén (2001), B. O. Muthén (2001), B. O. Muthén and
Muthén (2000), and Li et al. (2001), change in model
fit with the extraction of additional classes has been
interpreted almost universally as a test of population
heterogeneity. To our knowledge, the alternative ex-
planation that the additional classes improve the fit of
the model only because they serve to approximate an
irregular but homogeneous distribution of repeated
measures has rarely been considered (an important
exception is Nagin, 1999). Similarly, conditional
growth mixture models have been recommended to
identify subgroups of individuals for whom interven-
tions differ in effectiveness (B. Muthén et al., 2002).
However, as our simulation results have demon-
strated, with nonnormally distributed data, spurious
class by predictor interactions may be obtained even
when the population is homogeneous and the predic-
tor has a constant linear effect on the individual tra-
jectory parameters.

Growth mixture models are certainly not unique in
this regard; analogous problems beset many other sta-
tistical procedures. For example, the broadly used cor-
relation coefficient may be interpreted in multiple
ways.13 A positive correlation between Variables A
and B may indicate that A causes B, that B causes A,

that a third variable, C, causes both A and B, and that
it may be due to the presence of outliers or that it may
fail to capture what is really a nonlinear relationship
between A and B. The fact that these alternative in-
terpretations exist does not diminish the widespread
utility of the statistic. The difference is that the limi-
tation of the correlation coefficient for causal infer-
ences is widely understood, and these alternative in-
terpretations are appreciated and, when possible,
empirically evaluated. Our intention is to contribute to
a similar level of discourse on the alternative inter-
pretations of growth mixture models.

Implications for Applied Research

It may be argued that strong substantive theory can
be used to guide the interpretation of the model. For
instance, if theory indicates that population heteroge-
neity is likely, then why should we not interpret the
latent classes as distinctive population subgroups?
The reason is that, in our opinion, this approach re-
verses the normal hypothetico-deductive process of
science. Specifically, using a growth mixture model to
test the hypothesis that the population is heteroge-
neous and then proceeding to interpret the latent
classes as true subgroups because that is what theory
suggests would be affirming the consequence. The
fact that multiple latent classes are optimal for the
data no more indicates that the population is hetero-
geneous than a significant correlation indicates that
Variable A causes Variable B. It is important to note
that the correlation is consistent with the causal pro-
cess, and the finding that multiple classes are optimal
is also consistent with the presence of population het-
erogeneity. As such, testing for the optimal number of
components may best be viewed as a method for po-
tentially rejecting (rather than supporting) the hypoth-
esis that the population is heterogeneous. Given the
analytical and simulation results we have presented,
this may be tantamount to determining that the em-
pirical distribution is nonnormal (given sufficient
sample size).

In the case that one is willing to assume that this
nonnormality reflects a mixture of unobserved
groups, each with a multivariate normal distribution,
then the growth mixture model is an ideal approach
for analyzing the data. However, there are other
causes of nonnormality and other approaches for ana-

13 We thank Andrea Hussong for suggesting this analogy.
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lyzing nonnormal data. If one is not willing to assume
that the nonnormality reflects population heterogene-
ity, it may still be possible to gainfully use a growth
mixture model. However, in this case, one would be
using the model for density approximation, and inter-
pretations should be centered on effect estimates com-
puted for the aggregate population. More conven-
tional approaches for accommodating nonnormal data
include robust or distribution-free methods of model
estimation (Bollen, 1996; Browne, 1984; Satorra &
Bentler, 1994) and the use of nonlinear transforma-
tions to normalize the data (e.g., logarithmic transfor-
mations). If one is interested in obtaining aggregate
estimates from nonnormal data, comparing the re-
sults obtained from each of these approaches may be
useful.

Another possibility is that there is both a mixture
and intrinsic nonnormality or a mixture of nonnormal
distributions. This seems especially likely in substan-
tive domains such as drug and alcohol use and anti-
social behavior, where growth mixture models have
been applied with the most frequency (e.g., Chassin,
Pitts, & Prost, 2002; Colder et al., 2001; B. Muthén et
al., 2002; B. O. Muthén & Muthén, 2000; Nagin &
Tremblay, 1999). Extrapolating from the results pre-
sented here, we expect that using a growth mixture
model based on a mixture of normal distributions
would often fail to detect the true number of compo-
nents, because several normal components might be
needed to approximate the true nonnormal distribu-
tion of each subgroup. An alternative distributional
model would, in theory, be preferable (though it might
not be analytically tractable). If the correct number of
classes is selected, however, Jedidi et al. (1997) have
found that the parameter estimates may be consis-
tently estimated despite violation of the assumption of
normality within components (though see Arminger et
al., 1999, for an exception).

Ultimately, deciding whether the latent classes
should best be interpreted as population subgroups
may require a programmatic series of research stud-
ies, each aimed at testing the validity of the assump-
tion of population heterogeneity. This recommenda-
tion follows the classical prescription for assessing
construct validity given by Cronbach and Meehl
(1955): to construct a nomological network of results
that are consistent with the idea of population hetero-
geneity and that would not necessarily be expected if
the population was homogeneous regardless of its dis-
tributional form. This task may be difficult. For in-
stance, one might examine the characteristics of the

trajectory classes to see if they match theoretical ex-
pectations. However, this requires relatively strong
predictions about the within-class trajectories. It is our
impression that growth mixture models are more typi-
cally used in an exploratory mode, with post hoc in-
terpretations of the class trajectories. Another piece of
information that would seem to support the notion of
population heterogeneity would be if predictors dif-
ferentially influenced growth in the latent classes.
However, as we have shown, spurious class by pre-
dictor interactions can be obtained even when the
population is truly homogeneous. Further, predictors
that bear a significant relationship to the individual
growth parameters within a unitary population also
tend to distinguish between estimated latent classes.
Adequately testing theories of population heterogene-
ity thus remains both an important empirical and ana-
lytical challenge.

Directions for Future Research

There are several important avenues for future
quantitative research on growth mixture models. For
instance, the theoretical model we used was based on
the simple univariate normal mixture, which differs in
several important ways from the growth mixture
model. Not only are growth mixture models multi-
variate, involving a mixture of covariance matrices
and mean vectors, but these matrices and vectors are
structured. If the structural model is misspecified (i.e.,
with the incorrect functional form of growth), this
might also lead to the overextraction of classes even
when the population distribution is multivariate nor-
mal. Our reasoning is as follows: In the single-class
case, the model-implied means, variances, and covari-
ances will not accurately reproduce the observed mo-
ments. A second trajectory class (or more) may be
needed to account for this discrepancy (again serving
the function of better approximating the observed
data). We are currently examining this topic in ongo-
ing research.

It is important, as noted earlier, that we did not
consider the case in which population heterogeneity
exists but is not explicitly modeled. Early research on
this issue has indicated that fitting a conventional one-
group model to data arising from a mixture may pro-
duce aggregate parameter estimates that fail to reflect
the structural relationships among the variables in any
one of the individual classes (Jedidi et al., 1997; B. O.
Muthén, 1989). Further, traditional model fit statistics
may yield little diagnostic information about the mis-
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fit of the model (Bauer & Curran, 2001; Jedidi et al.,
1997). An important topic for future research will be
to determine which error is more severe. That is, in
the case that an investigator is uncertain of the number
of groups present, is it better to extract groups that
may not exist or to employ a conventional model that
ignores possible population heterogeneity?

Finally, it will be important to develop and evaluate
new fit criteria that may provide a better indication of
whether the estimated latent trajectory classes actually
reflect population subgroups. The fit statistics we con-
sidered are the most widely used but are all based on
the manipulation of up to four basic pieces of infor-
mation: the log-likelihood of the model, the sample
size, the number of parameters estimated, and the de-
gree of separation between the latent classes (as de-
tailed in the Appendix). Another approach that has
been recommended in the literature is to bootstrap the
likelihood ratio test (Aitkin, Anderson, & Hinde,
1981; Arminger et al., 1999; McLachlan, 1987), and
more recently, an asymptotically valid likelihood ratio
test has been proposed by Lo, Mendell, and Rubin
(2001). However, given that these tests depend on the
same pieces of information as do the criteria we
evaluated, we expect that they would be influenced by
nonnormality in a similar way. In reviewing this ar-
ticle, Bengt Muthén suggested that it may be possible
to test the plausibility that the latent classes reflect
population heterogeneity by evaluating the fit of the
model to the higher order moments of the data. We
feel that this is an intriguing idea and hope that by
drawing greater attention to this issue, successful tests
of this sort may be developed in the near future.
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Appendix

Formulas for the Fit Statistics Used in the Simulation Study

The AIC, BIC, and CAIC are calculated as

AIC = −2 log L + 2p, (A1)
BIC = −2 log L + p log N, (A2)

CAIC = −2 log L + p�log N + 1�, (A3)

where log L is the estimated log-likelihood of the model, p
is the number of parameters in the model, and N is the
number of cases in the model. Comparing these equations
demonstrates that when log N > 2 (or N > 7), the BIC will
be a more conservative criterion than the AIC for selecting
classes. Further, the CAIC can be seen to be more conser-
vative than the BIC by the constant p.

The CLC, NEC, and ICL–BIC are derived from the ob-
servation that the estimated log-likelihood of the model may
be partitioned into two components:

log L � log Lc + EN(�̂). (A4)

The first component, log Lc, represents the complete-data
log-likelihood (or classification likelihood) that would have
been obtained had the posterior probabilities of class mem-
bership been constrained to values of zero and one (imply-
ing perfect classification of observations). The second com-
ponent, referred to as entropy, captures the actual fuzziness
of the classification and is calculated as

EN�	̂� = −�
i=1

N

�
k=1

K

�̂ik log �̂ik, (A5)

where �̂ik is the estimated posterior probability that indi-
vidual i is a member of group k. It can be seen from Equa-
tion A4 that as the entropy goes to zero, the mixture like-
lihood obtains the same value as the classification
likelihood, which assumes perfect classification of observa-
tions. As such, entropy provides a measure of the quality of
classification in which small values indicate a high degree
of separation between latent classes.

The CLC and NEC fit statistics are motivated by the

desire to select a model that provides optimal classification
quality. The CLC is derived directly from Equation A4 as

CLC � −2 log L + 2EN(	̂). (A6)

Similarly, the NEC involves a normalization of the entropy
component of the likelihood and is given as

NEC =
EN��̂�

log L − log L*
, (A7)

where log L is the log-likelihood of the mixture model with
K components, and log L* is the log-likelihood for a single-
class model. Strictly speaking, the NEC is undefined when
K � 1. For comparisons between one-class models and
two-class models, Biernacki, Celeux, and Govaert (1999)
suggested setting the NEC to 1 for the one-class model.
Note that Ramaswamy, DeSarbo, Reibstein, and Robinson
(1993) proposed an alternative rescaled entropy measure
(ranging from 0 to 1 with 1 indicating perfect classification)
which is labeled entropy in Mplus 2.01 output (L. K. Mu-
thén & Muthén, 1998). This measure is also undefined for K
� 1, and no conventions have been established for com-
paring one- and two-class models using this statistic, so we
do not consider it further here.

The ICL–BIC is directly related to the BIC and the CLC,
involving penalties for both parameters and poor classifica-
tion quality. Hence it is a more conservative criterion than
either the BIC or the CLC. The ICL–BIC is calculated as

ICL–BIC � −2 log L + p log N + 2EN(	̂). (A8)

Further information on formulas for the fit statistics may be
obtained from Bozdogan (1987) and McLachlan and Peel
(2000, chap. 6).
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